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1. Groups and Examples

1.1. Basics

1.1.1. Definition. A group is a non-empty set G together with a rule that assigns to

each pair g , h of elements of G an element g ∗ h such that

• g ∗ h ∈ G . We say that G is closed under ∗.

• g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g , h, k ∈ G . We say that ∗ is associative.

• There exists an identity element e ∈ G such e ∗ g = g ∗ e = g for all g ∈ G .

• Every element g ∈ G has an inverse g−1 such that g ∗ g−1 = g−1 ∗ g = e.

1.2. First examples of groups

Groups are one of the basic building blocks of pure mathematics. One of the main

reasons they are so important is that they appear often, and in many different contexts.

You already know lots of examples of groups.

1. The integers Z under addition is a group with g ∗ h := g + h. The identity is

0 and the inverse of x is −x .

• Similarly with Q,R and C (or indeed any other field) under addition.

2. For all n ∈ N, the integers mod n, which we denote Zn, forms a group under

addition. The the identity is 0, and the inverse of x is −x . (Strictly of course

elements of Zn are equivalence classes, but we are expressing things in terms

of representatives.)

3. Every vector space V is a group under addition of vectors, with identity the

zero vector. When we think of a vector space in this way we are forgetting the

extra structure of scalar multiplication that a vector space has.

4. The non-zero real numbers R∗ form a group under multiplication (by which

we mean x ∗y := xy) with identity 1 and the inverse of x being 1/x . Similarly

the non-zero elements of any field form a group under multiplication. For

example, the non-zero elements Z∗
p (where p is prime) of Zp form a field

under multiplication with identity 1 and inverse 1/x .

5. Let k be a field and choose n ∈ N. Then G = GL(n, k) is defined to be the

set of all invertible n× n matrices with entries in k . This is a group with g ∗ h

given by matrix multiplication. (One can regard it as the symmetries of the

vector space kn — see §1.8.1 later)

1.3. Symmetries give groups

Roughly speaking, a symmetry of an object is a bijection (i.e. one-to-one correspon-

dence) from the object to itself that preserves its structure. This is not a mathematical
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definition, it just gives you the theme of the next few sections. I will make this more

precise in some examples (see §1.4, §1.5, §1.6 and §1.7). As a slogan, ‘symmetries

give groups’.

1.4. Symmetries of graphs

1.4.1. Definition. A graph is a finite set of vertices joined by edges. We will assume

that there is at most one edge joining two given vertices and no edge joins a vertex

to itself. The valency of a vertex is the number of edges emerging from it.

1.4.2. Examples.

(a) (b) (c)

(d) (e) (f )

1.4.3. Definition. A symmetry of a graph is a permutation of the vertices that pre-

serves the edges. More precisely, let V denote the set of vertices of a graph. Then a

symmetry is a bijection f : V →V such that f (v1) and f (v2) are joined by an edge if

and only if v1 and v2 are joined by an edge.

Note that symmetries must preserve the valency of a vertex, hence if v1 has valency

three, then f (v1) must also have valency three.

1.4.4. Example. Consider the graph

For convenience, number the vertices

5

2 31 4

so V , the set of vertices, is V = {1, 2, 3, 4, 5}. Let f : V → V be a symmetry of the

graph. Since 5 is the only vertex with valency two, f (5) = 5. Since 2 and 3 are the

only vertices that have valency three, necessarily f (2) = 2 or 3, and f (3) = 3 or 2.

Suppose that f (2) = 2. Since f is a bijection, f (3) 6= 2 and so f (3) = 3. Thus 2,

3 and 5 are all fixed by f . This then forces f (1) = 1 (since f (1) must be joined to

f (2) = 2, and it can’t be 5 since f (5) = 5) and similarly f (4) = 4. This means that

f is the identity.

On the other hand, suppose f (2) = 3. This forces f (3) = 2. We already know that

f (5) = 5. Since 1 has valency one, either f (1) = 1 or 4. Since f (1) must be joined

to f (2) = 3, necessarily f (1) = 4. Similarly f (4) = 1.
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Thus there are precisely two symmetries of the graph, namely the identity and the

reflection

1.4.5. Theorem. The symmetries of a graph forms a group.

Proof. If f : V → V and g : V →V we define the group operation f ∗ g to be their

composition (as maps), so f ∗ g := f ◦ g , i.e. do g first, then f . The composition of

symmetries is clearly a symmetry, so the operation is closed. Since the composition

of maps is associative

(f ∗ g) ∗ h := (f ◦ g) ◦ h = f ◦ (g ◦ h) := f ∗ (g ∗ h)

for all symmetries f , g , h. The identity map e which sends every vertex to itself is a

symmetry, and obviously e ◦ f = f ◦ e = f for all symmetries f . Lastly, if f : V →V

is a symmetry then it is bijective, so it inverse f −1 exists and is also a symmetry. It is

characterized by f ◦ f −1 = f −1 ◦ f = e. �

1.5. Symmetries of regular n-gons

We view the n-gon as a graph, and apply the last section. In particular, by §1.4.5 the

symmetries of an n-gon form a group. Here we investigate these in more detail.

1.5.1. Symmetries of an equilateral triangle. Consider a 3-gon, i.e. an equilateral

triangle. There are precisely six symmetries of the 3-gon:

g◦gg

h

• e the identity (not drawn above).

• Rotation anticlockwise by 2π/3 (which we call g), and rotation anticlockwise

by 4π/3. The latter is drawn in the second diagram, and corresponds to

performing g twice.

• The three reflections in the lines through the three vertices. These are drawn

in the last three diagrams.
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The proof that these six symmetries are all the symmetries of the 3-gon is rather

similar to the proof in §1.4.4 (see Problem 1.2). Now if we label the vertices as

1 2

3

then

1 2

3

3 1

2

3 2

1
g h

and so h ◦ g (=g first then h) is equal to

Similarly g ◦ h is equal to

and so D3 = {e, g , g ◦ g , h, g ◦ h, h ◦ g}. As a piece of notation we usually drop the

symbol ◦ and so D3 = {e, g , g2, h, gh, hg}. See also Problem 1.2.

1.5.2. The dihedral group. Consider now a regular n-gon (where n ≥ 3). Its symmetry

group is called the dihedral group Dn. It has precisely 2n elements, namely:

• The identity e.

• The n− 1 rotations through angles k2π/n (k = 1, ... , n− 1) anticlockwise. If

we denote g to be the rotation anticlockwise through 2π/n, i.e.

g

then the rotations are {g , g2, ... , gn−1}.

• The n reflections. Pictorially the reflections depend on whether n is even or

odd. For example when n = 5, there are five reflections which all take place

in lines through vertices

whereas if n = 6 there are six reflections
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where some lines don’t pass through any vertices. Regardless of whether n is

even or odd, there are n reflections.

If we denote h to be the reflection in the line through the bottom left vertex, i.e.

h h

n even n odd

then Dn = {e, g , g2, ... , gn−1, h, gh, g2h, ... , gn−1h}. You should check this by doing

Problem 1.3.

1.6. Symmetries of finite sets (=the symmetric group)

1.6.1. Symmetric groups. A symmetry of a set X of n objects is a permutation (i.e.

a bijection X →X ). There are n! in total and these form the symmetric group Sn.

1.6.2. Remarks.

1. This is really a special case of §1.4, since Sn is the group of symmetries of the

graph with n vertices and no edges. Thus we already know (by §1.4.5) that

Sn is a group.

2. When dealing with the symmetric group Sn, we always label the elements of

X by numbers, so X = {1, 2, ... , n}. Thus to give a bijection X → X , we

have to specify where every number gets sent. One notation for doing this is

illustrated in §1.6.3 below; see §6 for other methods.

1.6.3. The symmetric group S3. Let X = {1, 2, 3}. Then S3 has six elements:

(

1 2 3

1 2 3

)

,

(

1 2 3

2 1 3

)

,

(

1 2 3

1 3 2

)

,

(

1 2 3

3 2 1

)

,

(

1 2 3

2 3 1

)

,

(

1 2 3

3 1 2

)

.

The notation here is that the map sends the entry in the top row to the entry below

it. Thus the first one is the identity and the last sends 1 7→ 3, 2 7→ 1 and 3 7→ 2.

1.6.4. Initial remark. Although D3 and S3 have different definitions it turns out (see

§3.1.4) that they are really “the same” group. The technical term is isomorphic —

we will give a more precise definition later.

We will study symmetric groups more in §6.
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1.7. (Rotational) Symmetries of regular solids

1.7.1. Platonic solids. There are five platonic solids (convex bodies whose faces are

all similar regular polygons and such that every vertex is identical).

Faces Edges Vertices Faces per vertex Rot. syms

tetrahedron 4 triangles 6 4 3 12

hexahedron 6 squares 12 8 3 24

octahedron 8 triangles 12 6 4 24

dodecahedron 12 pentagons 30 20 3 60

icosahedron 20 triangles 30 12 5 60

We will consider their groups of rotational symmetries. These are rotations (necessarily

about the centres of faces, vertices and edges) that leave the solid fixed.

The tetrahedron:

A
B

A

BC
A

C

The hexahedron(=the cube):

A B

E

B

C

E A
D

F

The octahedron:

A BD

E

A

B C

D D

EG

H

The dodecahedron:

A

C

E

F

J
L

B

D

G
H

J

L B

D G
H

I
K
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The icosahedron:

B
D

E

F

I

K
L

N

Q
R

A
C

E

F

I

J
L

P

S
T

B

D
G
H

K

M
N

O

Q
R

These solids have interesting symmetries, but it is much harder to prove how many

there are by arguing as in §1.4. I will come back to these examples after we know

some more theory. You can make your own dodecahedron 2013 calendar at

http://www.maths.ed.ac.uk/∼mwemyss/teaching/Calendar2013.pdf ,

which will be turn out to be useful later when you try to solve problems.

1.8. Symmetries of vector spaces

Let V be a vector space of dimension n over a field k . Going with our guiding principle

in §1.3, a symmetry of V should be a bijection V →V that preserves the structure

of V . In other words, it should preserve the linear structure, so it should be a linear

map. Thus we define:

1.8.1. Definition. A symmetry of a vector space V is a linear isomorphism V →V .

If we choose a basis for V then such an isomorphism is described by an n × n

invertible matrix with entries in k . So (after that choice of basis) we can identify the

symmetries of a vector space with

GL(n, k) := { n × n invertible matrices with entries in k}.

1.9. A 1-dimensional lattice

1.9.1. Definition. Consider the subset L = {n | n ∈ Z} of the real line R. Thinking

of L as an infinite pattern of dots,

......

there are two types of symmetry:

• For each k ∈ Z, a translation Tk : n 7→ n + k .

• For each l ∈ Z there is the reflection Ml : n 7→ l − n. (This reflects in the

point l/2 ∈ R.)

1.9.2. Remarks. What we have here is the symmetries of an infinite graph. The

identity symmetry e in the description above is the “trivial translation” T0.

1.9.3. Orientation. We could alternatively view the real line R as oriented

......

Note that translations maintain the orientation of the line, whilst the reflections reverse

it. If we regard the line as oriented, then only the translations are symmetries.

http://www.maths.ed.ac.uk/~mwemyss/teaching/Calendar2013.pdf
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2. First Properties of Groups

From now on we assume only the group axioms.

2.1. First basic properties

2.1.1. Lemma. Let g , h ∈ G be given. Then there is one and only one element k ∈ G

such that k ∗ g = h. Similarly, there is one and only one l ∈ G such that g ∗ l = h.

Proof. Let k := h ∗ g−1. Then

k ∗ g = (h ∗ g−1) ∗ g = h ∗ (g−1 ∗ g) = h ∗ e = h,

which proves existence. Now suppose that k ′ ∗ g = h. Then

k = h ∗ g−1 = (k ′ ∗ g) ∗ g−1 = k ′ ∗ (g ∗ g−1) = k ′ ∗ e = k ′

and so k is unique. The case for g ∗ l = h is similar. �

2.1.2. Remark. Note how every equality is either an appeal to something we have

already defined, or is justified by one of the axioms.

2.1.3. Corollaries.

1. In a group you can always cancel: if g ∗ s = g ∗ t then s = t. Similarly, if

s ∗ g = t ∗ g then s = t.

Proof. Let h := g ∗ s. Then also h = g ∗ t, so by uniqueness in §2.1.1,

s = t. �

2. Fix g ∈ G . Then left multiplication by g defines a map Lg : G →G where

Lg (k) = g ∗k . The map Lg is a bijection (i.e. it permutes the elements of G ).

Similarly for right-multiplication.

Proof. Let h ∈ G , then by §2.1.1 there is one element k for which g ∗ k = h,

and so Lg is surjective. Since there is only one such k (also by §2.1.1), Lg is

injective. �

3. Inverses are unique: given g ∈ G then there is one and only one element h ∈ G

such that g ∗ h = e. In particular, e−1 = e and (g−1)−1 = g .

Proof. The first statement is immediate from §2.1.1. Since e∗e = e (by group

axiom 3) and e ∗ (e−1) = e (by group axiom 4), the second statement follows

from the first. Also, since g−1 ∗ (g−1)−1 = e and (g−1) ∗ g = e, it follows

that (g−1)−1 = g . �

4. A group has only one identity: if g ∗ h = h (even just for one particular h)

then g = e.
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Proof. We have g ∗ h = h = e ∗ h, so by cancelling h on the right (using part

1), g = e. �

2.2. Commutativity

If G is a group and g , h ∈ G , if g ∗ h = h ∗ g we say that g and h commute. If

g ∗ h = h ∗ g for all g , h ∈ G , then we say G is an abelian group.

2.2.1. Remark. It is very important to understand that not all groups are abelian.

2.2.2. Examples.

1. Any field, or indeed any vector space, is an abelian group under addition.

2. Zn is an abelian group.

3. GL(2,R) is not an abelian group.

4. D3 is not an abelian group, since g ◦ h 6= h ◦ g (where g and h are defined in

§1.5.1).

5. In §1.9 the group of orientation–preserving symmetries of L is an example of

an abelian group, since Tk ◦ Tl = Tk+l = Tl ◦ Tk for all k , l ∈ Z.

6. In §1.9 the group of all symmetries of L is an example of a group which is not

abelian, since M0 ◦ T1 6= T1 ◦M0 (check!).

2.3. Some basic definitions

2.3.1. Definition. (order of a group) A finite group is one with only a finite number

of elements. The order of a finite group, written |G |, is the number of elements in G .

(Note that if X is a set, we also often write |X | to be the number of elements in X .)

2.3.2. Definition. (order of an element) Let g ∈ G . Then the order o(g) of g is the

least natural number n such that g ∗ ... ∗ g
︸ ︷︷ ︸

n

= e. If no such n exists, we say that g

has infinite order.

2.3.3. Examples.

1. See Problems 2.3 – 2.8 for many examples of finite order.

2. In §1.9, if k 6= 0 then the elements Tk are examples of elements of infinite

order. There is no n ∈ N such that Tk ◦ ... ◦ Tk
︸ ︷︷ ︸

n

equals the identity.

2.3.4. Important notation.

• When dealing with a general group G , we will write gh for g ∗ h, the identity

as e (or 1), and the inverse of g as g−1.

We do this since it is tedious to keep on writing ∗. However, this can create confusion.

For example, when the group is Zn (under addition),

ab := a ∗ b = a+ b.

Hence, when you are dealing with groups under addition, it is helpful to keep the ∗

notation in (see for example §2.9.3 later).
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2.3.5. Theorem. In a finite group, every element has finite order.

Proof. Let g ∈ G . Consider the infinite sequence g , g2, g3, .... If G is finite, then

there must be repetitions in this infinite sequence. Hence there exists m, n ∈ N with

m > n such that gm = gn. By cancelation (§2.1.3 part 1), gm−n = e. �

2.3.6. Corollary. Let g be an element of a finite group G . Then there exists k ∈ N

such that gk = g−1.

Proof. By §2.3.5 there exists t ∈ N such that g t = e. Applying g−1 to both sides

gives g t−1 = g−1. �

2.4. Subgroups

2.4.1. Definition. A subset H ⊆ G is a subgroup of G if

• H is not empty.

• If h, k ∈ H then hk ∈ H

• If h ∈ H then h−1 ∈ H.

We write H ≤ G if H is a subgroup of G . If also H 6= G , we say that H is a proper

subgroup and write H < G .

2.4.2. Notes.

1. If H is any subgroup, the axioms ensure that H is a group in its own right.

Make sure that you can prove this.

2. If G is finite, then there is a slightly easier test for a subgroup. See Prob-

lem 2.12.

2.4.3. Examples.

1. G is a subgroup of itself. Also, {e} is a subgroup of G , called the trivial

subgroup.

2. Z < Q < R < C (all abelian groups under addition).

3. Consider G = S3. Let H denote all the permutations that send 1 to itself.

(There are two of them, the identity and the one that swaps 2 and 3.) Then

H < G .

4. Let G = Z8 (under addition) and let H = {0, 2, 4, 6}. Then H < G .

5. More generally let G = Zn where n = kl with k , l > 1. Then H < G where

H = {0, k , 2k , ... , (l − 1)k}.

6. Let k be a field and let G = GL(2, k). Let H be all the upper-triangular

elements of G . Then H < G .

2.5. Products

The easiest way of making a new group out of given ones.

2.5.1. Theorem. Let G ,H be groups. The product G ×H = {(g , h) | g ∈ G , h ∈ H}

has the natural structure of a group as follows:
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• The group operation is (g , h) ∗ (g ′, h′) := (g ∗G g ′, h ∗H h′) (where we write

∗G for the group operation in G , etc).

• The identity e in G × H is e := (eG , eH) (where we write eG for the identity

in G , etc).

• The inverse of (g , h) is (g−1, h−1) (the inverse of g is taken in G , and the

inverse of h is taken in H).

We will usually drop the subscripts from the notation.

Proof. Each axiom for G ×H follows trivially from the same axiom for G and H. �

2.5.2. Notation. Whenever G and H are groups, we will always regard G × H as a

group under the operation defined above.

2.5.3. Note. If G ,H are both finite then

|G × H| = |G | |H| .

2.5.4. Examples.

1. You already know examples of products. Let k be a field regarded as an abelian

group under addition. Then the vector space k2, regarded as a group under

addition, is just k × k defined above.

2. Consider a set S of four identical red balls and three identical blue balls. A

symmetry of S is then any bijection S →S such that red balls are taken to

red balls, and blue balls are taken to blue ones. The group of symmetries is

thus S4 × S3 since a symmetry is specified by choosing a permutation of four

objects and a permutation of three objects.

2.5.5. Definition. The product of more than two groups can also be regarded as a

group, in the obvious way.

We will come back to products in §3.2.

2.6. Cyclic subgroups

The easiest type of subgroup.

2.6.1. Definition. If G is a group, g ∈ G and k ∈ Z, define

gk :=







k
︷ ︸︸ ︷
g ... g if k > 0

e if k = 0

g−1 ... g−1

︸ ︷︷ ︸

−k

if k < 0

and further define

〈g〉 := {gk | k ∈ Z} = {... , g−2, g−1, e, g , g2, ...}.

If G is finite, then 〈g〉 (being a subset of G ) is finite, and we can think of 〈g〉 as

〈g〉 = {e, g , ... , go(g)−1}

by §2.3.5 and §2.3.6.
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2.6.2. Lemma. If G is a group and g ∈ G , then 〈g〉 is a subgroup of G .

Proof. Just check the axioms. Make sure that you can do this. In your proof, it is

useful to note the fact that gagb = ga+b for all a, b ∈ Z. Although easy (it follows

directly from the axioms of a group), the proof of this fact is tedious since it involves

splitting into cases depending whether a (and b) are positive, negative or zero. �

2.6.3. Definition. A subgroup H ≤ G is cyclic if H = 〈h〉 for some h ∈ H. In this

case, we say that H is the cyclic subgroup generated by h. If G = 〈g〉 for some g ∈ G ,

then we say that the group G is cyclic, and that g is a generator.

2.6.4. Examples.

1. Zn (under addition) is cyclic, since 〈1〉 = Zn.

2. In Z8 the cyclic subgroup generated by 2 is 〈2〉 = {0, 2, 4, 6}. This is strictly

contained in Z8.

3. In Dn, the subgroup H consisting of the identity and all the rotations is cyclic.

One possible generator is rotation by 2π/n, (the element in §1.5.2 which was

denoted by g). There are other possible generators too, for example g−1.

4. In R under addition, 〈1〉 = Z which is an example of an infinite cyclic subgroup.

2.7. Generators

Cyclic groups are, by definition, generated by a single element. We now generalize

this to more than one element.

2.7.1. Definition. Let S ⊆ G be a nonempty subset. Define 〈S〉 to be the set of all

finite products of elements of S and their inverses. More precisely,

〈S〉 = {g1g2 ... gk | gj ∈ S or g−1
j ∈ S , k ∈ N}.

For example, if S = {g , h} then gh−1gghg−1 and h−1g−1h are members of 〈S〉.

2.7.2. Theorem. Let S ⊆ G be nonempty. Then

1. 〈S〉 is a subgroup of G

2. 〈S〉 is the smallest subgroup of G that contains S (in the sense that if H ≤ G

is a subgroup and S ⊆ H, then 〈S〉 ≤ H).

Proof. 1. Since S 6= ∅, 〈S〉 6= ∅. If g1 ... gk ∈ 〈S〉 and g ′
1 ... g

′
k ∈ 〈S〉, then their

product g1 ... gkg
′
1 ... g

′
k ∈ 〈S〉. Finally, if g1 ... gk ∈ 〈S〉 then certainly g−1

k ... g−1
1 ∈

〈S〉 and further

(g1 ... gk)(g
−1
k ... g−1

1 ) = e = (g−1
k ... g−1

1 )(g1 ... gk).

2. It is clear from the definition that S ⊆ 〈S〉, so 〈S〉 is a subgroup of G containing

S . Now let H ≤ G such that S ⊆ H. Since H is closed under multiplication and

inverses, certainly every member of 〈S〉 is contained in H, so 〈S〉 ⊆ H. �

2.7.3. Definition. If 〈S〉 = G we say that the elements of S generate G and refer to

S as a set of generators.
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2.7.4. Theorem. If G is a finite group and S ⊆ G , then

〈S〉 = {g1g2 ... gk | gj ∈ S , k ∈ N}.

(Proof: §2.3.6.)

2.7.5. Example. Consider the group Dn, and let S = {g , h} where g and h are defined

in §1.5.2. Since Dn = {e, g , ... , gn−1, h, gh, ... , gn−1h} and each of these elements

belongs to 〈S〉, it follows that Dn ⊆ 〈S〉. But 〈S〉 is a subgroup of Dn and so the

reverse inclusion also holds, hence Dn = 〈g , h〉.

2.8. Generators and relations

2.8.1. Motivation. Consider again the group Dn, with g and h as defined in §1.5.2.

Then clearly gn = e and h2 = e. Furthermore, hg = g−1h (this is similar to

Problem 1.2 part 2). Thus we have

gn = e, h2 = e, hg = g−1h.

These relations between the generators g , h tell us everything about the group, as

we will now see.

A word is any string of generators such as, for example, gghgghhhggh. Using the

last relation we can always move all the h’s to the right of this string and having done

so we can use the first two relations so as to obtain one of the following words:

e, g , g2, ... , gn−1, h, gh, g2h, ... , gn−1h.

We know that these are all the elements of Dn. We summarize this in the presentation

Dn = 〈g , h | gn = 1, h2 = 1, hg = g−1h〉.

2.8.2. Note. Presentations are useful for calculating messy products that would take

a long time to do pictorially. For example, we can compute a product in D4 as follows:

(g3h)(g2h) = ggghggh = gghgh = ghh = g .

This gives an alternative way to tackle Problem 1.2 (part 3), which involves much less

pain.

2.9. Lagrange’s theorem

2.9.1. Notation reminder. Let A,B be subsets of a group G and let g ∈ G . Then

AB := {ab | a ∈ A, b ∈ B}, gA := {ga | a ∈ A},

and similarly for other obvious variants.

2.9.2. Definition. Let H ≤ G and let g ∈ G . Then a left coset of H in G is a subset

of G of the form gH, for some g ∈ G .
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2.9.3. Example. Consider Z4 under addition, and let H = {0, 2}. Recall e = 0. Now

the cosets of H in G are

eH = e ∗ H = {e ∗ h | h ∈ H} = {0 + h | h ∈ H} = {0, 2}.

1H = 1 ∗ H = {1 ∗ h | h ∈ H} = {1 + h | h ∈ H} = {1, 3}.

2H = 2 ∗ H = {2 ∗ h | h ∈ H} = {2 + h | h ∈ H} = {0, 2}.

3H = 3 ∗ H = {3 ∗ h | h ∈ H} = {3 + h | h ∈ H} = {1, 3}.

Hence there are two cosets, namely

0 ∗ H = 2 ∗ H = {0, 2} and 1 ∗ H = 3 ∗ H = {1, 3}.

The above shows that g1H = g2H is possible, even when g1 6= g2.

2.9.4. Definition. We denote G/H to be the set of left cosets of H in G .

As above in §2.9.3, usually the number of members of G/H (which we denote by

|G/H|) is less than |G |. See §2.9.8 for the precise answer later.

2.9.5. Lemma. Suppose that H ≤ G , then |gH| = |H| for all g ∈ G .

Proof. There is an obvious map H → gH given by h 7→ gh. It is clearly surjective, by

definition of gH. It is injective by §2.1.3, since gh1 = gh2 implies that h1 = h2. �

2.9.6. Theorem. Let H ≤ G .

1. For all h ∈ H, hH = H. In particular eH = H.

2. For g1, g2 ∈ G , the following are equivalent

(a) g1H = g2H.

(b) there exists h ∈ H such that g2 = g1h.

(c) g2 ∈ g1H.

3. For a fixed g ∈ G , the number of g1 ∈ G such that gH = g1H is equal to |H|.

4. For g1, g2 ∈ G , define g1 ∼ g2 if and only if g1H = g2H. Then ∼ defines an

equivalence relation on G .

Proof. 1. Since H is closed under multiplication, hH ⊆ H. For the reverse inclusion,

suppose t ∈ H. Then t = h(h−1t) with h−1t ∈ H. Hence t ∈ hH, and so H ⊆ hH.

2. (a) ⇒ (c) Suppose that g1H = g2H, then g2 = g2e ∈ g2H = g1H.

(c) ⇒ (b) This is true by definition of g1H.

(b) ⇒ (a) Suppose that there exists h ∈ H such that g2 = g1h, then

g2H = (g1h)H = g1(hH) = g1H

where the last equality is part 1.

3. By part 2, gH = g1H if and only if g1 ∈ gH. Since |gH| = |H| (by §2.9.5), there

are precisely |H| possibilities.

4. Is easy to verify using part 2. Make sure that you can do this. �

2.9.7. Corollaries. Suppose that G is a finite group.

1. (Lagrange’s theorem) If H ≤ G , then |H| divides |G |.

2. Let g ∈ G . Then o(g) divides |G |.

3. For all g ∈ G , we have that g |G | = e.
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Proof. 1. By §2.9.6 there is an equivalence relation ∼ defined on G . Thus G is

partitioned into a (disjoint union) of the equivalence classes, so

|G | =
∑

equiv classes C

|C | .

By §2.9.6 part 3, for every g ∈ G the equivalence class containing g has precisely |H|

members. Hence every equivalence class has precisely |H| members, and so

|G | = |H|+ ... + |H|
︸ ︷︷ ︸

number of equiv classes

= (number of equiv classes)× |H| .

Hence |H| divides |G |.

2. Just note that 〈g〉 is a subgroup of size o(g), so apply part 1.

3. By part 2, say |G | = k × o(g). Then g |G | = (go(g))k = ek = e. �

In the proof of Lagrange’s Theorem, we showed that the number of conjugacy

classes was |G |
|H| . This then implies:

2.9.8. Corollary. |G/H| = |G |
|H| .

Proof. |G/H| is equal to the number of distinct left cosets of H in G . But by definition

of ∼, a conjugacy class consists of all those g which give the same left coset. Thus

the number of equivalence classes is equal to the number of distinct left cosets, so

using the proof of Lagrange we see that

|G | = (number of equiv classes)× |H| = (number of distinct left cosets)× |H| .

This shows that the number of distinct left cosets (= |G/H|) is equal to |G |
|H| . �

2.9.9. Definition. The index of H ≤ G is defined to be the number of distinct left

cosets of H in G , which by above is |G/H| = |G |
|H| .

2.10. Right cosets

2.10.1. Definition. The right cosets of H in G are subsets of the form Hg .

2.10.2. Properties.

1. The properties of right cosets are entirely analogous to those of left cosets.

We could alternatively prove Lagrange’s Theorem by using right cosets.

2. If we prove everything above using right cosets, §2.9.8 would show that the

number of distinct right cosets is equal to |G |
|H| . Hence the number of distinct

right cosets is the same as the number of distinct left cosets, even although

the right cosets might not be the same as the left cosets (see for example

Problem 2.22).

3. Special things happen when the left cosets equal the right cosets (see for

example §3.3.2 and §3.4.2 later).
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2.11. First applications of Lagrange

2.11.1. Theorem. Suppose that G is a group with |G | = p, where p is prime. Then

G is a cyclic group.

Proof. Choose g ∈ G with g 6= e. Then H := 〈g〉 is a subgroup of G with at least two

elements (e and g). But |H| must divide |G | = p. Hence |H| = p and so H = G . �

2.11.2. Corollary. Suppose that G is a group with |G | < 6. Then G is abelian.

Proof. If |G | = 1 then G is abelian (there is nothing to prove). If |G | = 2, 3 or 5

then G is cyclic (by 2.11.1) and hence abelian (by Problem 2.17). The only other

case is |G | = 4. In this case, if G has an element of order four then it is cyclic, and

hence abelian (by Problem 2.17). Therefore we can assume that G has no element

of order four. Only the identity has order one, so by Lagrange (2.9.7 part 2) every

non–identity element must have order two. Hence g2 = e for all g ∈ G , and so G is

abelian (by Problem 2.10). �

We already know that the dihedral group D3 has six elements (since |Dn| = 2n by

§1.5.2), and further D3 is non-abelian (by 2.2.2 part 4). This tells you two things:

1. By the corollary, D3 is the smallest example of a non-abelian group.

2. The corollary is ‘best possible’ in that the bound |G | < 6 cannot be improved.
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3. Fundamental Properties of Groups

3.1. Homomorphisms

3.1.1. Definition. Let G ,H be groups. A map φ : G →H is called a group homomor-

phism if

φ(xy) = φ(x)φ(y) for all x , y ∈ G .

(Note that xy on the left is formed using the group operation in G , whilst the product

φ(x)φ(y) is formed using the group operation in H.)

3.1.2. Definition. A group homomorphism φ : G →H that is also a bijection is called

an isomorphism of groups. In this case we say that G and H are isomorphic and we

write G ∼= H. An isomorphism G →G is called an automorphism of G .

3.1.3. Remark. An isomorphism thus matches up the two groups and their group

operations perfectly. In other words, if G and H are isomorphic groups then they are

algebraically indistinguishable. In the world of group theory, isomorphism is the idea

of equality; we view two isomorphic groups as ‘the same’.

3.1.4. Examples.

1. Consider R under addition and R∗
+ (the group of positive real numbers) under

multiplication. The map exp : R→R∗
+ is a group homomorphism since exp(x+

y) = exp(x) exp(y). It is bijective, hence is an isomorphism.

2. If n ∈ N, then every cyclic group of order n is isomorphic. (Proof: suppose

G = 〈g〉 and H = 〈h〉 both have order n. The map G → H sending g t 7→ ht

is a group homomorphism which is clearly bijective.) This is why we often

refer to the cyclic group of order n.

3. Let S2 = {e,σ} where σ is the non-trivial permutation. We have σ2 = e and

so S2 = {e,σ} is cyclic of order 2. Since Z2 is also cyclic of order 2, by part

2 we have S2 ∼= Z2.

4. More generally, every group of order 2 is isomorphic to Z2, since by §2.11.1 G

is necessarily cyclic.

5. The map φ : D3→S3 that takes a symmetry of the triangle to the corre-

sponding permutation of the vertices is bijective. It is also a homomorphism

of groups (one way to see this is to use the Cayley table in Problem 1.2

and check where every product gets sent to), hence it is an isomorphism, so

D3
∼= S3.

3.1.5. Lemma. Let φ : G →H be a group homomorphism. Then

1. φ(e) = e and φ(g−1) = (φ(g))−1 for all g ∈ G .
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2. The image of φ, defined by

imφ := {h ∈ H | h = φ(g) for some g ∈ G}

is a subgroup of H.

3. We define the kernel of φ by

Ker φ := {g ∈ G | φ(g) = eH}.

Then φ : G →H is injective if and only if ker φ = {eG}.

4. If φ : G →H is injective, then φ gives an isomorphism G ∼= imφ.

Proof. 1. Note first that φ(e) = φ(ee) = φ(e)φ(e), hence by cancellation φ(e) = e.

For the second, note that

φ(g−1)φ(g) = φ(g−1g) = φ(e) = e = φ(e) = φ(gg−1) = φ(g)φ(g−1)

and so φ(g−1) is an inverse for φ(g). Since inverses are unique, φ(g)−1 = φ(g−1).

2. We have e ∈ Imφ by part 1, so Imφ 6= ∅. Further, Imφ is closed under multiplica-

tion since φ is a group homomorphism. Lastly, by part 1 Imφ is closed under inverses.

3 and 4 are important exercises, see Problem 3.1. �

3.2. More examples of isomorphic groups

We begin in §3.2.2 with an abstract isomorphism, then show in Examples §3.2.5 and

§3.2.6 that this gives us very concrete examples of some isomorphic groups.

3.2.1. Definition. (reminder) If S and T are subsets of G , then we define

ST := {st | s ∈ S , t ∈ T}.

3.2.2. Theorem. Let H,K ≤ G be subgroups with H ∩ K = {e}.

1. The map φ : H × K →HK given by φ : (h, k) 7→ hk is bijective.

2. If further every element of H commutes with every element of K when multi-

plied in G (i.e. hk = kh for all h ∈ H, k ∈ K ), then HK is a subgroup of G ,

and furthermore it is isomorphic to H × K , via φ.

3.2.3. Remark. The logic in the above is that H and K start life as given subgroups

of G . However, we can simply regard them as groups in their own right and take

their abstract product to form H × K . Under the assumption that H ∩ K = {e}, the

conclusion of the first claim is that HK is a set which is bijective to H × K . Under

the further assumption that hk = kh for all h ∈ H, k ∈ K , the second claim is that

actually HK is a subgroup of G , and furthermore HK is the same as (=isomorphic

to) H × K as groups, not just as sets.

Proof. 1. The map φ is surjective by definition. It is injective since if hk = h′k ′

then h′−1h = k ′k−1. But this element belongs to both H and K , hence it belongs to

H ∩ K = {e}. Thus h′−1h = k ′k−1 = e and so h = h′ and k = k ′.

2. Now assume that hk = kh for all h ∈ H, k ∈ K . We check that HK is a subgroup

of G . Clearly e = ee ∈ HK and so HK 6= ∅. If hk ∈ HK then (hk)−1 = k−1h−1 =
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h−1k−1 ∈ HK . Finally if hk , h′k ′ ∈ HK then so is (hk)(h′k ′) = (hh′)(kk ′). Now φ is

a homomorphism of groups because

φ((h, k) ∗ (h′, k ′)) = φ(hh′, kk ′) = hh′kk ′ = (hk)(h′k ′) = φ(h, k)φ(h′, k ′)

(where we have written ∗ for the group operation in H ×K and all other products are

in G ). Hence φ, being bijective by part 1, is a group isomorphism. �

3.2.4. Corollary. Let H,K ≤ G be finite subgroups of a group G with H ∩K = {e}.

Then |HK | = |H| × |K |.

Proof. Since HK is bijective to H × K by §3.2.2 (part 1), this is obvious (recall

§2.5.3). �

3.2.5. Example. Consider D6, the symmetries of a regular hexagon. Consider one of

the equilateral triangles formed by the vertices of the hexagon.

g
h

Consider the set H consisting of those symmetries of the hexagon which are also

symmetries of the triangle. Since H contains precisely the symmetries of the triangle,

H is a subgroup of D6 which is isomorphic to D3. Explicitly,

H = {e, g2, g4, h, g2h, g4h} ∼= D3.

Now consider K = 〈g3〉 = {e, g3}, where g3 ∈ D6 is the half turn. This subgroup

is isomorphic to Z2 (all groups of order two are) and further it intersects H trivially.

The half turn commutes with all elements of H (since it commutes with g2 and h)

and so by §3.2.2 we deduce that HK ∼= H × K ∼= D3 × Z2. Thus HK is a subgroup

of D6 with 6 × 2 = 12 elements, so since |D6| = 12, necessarily D6 = HK . Hence

D6
∼= D3 × Z2.

3.2.6. More Examples.

1. The example considered in §2.5.4 can also be analysed as follows. The sub-

group H of S7 that leaves the three blue balls fixed is isomorphic to S4, and

the subgroup K of S7 that leaves the four red balls fixed is isomorphic to S3.

These subgroups intersect trivially and their elements commute. So HK is a

subgroup of S7 isomorphic to S4 × S3.

2. The group G of symmetries of the graph (e) in §1.4.2 has 4 elements. The

reflection in the horizontal line generates a subgroup H with two elements

which is thus isomorphic to Z2. Similarly for the reflection in the vertical line

— it generates a subgroup K which is isomorphic to Z2. These two reflections

commute, hence HK ∼= Z2×Z2. Since HK ⊆ G and both have four elements,

G = HK and so G ∼= Z2 × Z2.

3. Similarly, in the graph (b) in §1.4.2 there is a subgroup H isomorphic to S3

from permuting the three danglers on the left, and a subgroup K isomorphic
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to Z2 from permuting the danglers on the right. Elements from these two

subgroups commute, and so HK ∼= S3 × Z2. Again by looking at the number

of elements, G = HK and so G ∼= S3 × Z2.

3.3. Normal subgroups

3.3.1. Definition. A subgroup N of G is normal if

gng−1 ∈ N for all g ∈ G and all n ∈ N.

We write N E G if N is a normal subgroup of G .

3.3.2. Lemma. Let N ≤ G . Then the following are equivalent:

1. N is normal in G .

2. gNg−1 = N for all g ∈ G .

3. gN = Ng for all g ∈ G .

Proof. This is easy manipulation — see Problem 3.14. �

There is another, very useful, characterization of normal subgroups in §5.2.1 later.

3.3.3. Lemma. Let φ : G →H be a group homomorphism. Then ker φE G .

Proof. See Problem 3.15. �

3.3.4. Theorem.

1. If G is abelian, then every subgroup of G is normal.

2. G E G and {e}E G .

3. Let H ≤ G with |G | = 2 |H|. Then H is normal in G .

Proof. Parts 1 and 2 are immediate from the definition. For part 3, we know that

there are precisely |G |
|H| = 2 distinct left cosets of H (by §2.9.8) so one must be H, the

other G\H = {g ∈ G | g /∈ H}. Similarly, by the right coset version of §2.9.8, there

are precisely |G |
|H| = 2 distinct right cosets of H. Hence for all g ∈ G ,

gH =

{

H if g ∈ H

G\H if g /∈ H
Hg =

{

H if g ∈ H

G\H if g /∈ H

and so gH = Hg for all g ∈ G . By §3.3.2, H is normal in G . �

3.4. Quotient groups

3.4.1. Lemma. Let N E G and suppose n ∈ N and g ∈ G . Then there exists n′ ∈ N

such that gn = n′g . (Similarly there exists n′′ ∈ N such that ng = gn′′.)

Proof. 1. Since g ∈ G and n ∈ N, by the definition of normal subgroup we have

gng−1 ∈ N, say gng−1 = n′. Then gn = n′g .

2. Since g−1 ∈ G and n ∈ N, by the definition of normal subgroup we have

g−1n(g−1)−1 = g−1ng ∈ N, say g−1ng = n′′. Then ng = gn′′. �
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Up until now, when H is a subgroup of G we have studied G/H, the set of left

cosets of H in G . I emphasize that this is only a set in general. However, when H is

a normal subgroup, we can endow the set G/H with the structure of a group:

3.4.2. Theorem. Let N E G . Then

gN ∗ hN := ghN

defines a group structure on the set G/N. The identity is eN (= N by §2.9.6 part 1),

and the inverse of gN is g−1N.

Proof. Since it is possible that g1N = g2N even when g1 6= g2, we must prove that

the above operation is well-defined. To see this, suppose g1N = g2N and h1N = h2N.

We need to show that g1N ∗ h1N = g2N ∗ h2N. Now g1 = g2n for some n ∈ N and

h1 = h2m for some m ∈ N, thus by §3.4.1

g1N ∗ h1N = g1h1N = g2nh2mN = g2h2n
′mN = g2h2N = g2N ∗ h2N,

as required.

Thus the above operation is well-defined and clearly satisfies the closure axiom. The

fact that the operation is associative follows easily from the corresponding fact for G .

The fact that eN serves as an identity is just

gN ∗ eN := (ge)N = gN = (eg)N := eN ∗ gN.

for all gN ∈ G/N. The fact that gN has an inverse g−1N can be checked similarly. �

3.4.3. Definition. When N E G , we call the set G/N equipped with the group oper-

ation gN ∗ hN := ghN the quotient group of G by N.

Again I emphasize that N is required to be normal for the set G/N to be a group.

Thus ‘quotient group’ only makes sense for normal subgroups.

3.4.4. Philosophy. Why bother?

1. Usually we want to understand a finite group G . Say we can find a normal

subgroup N 6= {e}. Then both N and G/N are groups, and both |N| and

|G/N| are strictly smaller than |G |. We hope to understand both these smaller

groups, then try and piece together this information to understand G .

2. Passing to a factor is useful for induction arguments.

There are lots of other reasons too, and I will discuss some in the lecture.

3.4.5. Examples.

1. (This comment will only make sense after Semester 2). Quotient constructions

are very common in mathematics, and you will see an example next semester.

Let V be a vector space with subspace W . Thinking of V as an abelian group

under addition, and W as a (necessarily normal since V is abelian) subgroup

of V , then the quotient group V /W is the same thing as the quotient vector

space that will be defined next semester. (Vector spaces also have scalar

multiplication that we are neglecting in this.) To see this, when W ⊆ V is a

subspace, next semester you will define a relation x ∼ y ⇐⇒ x − y ∈ W ,

and then define V /W to be the set of equivalence classes. Note that since W
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is a group under addition, really this relation is x ∼ y ⇐⇒ x ∗ y−1 ∈ W , so

x ∼ y ⇐⇒ x ∗W = y ∗W . Thus the set of equivalence classes is the set of

left cosets of W in V .

2. Fix n ∈ N and define nZ := {kn | k ∈ Z}. Then nZ is a subgroup of Z, which

is normal since Z is abelian. We will see in §3.6.4 that the quotient group

Z/nZ ∼= Zn.

3.5. Defining homomorphisms out of the quotient

Suppose that NEG , and H is some other group. How to define a group homomorphism

G/N → H? For example, how to define a homomorphism Z/nZ → Zn? The main

problem is that we must ensure that the map is well-defined, i.e. if g1N = g2N then

we have to ensure that g1N and g2N are sent to the same object. To save you having

to check this every time, the following is useful:

3.5.1. Theorem. Suppose N E G and φ : G → H is a group homomorphism. If

N ⊆ Ker φ, then φ induces a well-defined group homomorphism φ̂ : G/N → H

defined by gN 7→ φ(g).

Proof. We show that φ̂ is well-defined, the rest is easy to check. If g1N = g2N, then

g−1
1 g2 ∈ N ⊆ Ker φ and so φ(g−1

1 g2) = eH . But φ is a group homomorphism so

eH = φ(g−1
1 g2) = φ(g−1

1 )φ(g2) = φ(g1)
−1φ(g2),

which implies that φ(g1) = φ(g2). Thus φ̂(g1N) := φ(g1) = φ(g2) := φ̂(g2N) and so

φ̂ is well-defined. �

3.5.2. Example. Define φ : Z → Zn by taking the remainder mod n. This is a group

homomorphism. Clearly nZ gets sent to zero, so nZ ⊆ Ker φ. Thus by §3.5.1 there is

a well-defined group homomorphism Z/nZ → Zn.

3.6. The first isomorphism theorem

3.6.1. Lemma. Let N E G . Then there is a canonical surjective homomorphism of

groups p : G →G/N defined by p : g 7→ gN. The kernel of p is N.

Proof. This is an easy consequence of the definitions. Make sure that you can prove

this. �

Now given any group homomorphism φ : G → H, we know by §3.3.3 that Ker φEG ,

and so G/Ker φ is a group. This has another, easier description:

3.6.2. Theorem. (First isomorphism theorem for groups) Let φ : G →H be a

homomorphism of groups. Then G/Ker φ ∼= Imφ in such a way that the following

diagram commutes:
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G

Imφ

G/Ker φ
p

φ φ̂

Proof. Denote K := Ker φ. Since KEG , we may apply §3.5.1 to obtain a well-defined

group homomorphism φ̂ : G/K → Imφ defined by φ̂(gK ) := φ(g). It is surjective

by definition of Imφ. For injectivity, if φ̂(gK ) = eH then φ(g) = eH and so g ∈ K .

This implies that gK = K = eG/K , and so Ker φ̂ = {eG/K}. By §3.1.5 part 3, φ̂ is

injective. �

3.6.3. Slogan. The most important aspect of the above is that if φ : G →H is a

group homomorphism, then “the image of φ is isomorphic to the quotient G/ ker φ”.

More informally, the information that you are left with after applying φ (i.e. the image

Imφ) is the same (=isomorphic) to the information that you started with (i.e. G )

modulo the information that is lost (i.e. Ker φ).

3.6.4. Examples.

1. Fix n ∈ N and consider the surjective group homomorphism R : Z→Zn given

by taking the remainder mod n. The kernel is clearly nZ and so the first

isomorphism theorem shows Z/nZ = Z/KerR ∼= ImR = Zn, i.e. Z/nZ ∼= Zn.

2. Consider the surjective homomorphism exp : C→C∗ (the former under addi-

tion and the latter under multiplication). The kernel is N = {2kπi | k ∈ Z}.

So C∗ is isomorphic to C/N.
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4. Actions of Groups

4.1. Definition of a group action

4.1.1. Definition. Let G be a group, and let X be a nonempty set. Then a (left)

action of G on X is a map

G × X → X ,

written (g , x) 7→ g · x , such that

g1 · (g2 · x) = (g1g2) · x and e · x = x

for all g1, g2 ∈ G and all x ∈ X .

4.1.2. Examples.

1. Roughly speaking, if G is the symmetry group of an object, then G acts on

that object. Like §1.3 this is a little vague, but is made precise in the following

examples:

(a) Let G be the symmetry group of a graph, and let V be the set of vertices

of the graph. Then G acts on V by g ·x := g(x). The first axiom follows

from properties of functions, whereas the second axiom follows since the

identity e is the identity map.

(b) The symmetric group Sn acts on the set {1, 2, ... , n}. This is a special

case of (a).

(c) The group Dn acts on the set {1, 2, ... , n}, where we think of the numbers

as labeling the vertices of the n-gon. This is a special case of (a).

(d) Let G be the symmetry group of a graph, and let E be the set of edges

of the graph. Then G acts on E , since if e ∈ E connects vertices v1 and

v2, define g · e := the edge connecting f (v1) and f (v2).

2. A group can act on many different sets. For example Dn acts on the set

{1, 2, ... , n} as above. Alternatively, if we label the two faces of the n-gon

T ,B (“top” and “bottom”), then Dn also acts on the set X := {T ,B} where

g ∈ Dn acts by the identity if it leaves the n-gon the same way up (i.e. g is a

rotation), and by swapping T ,B if it turns it over (i.e. g is a reflection).

3. Let G be any group and X any (nonempty) set. Then g · x := x for all g ∈ G

and all x ∈ X defines an action. We call this the trivial action.

4. G acts on itself (i.e. take X = G ), in many different ways. Three of these are

(a) ‘Right action’ defined g · h := hg−1 for all g ∈ G , h ∈ X = G . Thus the

action is right multiplication by g−1. Note carefully that the inverse g−1

appears. This ensures we get an action because

g1 · (g2 · h) = g1 · (hg
−1
2 ) = hg−1

2 g−1
1 = h(g1g2)

−1 = (g1g2) · h.
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(b) ‘Left action’ defined g · h := gh for all g ∈ G , h ∈ X = G . Thus the

action is left multiplication by g . Note that we do not require the inverse

anymore, since

g1 · (g2 · h) = g1 · (g2h) = g1(g2h) = (g1g2)h = (g1g2) · h.

(c) ‘Conjugate action’ defined g · h := ghg−1 for all g ∈ G , h ∈ X = G .

4.2. Faithful actions

4.2.1. Theorem. Suppose G acts on X . Define

N := {g ∈ G | g · x = x for all x ∈ X}.

(So N consists of all the elements of G that do not move anything in X . We say that

such g “act trivially”.) Then N is a normal subgroup of G .

Proof. First, e ∈ N since e · x = x for all x ∈ X , hence N 6= ∅. Further if n1, n2 ∈ N

then

(n1n2) · x = n1 · (n2 · x) = n1 · x = x

for all x ∈ X and so n1n2 ∈ N. Also, if n ∈ N then

x = e · x = (n−1n) · x = n−1 · (n · x) = n−1 · x

for all x ∈ X and so n−1 ∈ N. This show that N is a subgroup. For normality, let

n ∈ N and g ∈ G . Then

(gng−1) · x = g · (n · (g−1 · x)) = g · (g−1 · x) = e · x = x

for all x ∈ X and so gng−1 ∈ N. Hence N E G . �

4.2.2. Definition. In the notation above, if N = {e} then we say that the action is

faithful. Thus an action is faithful if g · x = x for all x ∈ X implies that g = e. In

words “the only member of G that fixes everything in X is the identity”.

4.3. Every group lives inside a symmetric group

If X is a set, we denote bij(X ) to be the group of bijections X →X . Note that if X

is finite, then bij(X ) is the symmetric group S|X |

4.3.1. Theorem. Let G be a group, and let X be a set. Then

1. An action of G on X is the same thing as a group homomorphism φ :

G → bij(X ).

2. The action is faithful if and only if φ is injective.

3. If the action is faithful, then φ gives an isomorphism of G with imφ ≤ bij(X ).

Proof. 1. Suppose that · defines an action, then define φ : G → bij(X ) by g 7→ Lg ,

where Lg : X → X takes x 7→ g · x . You can check that Lg is a bijection, and that φ

is a group homomorphism. Conversely, given a group homomorphism φ : G → bij(X ),

define g · x := φ(g)(x). You can check that this gives a group operation, and that

these are inverse operations.
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2. is an easy exercise, using the fact that a homomorphism θ : G → H is injective if

and only if Ker θ = {eG} (see Problem 3.1).

3. By part 2, there is an injective group homomorphism φ : G → bij(X ), so the result

follows easily (see §3.1.5 part 4). �

4.3.2. Corollary. (Cayley’s Theorem) Every finite group is isomorphic to a subgroup

of a symmetric group.

Proof. The action of G on itself by left-multiplication (g · h = gh) is faithful since

if g 6= e then gh 6= h. Thus by §4.3.1 (part 3), G is isomorphic to a subgroup of

S|G |. �

4.3.3. Examples. Every finite group is isomorphic to a subgroup of a symmetric group,

but not necessarily in a unique way.

1. By Cayley’s Theorem, the group G of rotational symmetries of the dodeca-

hedron (which turns out to have order 60, see Problem 4.12 later) is thus a

subgroup of S60. But G also acts on the set X consisting of the 12 faces of the

dodecahedron. This action is faithful, since every nontrivial symmetry clearly

sends at least one face to a different one. Hence by §4.3.1 part 3, G is also a

subgroup of bij(X ) = S|X | = S12.

2. Consider C3 = {e, g , g2} acting on itself (as in Cayley’s Theorem). Re-label

e ↔ 1, g ↔ 2 and g2 ↔ 3. Then the action of g on X = G sends 1 to 2, 2

to 3, and 3 to 1, i.e. multiplication by g acts as the element
(

1 2 3

2 3 1

)

on the set G = X = {1, 2, 3}. Thus in Cayley’s Theorem, g gets sent to the

element

(

1 2 3

2 3 1

)

of S3. Hence

C3 = 〈g〉 ∼= 〈

(

1 2 3

2 3 1

)

〉 ≤ S3.

4.4. Non-faithful actions induce faithful ones

4.4.1. Theorem. Suppose G acts on a set X . Define

N = {g ∈ G | g · x = x for all x ∈ X}E G

as before. If the action of G on X is not faithful, then the quotient group G/N acts

on X . This action is faithful.

Proof. Consider the group homomorphism G → bij(X ) that describes the group action

(as in §4.3.1 part 1). The kernel is N, so by the first isomorphism theorem we have

G/N
∼=
→ Im ≤ bij(X ).

In particular we have an injective group homomorphism G/N → bij(X ), hence G/N

acts on X (by §4.3.1 part 1), and furthermore (by §4.3.1 part 2) the action is faithful.

�
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4.4.2. Examples.

1. As in §4.1.2 part 2, consider Dn acting on X := {T ,B} (standing for “top”

and “bottom” of the n-gon) by swapping T and B if the symmetry turns the

n-gon over. Then the subgroup of rotations {e, g , ... , gn−1} = Cn is precisely

the subgroup that acts trivially, hence the quotient Dn/Cn acts faithfully on

X by §4.4.1. Note that Dn/Cn
∼= C2 by Problem 3.18.

2. (harder) Consider the set X of all groupings of 4 objects into two pairs:

X := {[1, 2; 3, 4], [1, 3; 2, 4], [1, 4; 2, 3]}.

Then S4 acts on X in an obvious way. The subgroup that acts trivially is

K = C2 × C2. Thus we see that S4/K is isomorphic to S3.

4.5. Orbits and Stabilizers

4.5.1. Definition. Let x ∈ X and suppose that G acts on X . The stabilizer of x is

defined to be

StabG (x) := {g ∈ G | g · x = x}.

We will omit the G from the notation when it is clear what group we are considering.

4.5.2. Lemma. For all x ∈ X , the stabilizer StabG (x) is a subgroup of G .

Proof. See Problem 4.5. �

4.5.3. Definition. Let G act on X , and let x ∈ X . The orbit of x under G is

OrbG (x) = {g · x | g ∈ G}.

4.5.4. Examples.

1. Let H ≤ G and consider the ‘right action’ of H on G = X defined by h · g :=

gh−1 (you need an inverse for the same reason as in §4.1.2, part 4.a). Then

the orbit containing g ∈ G is precisely

OrbH(g) = {gh−1 | h ∈ H} = {gh | h ∈ H} = gH.

Hence the orbits under this action are the left cosets of H in G . The stabilizer

of g ∈ G = X is

StabH(g) = {h ∈ H | gh−1 = g} = {e}.

2. Let H ≤ G and consider the ‘left action’ of H on G defined by h · g := hg .

Then the orbit containing g ∈ G is precisely

{hg | h ∈ H} = Hg .

Hence the orbits under this action are the right cosets of H in G .

3. See Problems 4.5 – 4.10 for more examples of orbits and stabilizers.
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4.5.5. Theorem. Let G act on X . Then

x ∼ y ⇐⇒ y = g · x for some g ∈ G

defines an equivalence relation on X . The equivalence classes are the orbits of G .

Thus when G acts on X , we obtain a partition of X into orbits.

Proof. Certainly e · x = x and so x ∼ x . Next, suppose x ∼ y . Then there exists

g ∈ G such that y = g · x , hence

g−1 · y = g−1 · (g · x) = (g−1g) · x = e · x = x

and so y ∼ x . Finally, assume that x ∼ y and y ∼ z . Then there exist g , h ∈ G such

that y = g · x and z = h · y . Consequently

z = h · y = h · (g · x) = (hg) · x ,

and so x ∼ z .

The fact that the equivalence classes are the orbits follows straight from the defi-

nition. �

4.5.6. Definition. An action of G on X is transitive if for all x , y ∈ X there exists

g ∈ G such that y = g · x . Equivalently, X is a single orbit under G .

4.5.7. Examples.

1. For any given graph, as in §4.1.2 part 1(a) the group of symmetries acts on the

set of vertices. This action may or may not be transitive (see Problem 4.3).

2. The dihedral group acts transitively on the set of vertices V of the n-gon.

Let v1, v2 be vertices, then certainly there exists some rotation g t for which

v1 = g ·v2. Also, the action is faithful since if an element leaves all the vertices

fixed, it must be the identity.

Recall if H ≤ G then we write G/H for the set (which might not be a group!) of

left cosets of H in G .

4.5.8. Proposition. Let G act on X , and let x ∈ X . Then the map

φ : G/StabG (x)→OrbG (x) which sends g StabG (x) 7→ g · x

is well-defined and is a bijection of sets.

Proof. Denote H := StabG (x). If g1H = g2H then g2 = g1h for some h ∈ H. This

implies that

g2 · x = (g1h) · x = g1 · (h · x) = g1 · x ,

hence φ(g1H) = φ(g2H) and so φ is well-defined. Clearly the image of φ is the whole

of the orbit of x , and so φ is surjective. To see that φ is injective, suppose that

φ(g1H) = φ(g2H). Then g1 · x = g2 · x , so acting with g−1
1 on both sides we get

(g−1
1 g2) · x = (g−1

1 g1) · x = e · x = x .

Hence g−1
1 g2 ∈ H and so g1H = g2H (by §2.9.6 part 2). Thus φ is injective. �
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4.5.9. Corollary. (The orbit-stabilizer theorem) Suppose G is a finite group acting

on a set X , and let x ∈ X . Then |OrbG (x)| × |StabG (x)| = |G |, or in words

size of orbit× size of stabilizer = order of group.

In particular, the size of an orbit divides the order of the group.

Proof. By §4.5.8 |OrbG (x)| = |G/StabG (x)|. By §2.9.8 this is equal to |G |
|StabG (x)|

. �

4.5.10. Examples. The orbit–stabilizer theorem is useful both theoretically (see §5,

in particular §5.5.2) and computationally (see below, and the problem sheets, for nice

applications), so it is very important.

1. (Order of the dihedral group) The dihedral group acts transitively on the set

V of vertices of the n-gon (§4.5.7). Pick a vertex v ∈ V , and suppose g ∈ Dn

fixes v . It is very easy to show (argue as in §1.4.4) that the only elements

of Dn which fix v are the identity and the reflection in the line through v .

Hence |StabDn
(v)| = 2. Since the action is transitive, V = Orb(v) and so by

orbit–stabilizer |Dn| = |StabDn
(v)| × |V | = 2 × n = 2n. This gives a slightly

less painful proof of Problem 1.3.

2. (Order of the groups of rotational symmetries of Platonic solids) Let G be the

rotational symmetry group of the cube. Consider G acting on the set E of 12

edges. This action is transitive (convince yourself that you can take any edge

to any other edge just by rotating). Pick an edge e ∈ E , then the stabilizer

is just the identity together with the rotation about the centre of that edge.

Thus |G | = |StabG (e)| × |E | = 2 × 12 = 24. Hence there are precisely 24

rotational symmetries of the cube. This implies that if we can write down 24

distinct symmetries, we have them all (see §4.6.2 part 2). A similar argument

applies to all Platonic solids — see Problem 4.12.

4.6. Pólya counting

A beautiful application of group theory.

4.6.1. Theorem. Let G be a finite group acting on a finite set X . For g ∈ G define

Fix(g) := {x ∈ X | g · x = x}

(so that |Fix(g)| is the number of elements of X that g fixes). Then

the number of G -orbits in X =
1

|G |

∑

g∈G

|Fix(g)| .

Proof. Define

Z := {(g , x) | g · x = x}.

We compute |Z | in two different ways. Firstly, for each g ∈ G there are |Fix(g)|

possible x ’s and so |Z | =
∑

g∈G |Fix(g)|. On the other hand, for each x ∈ X

there are |Stab(x)| possible g ’s, so |Z | =
∑

x∈X |Stab (x)|. But by orit–stabilizer
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|Stab(x)| = |G |
|Orb(x)| , and so on comparing expressions for |Z | we see that

∑

g∈G

|Fix(g)| =
∑

x∈X

|G |

|Orb(x)|
.

Hence 1
|G |

∑

g∈G |Fix(g)| =
∑

x∈X
1

|Orb(x)| = the number of G -orbits in X . �

4.6.2. Example.

1. How many essentially different ways are there of colouring the vertices of a

regular heptagon with three colours? We will say that two colourings are the

same if they can be made to coincide by an element of the dihedral group D7.

It is not required that every colouring uses all three colours.

Examples include

To solve this, we consider the action of D7 on the set X of all 37 = 2187

possible colourings. The problem just asks how many orbits there are, so by

§4.6.1 we must analyse the fixed points.

• The identity fixes every coloured heptagon in X , so |Fix(e)| = 2187.

• Consider any non-trivial rotation (there are 6 of them). Clearly the only

way a colored heptagon is fixed under the action of a rotation is if all the

colours on all the vertices are the same. There are only 3 such diagrams.

• Consider any reflection (there are 7 of them). Then for a coloured hep-

tagon to be fixed, the colour of the vertex through which the reflection

line passes can be arbitrary, whereas the colours of the other vertices have

to match up as in the following picture:

Hence there are 34 = 81 choices, and so 81 fixed points per reflection.

Hence the number of orbits is equal to

1
|G |(2187 + 3 + ... + 3

︸ ︷︷ ︸

6

+81 + ... + 81
︸ ︷︷ ︸

7

) = 198.

2. How many ways are there of colouring the faces of a cube with 3 colours?

Two colourings are regarded as the same if they differ by an element of the

rotational symmetry group (which we know by §4.5.10 consists of 24 elements).

These are difficult to TeX, so see for example

http://www.youtube.com/watch?v=gBg4-lJ19Gg

There are 8 non-trivial rotations (of order 3) about vertices, 6 half-turns (of

order 2) about the centres of edges, and 9 non-trivial rotations about the cen-

tres of faces (which come in two different sorts, quarter-turns and half-turns),

http://www.youtube.com/watch?v=gBg4-lJ19Gg
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and then the identity. Since we have written down 24 distinct symmetries, and

we know by §4.5.10 there are precisely 24, we have written down them all.

The fixed point analysis is

Type of element Number Fixed points per element

e 1 36 = 729

±(1/3)-turn about vertex 8 32 = 9

(1/2)-turn about centre of edge 6 33 = 27

±(1/4)-turn about centre of face 6 33 = 27

(1/2)-turn about centre of face 3 34 = 81

Hence the number of colourings, i.e. the number of orbits, is equal to

1
24 (729 + (8× 9) + (6× 27) + (6× 27) + (3× 81)) = 57.
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5. Properties of Groups from Counting

Here we basically let G act on itself, then apply the results of the last section.

5.1. Conjugate elements

5.1.1. Definition/ Lemma. Let h ∈ G and g ∈ G := X . Then

h · g := hgh−1

defines an action of a group G on itself, called the conjugation action. The orbits

are called the conjugacy classes of G . Under this action, the stabilizer of an element

g ∈ G is precisely

C (g) := {h ∈ G | gh = hg}.

which we define to be the centralizer of g in G .

Proof. To check this is a group action, note that e · g = ege−1 = g and also that

h · (k · g) = h · (kgk−1) = hkgk−1h−1 = (hk)g(hk)−1 = (hk) · g .

To see that the stabilizer of g is C (g) we simply note that h ∈ StabG (g) ⇐⇒ h ·g =

g ⇐⇒ hgh−1 = g ⇐⇒ hg = gh ⇐⇒ h ∈ C (g). �

5.1.2. Examples of conjugacy classes.

1. See Problem 5.8 for the conjugacy classes in D4.

2. See §6 for conjugacy in the symmetric group Sn (and also conjugacy in another

group, An).

5.1.3. Definition.

1. We say that g , g ′ are conjugate if there exists h ∈ G such that g ′ = hgh−1.

Thus two elements of G are conjugate if and only if they are in the same orbit

under the conjugate action defined in §5.1.1.

2. We define the centre of a group G to be

C (G ) := {g ∈ G | gh = hg for all h ∈ G}.

If g ∈ C (G ), we say that g is central. It is easy to check that C (G ) =
⋂

g∈G C (g), i.e. the centre of a group is the intersection of all the centralizers.

5.1.4. Corollaries.

1. The centralizer C (g) of g ∈ G is a subgroup of G .

2. The centre C (G ) is a subgroup of G .

3. If G is finite and g ∈ G , then

(the number of conjugates of g in G )× |C (g)| = |G | .
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Proof. If G acts on X , then Stab(x) is always a subgroup of G (by §4.5.2), so 1 follows

as a special case. Since C (G ) =
⋂

g∈G C (g), the second result follows because an

intersection of subgroups is always a subgroup. The last result is just the orbit-

stabilizer theorem. �

5.1.5. Properties.

1. The group G is partitioned into conjugacy classes.

2. {e} is always a conjugacy class of G

3. {g} is a conjugacy class if and only if g ∈ C (G ). (So C (G ) is the union of all

the one-element conjugacy classes.)

5.1.6. Examples of centres of groups.

1. G is abelian if and only if C (G ) = G .

2. If n > 2, then C (Sn) = {e}. It is not too hard to see that only the identity

permutation commutes with every other permutation.

3. In GL(n, k) the centre is {λI |λ ∈ k}. See Problem 5.6.

5.2. Normal subgroups and conjugacy classes

5.2.1. Theorem. Let N be a subgroup in G , then N is a normal subgroup if and only

if N is a union of conjugacy classes

Proof. (⇐) Suppose that N is the union of conjugacy classes. Let n ∈ N and g ∈ G ,

then certainly gng−1 ∈ N and so N is normal.

(⇒) Suppose that N is normal. Then if n ∈ N, gng−1 ∈ N for all g ∈ G , and so N

contains the conjugacy class containing n. Therefore N contains the conjugacy classes

of all its elements, so in particular N is a union of conjugacy classes. �

5.2.2. Corollary. If G is a group, then the centre C (G ) is a normal subgroup.

Proof. The centre is the union of all one-element conjugacy classes (by §5.1.5), so

the result follows from §5.2.1. �

5.3. The class equation

5.3.1. Theorem. Suppose that G is a finite group with conjugacy classes C1, ... ,Cn.

We adopt the convention that C1 = {e}. Let the conjugacy classes have sizes c1, ... , cn
(so that c1 = 1). Then

1. Let g ∈ Ck . Then ck = |G |
|C(g)| . In particular, ck divides the order of the group.

2. We have

|G | = c1 + c2 + ... + cn,

and further each of the cj divides |G |. This is called the class equation of G .

Proof. Part 1 is just the orbit-stabilizer theorem applied to the conjugacy action. Part

2 is a trivial consequence of G being partitioned into conjugacy classes. Each cj divides

|G | by part 1. �
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5.3.2. Examples.

1. See Problems 5.9 – 5.10 for examples of the class equation.

2. See Problem 6.13 for the use of the class equation in a problem which doesn’t

seem to directly involve it.

5.4. Two useful theorems

The class equation has theoretical consequences:

5.4.1. Theorem. If |G | = pk where p is prime and k ∈ N, then |C (G )| ≥ p.

Proof. Consider the class equation

|G | = c1 + ... + cn.

Every conjugacy class has size 1 or a positive power of p. Certainly {e} is a conjugacy

class of size one. Hence since p divides |G |, we must have at least p−1 more conjugacy

classes of size 1. The centre of G is the union of all the 1-element conjugacy classes

(by §5.1.5) and so the result follows. �

5.4.2. Theorem. Every group G of order p2 (where p is prime) is abelian.

Proof. By the previous result and Lagrange, |C (G )| is either p or p2. Suppose

|C (G )| = p. Choose g 6∈ C (G ), then the centralizer C (g) is strictly bigger than

C (G ), since g ∈ C (g). Hence C (g) = G , which in turn implies that g ∈ C (G ), a

contradiction. Thus |C (G )| 6= p and so |C (G )| = p2. This implies that C (G ) = G

and so the group is abelian. �

5.5. Sylow’s 1st Theorem

Just by counting, we obtain strong structural results about the existence of subgroups.

5.5.1. Definition. Let p ∈ N be a prime. A finite group G is called a p-group if

|G | = pt for some t ∈ N.

5.5.2. Theorem. (1st Sylow Theorem) Let G be a finite group and let p be a prime

factor of |G |. Suppose that k ∈ N is largest such that pk divides |G |. Then G contains

a subgroup H such that |H| = pk .

Proof. Write |G | = pkm, where gcd(p,m) = 1. Consider the set S of all subsets of

U of G with |U| = pk . The number of such subsets is

|S| =

(
pkm

pk

)

=
pkm

pk
×

pkm − 1

pk − 1
× ...×

pkm − pk + 1

1
.

If in each term pkm−j

pk−j
we cancel all common divisors of the numerator and denominator,

p does not remain a divisor of the numerator. To see this (it is clear for j = 0), let

j > 0 then we may certainly write j as j = pls, where l , s ∈ N∪{0} and gcd(p, s) = 1.

Then l < m, so
pkm − j

pk − j
=

pk−lm − s

pk−l − s
.
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Certainly p does not divide pk−lm − s, and hence since p is prime, it follows that p

does not divide the product of the numerators. Therefore p ∤ |S|.

For U ∈ S and g ∈ G , gU is a subset of G with |Ug | = |U|, thus gU ∈ S.

Clearly, it is seen that G acts on the set S by left multiplication. Under this action

S is partitioned into orbits, and it follows (since p ∤ |S|) that there exists an orbit A

such that p ∤ |A|. Pick an element V of S which belongs to the orbit A, and set

H := StabG (V ) ≤ G . By orbit–stabilizer,

|A| =
|G |

|H|
.

Thus pkm = |G | = |G |
|H| |H| = |A| |H|. But p ∤ |A|, so necessarily pk divides |H|.

We now show |H| = pk , as this then completes the proof. Since pk divides |H|

by above, it suffices to show that |H| ≤ pk . To do this, since |V | = pk , let V =

{x1, x2, ..., xpk } denote the elements of V . Then for any h ∈ H = StabG (V ), hV = V ,

that is

{hx1, hx2, ..., hxpk } = {x1, x2, ..., xpk }.

Hence hx1 = xi for some i with 1 ≤ i ≤ pk , and so h = xix
−1
1 . This shows that

H ⊆ {e, x2x
−1
1 , x3x

−1
1 , ... , xpk x

−1
1 },

hence |H| ≤ pk , as required. �

5.5.3. Corollary. (Cauchy’s Therem) Let G be a finite group and let p be a prime

factor of |G |. Then G contains an element of order p (and hence a cyclic subgroup

of order p).

Proof. By §5.5.2 there exists a subgroup H of G with |H| = pk . Pick h ∈ H with

h 6= e. Then o(h) divides pk , say o(h) = ps , with s ≥ 1. If s = 1 then o(h) = p and

so we are done. If s > 1, then hp
s−1

has order p (check this!). �
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6. Symmetric Groups

By §4.3 we know that every finite group lives inside a symmetric group.

6.1. Basics

Recall that the symmetric group Sn is the group of all permutations of n objects

(usually thought of as the numbers {1, 2, ... , n}). It has order n!. Recall also the

notation that σ ∈ Sn is specified by the 2-row array

(

1 2 ... n

σ(1) σ(2) ... σ(n)

)

.

6.1.1. Composition: method 1. For example, in S6 consider

(

1 2 3 4 5 6

2 1 4 3 6 5

)(

1 2 3 4 5 6

2 4 1 3 6 5

)

Recall that for permutations, as for other maps, our convention is στ means “do τ

then do σ”. Thus under the first map 1 gets sent to 2, which under the second map

gets sent to 1. Hence overall 1 7→ 1. Similarly 2 gets sent to 4, which then gets sent

to 3, so overall 2 7→ 3. Continuing in this way, by exhausting all possibilities we see

that

(

1 2 3 4 5 6

2 1 4 3 6 5

)(

1 2 3 4 5 6

2 4 1 3 6 5

)

=

(

1 2 3 4 5 6

1 3 2 4 5 6

)

.

For many of our purposes, the above matrix notation for elements of Sn is not very

good, and so we introduce cycle notation:

6.1.2. Definition. Let n ∈ N, let 1 ≤ r ≤ n and let {a1, a2, ... , ar} be r distinct

numbers between 1 and n. The cycle (a1 a2 ... ar ) denotes the element of Sn that

sends a1 to a2, a2 to a3, ..., ar−1 to ar , ar to a1, and leaves the remaining n − r

numbers fixed. We say that the length of the cycle (a1 a2 ... ar ) is r .

It is clear that our choice of starting point for the cycle is irrelevant, so e.g.

(a1 a2 ... ar ) = (a2 ... ar a1) etc.

6.1.3. Example. Thus (214) means the permutation where 2 7→ 1, 1 7→ 4, 4 7→ 2,

and all the other elements are fixed. You should read (214) as “2 goes to 1 goes to 4

goes to 2” and visually think of it as

( 2 1 4 )
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(but don’t write the arrows, just write (214)). Since all the other elements are by

definition fixed, (214) ∈ S5 corresponds to

(214) =

(

1 2 3 4 5

4 1 3 2 5

)

in the 2-row array notation.

6.1.4. Composition: method 2. In S6, consider the cycles (1623) and (14235). Their

composition

(1623)(14235)

(recall the convention that we do the right one first, then the left) sends 1 to 4 (to

4), 2 to 3 to 1, 3 to 5 (to 5), 4 to 2 to 3, 5 to 1 to 6, (6 to) 6 to 2. Hence overall

this is
(

1 2 3 4 5 6

4 1 5 3 6 2

)

.

6.2. Disjoint cycles

6.2.1. Definition. Two cycles (a1 a2 ... ar ) and (b1 b2 ... bs) are disjoint if

{a1, a2, ... , ar} ∩ {b1, b2, ... , bs} = ∅.

6.2.2. Note. Composition of disjoint cycles is commutative (prove this — see Prob-

lem 6.3) and so e.g. (1534)(27) = (27)(1534).

6.2.3. Theorem. Every permutation can be written as a product of disjoint cycles.

Proof. I will do this in one example, from which you will probably be able to write

down the general proof yourself (if not, consult any introductory textbook on Group

Theory). Consider

σ =

(

1 2 3 4 5 6 7 8 9

5 7 4 1 3 6 2 9 8

)

.

Start with the number 1. Tracing through, 1 7→ 5 7→ 3 7→ 4 7→ 1 and we are back

where we started. Next, choose the lowest number which does not appear in this cycle.

Here, that is 2. Tracing through, 2 7→ 7 7→ 2 and again we are back at where we

started. Next, choose the lowest number which does not appear in the last two cycles

— here that is 6. Tracing through, 6 gets sent to itself. Next, choose the smallest

number that has not yet appeared. This is 8, and tracing through 8 7→ 9 7→ 8. Thus

σ = (1534)(27)(6)(89).

�

6.2.4. Note. Since disjoint cycles commute, above we could equally write

σ = (1534)(27)(6)(89) = (6)(89)(27)(1534)

etc, in any order.
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6.2.5. Example. Continuing the example in §6.1.4,

(1623)(14235) =

(

1 2 3 4 5 6

4 1 5 3 6 2

)

= (143562).

With a bit of practice, you can go from the left hand side to the right hand side in

one step.

6.3. Generators of the symmetric group

6.3.1. Definition. A cycle of length two is called a transposition. For example (23)

and (14) are transpositions.

6.3.2. Theorem. Every permutation can be written as a composition of transpositions.

Thus, Sn is generated by transpositions.

Proof. Let T be the set of transpositions. Always 〈T 〉 ≤ Sn. Conversely, let σ ∈ Sn,

then by §6.2.3 we can write σ as the product of disjoint cycles. Thus since every cycle

(x1x2 ... xk) = (x1x2)(x2x3) ... (xk−1xk),

σ is a product of transpositions, and hence σ ∈ 〈T 〉. This shows that Sn ⊆ 〈T 〉 and

so 〈T 〉 = Sn. �

6.3.3. Application. Consider the group G of symmetries of the cube, acting on the

set X of diagonals of the cube. Note that |X | = 4. Define the group homomorphism

φ : G → S4 = S|X | as in §4.3.1. Now no non-identity element of the cube fixes all

the diagonals (we know all 24 rotational symmetries, so just check each), hence φ

is injective. Also, one can find a “half-turn about centres of edges” that acts as a

transposition on two given diagonals and fixes the other two. Thus inside Imφ are all

transpositions. Since Imφ is a subgroup, it is closed under multiplication, and so by

§6.3.2 Imφ = S4. Hence

• G ∼= S4 (via φ).

• The six “half-turns about centres of edges” generate the rotational symmetries

of a cube.

6.4. Cycle type and their number

6.4.1. Definition. Given σ ∈ Sn, write σ as a product of disjoint cycles, as in §6.2.3.

In this product, for each t = 1, ... , n let mt denote the number of cycles of length t.

Then we say that σ has cycle type

1, ... , 1
︸ ︷︷ ︸

m1

, 2, ... , 2
︸ ︷︷ ︸

m2

, ... , n, ... , n
︸ ︷︷ ︸

mn

,

As notation for cycle type, we usually abbreviate this to 1m1 , 2m2 , ... , nmn .

For an equivalent way of defining cycle type, see Problem 6.5.

6.4.2. Examples. In S4, the element (123)(4) has cycle type 1,3. The element (1234)

has cycle type 4. The identity e = (1)(2)(3)(4) has cycle type 14.
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6.4.3. Theorem. The number of elements of Sn of cycle type 1m1 , 2m2 , ... , nmn is

n!

m1! ...mn!1m12m2 ... nmn
.

Proof. (sketch) A permutation of the given cycle type is produced by filling {1, 2, ... , n}

into the blanks in the following pattern:

(•) ... (•)
︸ ︷︷ ︸

m1

(••) ... (••)
︸ ︷︷ ︸

m2

(• • •) ... (• • •)
︸ ︷︷ ︸

m3

...

There are n! ways of doing this, but we must account for the fact that some of these

ways give the same element of Sn.

• Since (a)(b) = (b)(a), the one-cycles can be permuted and this gives the

same element. Similarly for the 2-cycles, etc. There are m1! permutations

of the 1-cycles, m2! permutations of the 2-cycles, etc, so we must divide by

m1! ...mn!

• Each 2-cycle has two different ways of being written (since (ab) = (ba)).

Similarly each 3-cycle has three different ways of being written (since (abc) =

(bca) = (cab)), etc, and so we must also divide by 1m12m2 ... nmn .

�

6.4.4. Examples.

1. How many elements of type 1, 1, 3, 4 are there in S9? Well, m1 = 2,m3 =

1,m4 = 1 and all other m’s are equal to zero. By the formula, there are
9!

2.1.1.12.31.41
= 15120.

2. The three possible cycle types in S3 are 13, and 1, 2, and 3. By the formula,

these contain one, three and two elements respectively.

6.5. Conjugacy in Sn is determined by cycle type

6.5.1. Lemma. Let σ ∈ Sn, and write σ as a product of disjoint cycles, say σ =

(a1 ... ar )(b1 ... bs) .... Then for all τ ∈ Sn,

τστ−1 = (τ(a1) ... τ(ar ))(τ(b1) ... τ(bs)) ...

which is a product of disjoint cycles.

Proof. We just have to check that the right hand side acts on every element in

{1, ... , n} in the same way as τστ−1. To see this, note for example that

τστ−1(τ(a1)) = τσ(a1) = τ(a2)

and so τστ−1 sends τ(a1) to τ(a2). The other elements are checked similarly. �

6.5.2. Theorem. Two permutations in Sn are conjugate if and only if they have the

same cycle type (up to ordering).
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Proof. (⇒) is §6.5.1.

(⇐) Let

σ = (a1 ... ar )(b1 ... bs) ... (f )(g)(h)

γ = (â1 ... âr )(b̂1 ... b̂s) ... (f̂ )(ĝ)(ĥ)

be elements of Sn with the same cycle type. Then

{a1, ... , ar , b1, ... , bs , ... , f , g , h} = {1, ... , n} = {â1, ... , âr , b̂1, ... , b̂s , ... , f̂ , ĝ , ĥ}

in some order, with no repetitions. Define τ to be the element of Sn which sends

a1 7→ â1, ... , h 7→ ĥ. Now §6.5.1 shows that τστ−1 and γ are the same element. �

6.5.3. Examples.

1. How many elements are conjugate to (123)(4567)(8)(9) in S9? By the theo-

rem, this is equal to the number of elements of type 1, 1, 3, 4. By §6.4.4, this

is equal to 15120.

2. By the above theorem and §6.4.4 part 2, we can work out all the conjugacy

classes in S3. Thus there are three conjugacy classes (since there are three

cycle types), and so the conjugacy classes in S3 are described by

cycle type typical element number of elements

13 e 1

1, 2 (1)(23) 3

3 (123) 2

You should perform a similar calculation for S4, by doing Problem 6.9.

6.6. The alternating groups

6.6.1. Definition. Let n ∈ N and set

P =
∏

1≤i<j≤n

(xi − xj).

Let X = {P ,−P}. Then Sn acts on X by

σ · P =
∏

1≤i<j≤n

(xσ(i) − xσ(j))

If σ ∈ Sn has the property that σ · P = P , we say that σ is even. If σ · P = −P , we

say that σ is odd.

6.6.2. Theorem. Let An denote the set of all even permutations in Sn. Then An is a

normal subgroup of Sn, with |An| =
|Sn|
2 = n!

2 . We call An the alternating group.

Proof. Sn acts on X , and P ∈ X . Then An = StabSn(P) and so it is a subgroup of

Sn (by §4.5.2). Its order follows immediately from the orbit-stabilizer theorem. Since

|An| =
|Sn|
2 it follows immediately that An E Sn (by §3.3.4). �

6.6.3. Remark. Since An E Sn we can form the factor group Sn/An. We know from

the above that this has order two, hence it must be isomorphic to C2.
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6.6.4. Theorem.

1. The product of two even permutations is even. The product of two odd

permutations is even. The product of an odd and an even permutation is odd.

2. Transpositions are odd.

3. A permutation is even if and only if it can be written as a product of an even

number of transpositions.

4. A cycle of length k is even if k is odd, and the cycle is odd if k is even.

Proof. 1. If σ and τ are both odd, then

(στ) · P = σ · (τ · P) = σ(−P) = P

and so στ is even. The rest are similar.

2. Suppose σ is the transposition swapping 1 and 2. Then in the factorization of P ,

the factor (x1 − x2) changes sign under the action of σ. No other factors involving x1

change sign. The only factors involving x2 that remain are (x2 − xj) for j = 3, ... , n,

and none of these change sign under σ. Hence σ · P = −P and so σ is odd. The

general case (i.e. σ is an arbitrary transposition) is similar.

3. (⇐) is obvious from part 1. For (⇒), pick σ ∈ An then by §6.3.2 σ can be written

as a product of transpositions. By part 1, necessarily there must be an even number.

4. Follows from the formula

(x1x2 ... xk) = (x1x2)(x2x3) ... (xk−1xk)

together with parts 1 and 2. �

6.6.5. Example. The group A4 consists of the identity, eight 3-cycles and three ele-

ments of cycle type 2, 2. Explicitly, these are

e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23).

6.7. Application

6.7.1. Theorem. Let G be the group of rotational symmetries of the tetrahedron.

Then G ∼= A4.

Proof. G acts on the set X of 4 vertices, thus as in §4.3.1 we have a group homo-

morphism φ : G → S4 = S|X |. The only symmetry which fixes all the vertices is the

identity, hence φ is injective and so G ∼= Imφ. Now all members of G give an even

permutations of the vertices (since rotations about a vertex give 3-cycles and rotations

about midpoints of opposite edges have cycle-type 2,2), hence G ∼= Imφ ≤ A4. Since

|Imφ| = |G | = 12 = |A4|, necessarily Imφ = A4 and so G ∼= A4. �
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7. Groups of Small Size

7.1. Finite abelian groups

As before, let Cn denote the cyclic group of order n.

7.1.1. Theorem. The product Cm × Cn is isomorphic to Cmn if and only if m, n are

relatively prime (i.e. gcd(m, n) = 1).

Proof. Note that Cm × Cn has mn elements. So as not to confuse notation, let

Cm = 〈g〉 and Cn = 〈h〉.

(⇐) Suppose m, n are relatively prime and let x = (g , h). Then xk = (gk , hk), which

equals the identity if and only if k is a multiple of both m and n. But the least such

k is mn and so x has order mn. Hence Cm × Cn is cyclic, and therefore (by §3.1.4

part 2) isomorphic to Cmn.

(⇒) (by contrapositive) Conversely, suppose that gcd(m, n) = q > 1. Then k := mn
q

is a multiple of both m and n. Thus if (x , y) ∈ Cm × Cn, then (x , y)k = (xk , yk) =

(e, e) = eCm×Cn
. Hence Cm × Cn has no element of order mn, and so therefore it

cannot be cyclic. �

7.1.2. Theorem. Let G = Cj1 × ... × Cjn be a product of cyclic groups. Then G is

isomorphic to a product G = Ck1×...×Ckm where ki divides ki+1 for all i = 1, ... ,m−1.

We will say that products of cyclic groups of this type are in standard form.

Proof. You should try and prove this, based on the procedure in the example below.

�

7.1.3. Examples.

1. Consider C12 × C18. We begin by writing 12 and 18 as products of powers of

primes, i.e. 12 = 22.3 and 18 = 2.32. Now

C12 × C18
∼= (C22 × C3)× (C2 × C32)

∼= (C2 × C3)× (C22 × C32)

∼= C6 × C36,

where the first and third isomorphisms follow from §7.1.1. The principle behind

the rearrangement in the second line is that the right-hand term contains the

highest power of every prime that occurs, whilst the left-hand term contains

the second-highest (if that exists).

2. Consider instead C24 × C36 × C30. Then

C24 × C36 × C30
∼= (C23 × C3)× (C22 × C32)× (C2 × C3 × C5)

∼= (C2 × C3)× (C22 × C3)× (C23 × C32 × C5)

∼= C6 × C12 × C360.
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Again, the rightmost term has the highest power of each prime that appears,

the middle contains the second-highest and the leftmost the third-highest

power.

7.1.4. Two facts that we don’t have time to prove.

1. If two products of cyclic groups have different standard forms then they are

not isomorphic.

2. Every finite abelian group is isomorphic to a product of cyclic groups.

If we had time to prove these facts, then we would have completely classified finite

abelian groups. In what follows we will assume §7.1.4 and try to classify all groups of

small order, up to isomorphism. Thus when we say that “there is only one group of

order 5” we really mean that all groups of order 5 are isomorphic.

7.2. Nonabelian groups

We already know all finite abelian groups from §7.1.4, so we search for possible non-

abelian groups.

7.2.1. Theorem. If G is a group with |G | ≤ 12, then if G is not abelian, necessarily

|G | must be either 6, 8, 10 or 12.

Proof. We already know that every group of order p or p2 (where p is a prime) is

abelian. See Problem 5.11 if this is unclear. This means that the only possibilities are

6, 8, 10 or 12. �

We already know examples of nonabelian groups of orders 6, 8, 10 and 12 — namely

D3, D4, D5 and D6. We search for more:

7.2.2. Theorem. Suppose that G is a nonabelian group with |G | = 2p, where p is an

odd prime. Then G ∼= Dp. In particular, the only nonabelian group of order 6 is D3

(so D3
∼= S3), and the only nonabelian group of order 10 is D5.

Proof. By Cauchy’s Theorem (§5.5.3), G contains an element x of order p, and hence

a cyclic subgroup H := {e, x , x2, ... , xp−1} of order p. Necessarily HEG since |G |
|H| = 2

(by §3.3.4). Also, by Cauchy’s Theorem, there exists an element y of order 2. Now

y 6∈ H (since no element of H has order 2), thus H 6= Hy and so

G = H ∪ Hy = {e, x , x2, ... , xp−1, y , xy , x2y , ... , xp−1y}.

Consider now the element yx . By Lagrange’s Theorem, the order of yx is either 1, 2, p

or 2p. We claim that o(yx) = 2. Well certainly o(yx) 6= 1 since y cannot be the

inverse of x (they have different orders), and certainly o(yx) 6= 2p since then G would

be cyclic (and so abelian). It remains to show that o(yx) 6= p. Suppose, for the aid

of a contradiction, that (yx)p = e. Consider the coset H = He = H(yx)p . Now,

xH = H since x ∈ H, and so

Hyx = yxH = yH = Hy
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where in the above manipulation we have used §3.3.2 since H E G . By induction, it

follows that H(yx)p = Hyp . But y2 = e, so since p is odd, yp = y . Hence

H = H(yx)p = Hyp = Hy ,

which is a contradiction. It follows that o(yx) = 2. Now, since y2 = e, we have

yxyx = e =⇒ yx = x−1y−1 = x−1y .

We claim that the relation yx = x−1y , together with the relations xp = e and y2 = e,

completely determines the multiplication of all the elements in

G = H ∪ Hy = {e, x , x2, ... , xp−1} ∪ {y , xy , x2y , ... , xp−1y}

The key point is that, using the three relations, you can multiply any two elements in

the set {e, x , x2, ... , xp−1, y , xy , x2y , ... , xp−1y} = G and re-arrange to give another

member of that set. For example

(x2y)x = xxyx = xxx−1y = xy ∈ {e, x , x2, ... , xp−1, y , xy , x2y , ... , xp−1y}.

(It is easy to check the general case.) Hence G = 〈x , y | xp = e, y2 = e, yx = x−1y〉,

which is Dp from §2.8. Hence G ∼= Dp.

�

7.3. The finite quaternion group

7.3.1. Theorem. The 2× 2 complex matrices

I =

(

i 0

0 −i

)

, J =

(

0 −1

1 0

)

, K =

(

0 −i

−i 0

)

obey

I 2 = J2 = K 2 = −1, IJ = −JI = K , JK = −KJ = I , KI = −IK = J.

7.3.2. Theorem. Let

Q = {±1,±I ,±J,±K} ⊆ SL(2,C).

Then Q is a subgroup of SL(2,C) (under matrix multiplication), and so in particular

Q is a group of order 8.

Proof. Q is clearly nonempty. By the above relations, it is closed under multiplication.

Further, ±1 are their own inverse, and all the other elements have an inverse which

is minus themselves (since I (−I ) = 1 etc). Hence Q is closed under inverses. �

7.3.3. Theorem. Every nonabelian group of order 8 is isomorphic to either D4 or Q.

Proof. See Problem 7.7 �
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7.4. Summary of small groups

The list of all non-isomorphic groups of order ≤ 12 is as follows:

order abelian groups nonabelian groups

2 C2

3 C3

4 C4,C2 × C2

5 C5

6 C6 S3 ∼= D3

7 C7

8 C8,C2 × C4,C2 × C2 × C2 D4,Q

9 C9,C3 × C3

10 C10 D5

11 C11

12 C12,C2 × C6 D6,A4, ...

The entries in the abelian column are clearly examples of that given order; they are all

the abelian groups of that order by §7.1.4. There are no nonabelian groups of order

2, 3, 4, 5, 7, 9 and 11 by §7.2.1.

The entries in the nonabelian column are clearly examples of nonabelian groups of

that given order. The nonabelian groups of orders 6 and 10 are all the nonabelian

groups of that order by §7.2.2. The groups D4 and Q are the only nonabelian groups

of order 8 by Problem 7.7.

The only thing that still needs to be found is the number of nonabelian groups of

order 12. It turns out that there are three in total.
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