NORTH-HOLLAND MATHEMATICAL IIB

C. BERGE

North Holland

HYPERGRAPHS

Combinatorics of Finite Sets

North-Holland Mathematical Library

Board of Advisory Editors:

M. Artin, H. Bass, J. Eells, W. Feit, P.J. Freyd, F.W. Gehring, H. Halberstam, L.V. Hörmander, J.H.B. Kemperman, H.A. Lauwerier, W.A.J. Luxemburg, F.P. Peterson, I.M. Singer and A.C. Zaanen

VOLUME 45

Hypergraphs

Combinatorics of Finite Sets

Claude BERGE
Centre de Mathematique Sociale
Paris, France

NORTH-HOLLAND
AMSTERDAM • NEW YORK • OXFORD • TOKYO

```
ELSEVIER SCIENCE PUBLISHERS B.V.
Sara Burgerhartstraat 25
P.O. Box 211,1000 AE Amsterdam, The Netherlands
```

Distributors for the U.S.A. and Canada:
ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
655 Avenue of the Americas
New York, N.Y. 10010, U.S.A.

Library of Congress Cataloging-in-Publication Data

```
Berge, Claude.
    [Hypergraphes. English]
    Hypergraphs : combinatorics of finite sets / Claude Berge.
            p. cm. -- (North-Holland mathematical library ; v. 45)
    Translation of: Hypergraphes.
    Bibliography: p.
    Includes index.
    ISBN 0-444-87489-5
    1. Hypergraphs. I. Title. II. Series.
    QA166.23.B4813 1989
    511'.5--dc20
89-11848
                                    CIP
```

ISBN: 0444874895

© ELSEVIER SCIENCE PUBLISHERS B.V., 1989

This volume is a translation of Hypergraphes: Combinatoires des ensembles finis, © Bordas, Paris, France, 1987. It is an updated revision of Part 2 of Graphs and Hypergraphs, © North-Holland, Amsterdam, The Netherlands, 1973.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, Elsevier Science Publishers B.V. / Physical Sciences \& Engineering Division, P.O. Box 103, 1000 AC Amsterdam, The Netherlands.

Special regulations for readers in the U.S.A. - This publication has been registered with the Copyright Clearance Center Inc. (CCC), Salem, Massachusetts. Information can be obtained from the CCC about conditions under which photocopies of parts of this publication may be made in the U.S.A. All other copyright questions, including photocopying outside of the U.S.A., should be referred to the publisher.

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.

PRINTED IN THE NETHERLANDS

FOREWORD

For the past forty years, Graph Theory has proved to be an extremely use ful tool for solving combinatorial problems, in areas as diverse as Geometry, Algebra, Number Theory, Topology, Operations Research and Optimization. It was thus natural to try and generalise the concept of a graph, in order to attack additional combinatorial problems.

The idea of looking at a family of sets from this standpoint took shape around 1960. In regarding each set as a "generalised edge" and in calling the family itself a "hypergraph", the initial idea was to try to extend certain classical results of Graph Theory such as the theorems of Turán and König. Next, it was noticed that this generalisation often led to simplification; moreover, one single statement, sometimes remarkably simple, could unify several theorems on graphs. It is with this motivation that we have tried in this book to present what has seemed to us to be the most significant work on hypergraphs.

In addition, the theory of hypergraphs is seen to be a very useful tool for the solution of integer optimization problems when the matrix has certain special properties. Thus the reader will come across scheduling problems (Chapter 4), location problems (Chapter 5), etc., which when formulated in terms of hypergraphs, lead to general algorithms. In this way specialists in operations research and mathematical programming have also been kept in mind by emphasizing the applications of the theory.

For pure mathematicians, we have also included several general results on set systems which do not arise from Graph Theory; graphical concepts nevertheless provide an elegant framework for such results, which become easier to visualize.

For students in pure or applied mathematics, we have thought it worthwhile to add at the end of each chapter a collection of related problems. Some are still open but many are straightforward applications of the theory to combinatorial designs, directed graphs, matroids, etc., such consequences being too numerous to include in the text itself.

We wish especially to thank Michel Las Vergnas, and also Dominique de Werra and Dominique de Caen, for their help in the presentation. We express our thanks also to the New York University for permission to include certain chapters of this book which were taught in New York during 1985.

Note: The longest proofs, and those which are particularly difficult, are indicated in the text by an asterisk; they can easily be skipped on first reading.

TABLE OF CONTENTS

Chapter 1: General concepts 1

1. Dual hypergraphs 1
2. Degrees 3
3. Intersecting families 10
4. The coloured edge property and Chvátal's conjecture 15
5. The Helly property 21
6. Section of a hypergraph and the Kruskal-Katona Theorem 26
7. Conformal hypergraphs 30
8. Representative graphs 31
Exercises 39
Chapter 2: Transversal sets and matchings 43
9. Transversal hypergraphs 43
10. The coefficients τ and τ^{\prime} 53
11. τ-critical hypergraphs 59
12. The König property 64
Exercises 72
Chapter 3: Fractional transversals 74
13. Fractional transversal number 74
14. Fractional matching of a graph 83
15. Fractional transversal number of a regularisable hypergraph 93
16. Greedy transversal number 99
17. Ryser's conjecture 103
18. Transversal number of product hypergraphs 105
Exercises 113
Chapter 4: Colourings 115
19. Chromatic number 115
20. Particular kinds of colourings 120
21. Uniform colourings 122
22. Extremal problems related to the chromatic number 130
23. Good edge-colourings of a complete hypergraph 137
24. An application to an extremal problem 146
25. Kneser's problem 148
Exercises 150
Chapter 5: Hypergraphs generalising bipartite graphs 155
26. Hypergraphs without odd cycles 155
27. Unimodular hypergraphs 162
28. Balanced hypergraphs 171
29. Arboreal hypergraphs 186
30. Normal hypergraphs 193
31. Mengerian hypergraphs 198
32. Paranormal hypergraphs 208
Exercises 213
Appendix: Matchings and colourings in matroids 217
References 237

INDEX OF DEFINITIONS

affine plane, ch. $2, \S 2$
anti-rank $\delta(H)$, ch.1, § 1
arboreal hypergraph, ch. 5 §4
Baranyai theorem, ch.4, §5
balanced hypergraph, ch.5, §3
balanced hypergraph (totally), ch.5, §3
canonical 2-matching, ch.3, §2
chromatic number $\chi(H)$, ch. $2, \S 1,($ ch.4, $\S 1)$
chromatic number (strong) $\gamma(H)$, ch. $4, \S 2$
chromatic index $q(H)$, ch.1, §4
chromatic index (fractional) $q^{*}(G), \operatorname{ch} .2, \S 4$
Chvátal conjecture, ch.1, §4
co-arboreal hypergraph, ch. $4, \S 4$
coloured edge property. ch.1, §4
k-colouring, ch.4, §1
colouring (good), ch.4, §2
colouring (equitable), ch.4, §2
colouring (strong), ch.4, $\S 2$
colouring (regular), ch.4, §2
colouring (uniform), ch.4, §2
complete, r-complete (hypergraph) K_{π}^{γ}, ch.1, $\oint 2$
connected hypergraph, ch.1, §2
covering, ch.2, §4
covering number $p(H)$, ch.2, §4
8 -covering, ch. 3 , § 1
s-covering number $\rho_{s}(H)$, ch. $3, \S 1$
critical vertex, ch.2, §3
τ-critical hypergraph, ch. $2, \S 3$
s-cut, ch.5, §7
cycle of length $k, \mathrm{ch} .5, \S 1$
B-cycle, ch.5, §7
cyclomatic number $\mu(H)$, ch.5. §4
degree $d_{H}(x)$, ch.1, §2
degree (maximum) $\Delta(H)$, ch.1, §2
β-degree $d{ }_{H}^{\beta}(x)$, ch.4, $\S 2$
β-degree (maximum) $\Delta_{\beta}(H)$, ch.4, $\S 1$
dependent set, Appendix, §1
(n, k, λ)-design, ch.2, §2
distinct representatives, Appendix, §1
dual hypergraph H^{*}, ch.1, $\S 1$
duplication, ch.5, §3
edge, ch.1, §1
Erdös problem, ch.4, §6

Erdös, Chao-Ko, Rado (theorem of), ch.1, §3
fan $F_{r}, \operatorname{ch} .2, \S 1$
fan (generalized), ch.2, §1
Fournier-Las Vergnas (theorem of), ch.5, §1
graph G, ch.1, § 1
Gupta property, ch.5, §7
Helly property, ch.1, §5
k-Helly, ch. $1, \S 5$
hereditary closure \hat{H}, ch. $1, \S 4$
hypergraph, ch.1, §1
incidence matrix, ch.1, § 1
independent set, Appendix, $\S 1$
intersecting family, ch.1, §3
interval hypergraph, ch.1, §5
S-joint, ch.5, §8

Kneser number $\tau_{0}(H), ~ c h .4, \S 7$
König property, ch.2, §4
Kruskal-Katona (theorem of), ch.1, §6
line-graph $L(H)$, ch.1, §8
linear hypergraph, ch.1, §2
Lovász inequality, ch. $5, \S 4$
Lovisz hypergraph, ch.2, §1
Lovász theorem, ch.5, §4
matching, ch.2, §4
matching (fractional), ch.3, §1
matching number $\nu(H)$, ch. $2, \S 4$
k-matching number $\nu_{k}(H)$, ch. $3, \S 1$
mengerian hypergraph, ch.5, §7
multigraph, ch.1, §1
normal hypergraph, ch. $5,\{6$
number of edges $m(H)$, ch.1, $\S 1$
order $n(H)$, ch. $1, \S 1$
paranormal hypergraph, ch.5, §8
partial hypergraph, ch.1, § 1
partial hypergraph (generated by A) H / A, ch.4, § 1
complete r-partite hypergraph $K_{n_{1}, n_{2} \ldots, n_{r}}^{r}$, ch1., §4
polyomino, ch.2, §4
positional game on H, ch. $4, \S 3$
projective plane, ch.2, §2
quasi-regularisable hypergraph, ch. $3, \S 3$
Ramsey numbers $R(p, q)$, ch.3, $\S 6$ rank of a hypergraph $r(H)$, ch. $1, \S 1$
rank of a matroid, Appendix, $\S 1$
regularisable hypergraph, ch. $3, \S 3$
regular hypergraph, ch.1, §2
representative graph $L(H)$, ch.1, §8
Ryser conjecture, ch. $3, \S 5$
k-section $[H]_{k}$, ch.1, §6
separable, ch.1, §2
Seymour theorem, ch.2, §4
simple hypergraph, ch. $1, \S 1$
Sperner theorem, ch.1, §2
stability number $\alpha(H)$, ch.4, $\S 1$
stability number (strong) $\bar{\alpha}(H)$, ch.2, §4
k-stability number $\bar{\alpha}_{k}(H)$, ch. $3, \S 1$
stable set, ch.2, §1
k-stable (strongly), ch. $3, \S 1$
stable (strongly) set, ch.2, §4
star $H(x)$, ch.1, §2
β-star, ch.4, §1
k-star, Appendix, § 1
Steiner system, ch.1, §2
Sterboul conjecture, ch.5, §1
sub-hypergraph (induced), ch.1, §1
sub-hypergraph (partial), ch.1, §1
transversal set, ch.2, §1
k-transveresal $\tau_{k}(H)$, ch. $3, \S 1$
transversal (fractional), ch.3, §1
transversal hypergraph $\operatorname{Tr} H$, ch.2, § 1
transversal number $\tau(H)$, ch.2, §2
transversal number (associated) $\tau^{\prime}(H), \operatorname{ch} 2, \S 2$
transversal number (greedy) $\tilde{\tau}(H)$, ch. $3, \S 4$
k-transversal number $\tau_{k}(H)$, ch. $3, \S 1$
transversal number (fractional) $\tau^{*}(H)$, ch $3, \S 1$
Turán number $T(n, p, r)$, ch. $4, \S 4$
uniform hypergraph, ch.1, §1
r-uniform hypergraph, ch.1, $\S 1$
unimodular hypergraph, ch. $5, \S 2$
unimodular matrix (totally), ch.5, $\S 2$
vertex, ch.1, §1
vertex-colouring lemma, ch. $2, \S 1$

List of standard symbols

\boldsymbol{R}	Set of real numbers
\mathbb{N}	Set of integers ≥ 0
\mathbb{Z}	Set of all integers
\varnothing	The empty set
$\|A\|$	Cardinality of the set A
$\{x / x$ such that $\cdots\}$	Set of x such that ...
$(\forall x)$	For every x
$(\exists x)$	There is an x
$a \in A$	a is an element of the set A
$a \notin A$	a is not an element of the set A
$A \cup B$	Union of A and B
$A \cap B$	Intersection of A and B
$A-B$	A minus B (elements of A not belonging to B)
$A \subset B$	The set A is a subset of set B
$A \not \subset B$	A is not contained in B
$A \times B$	Cartesian product of A by B (set of pairs (a, b) with $a \in A$ and $b \in B$)
(1) \Rightarrow (2)	Property (1) implies property (2)
$\binom{p}{q}=\frac{p!}{q!(p-q)!}$	Binomial coefficient " p choose q "
$p \equiv q(\bmod k)$	The integer p is congruent to q modulo k
$\left[\frac{p}{q}\right\rceil$	Integral part of $\frac{p}{q}$ (largest integer $\leq \frac{p}{q}$)
$\left[\frac{p}{q}\right]^{*}$	Smallest integer $\geq \frac{p}{q}$
$\left(\left(a_{j}^{i}\right)\right)$	Matrix in which the element in the i th row and j th column is a_{j}^{i}
$\operatorname{det}\left(\left(a_{j}^{i}\right)\right)$	Determinant
$\log p$	Neperian (natural) logarithm

For the notations specific to graphs, see the reference: Graphs (C. Berge, Graphs, North Holland, 1985).

Chapter 1

General Concepts

1. Dual Hypergraphs

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a finite set. A hypergraph on X is a family $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ of subsets of X such that

$$
\begin{equation*}
E_{i} \neq \varnothing \quad(i=1,2, \ldots, m) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\bigcup_{i=1}^{m} E_{i}=X . \tag{2}
\end{equation*}
$$

A simple hypergraph (or "Sperner family") is a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ such that

$$
\begin{equation*}
E_{i} \subset E_{j} \Rightarrow i=j \tag{3}
\end{equation*}
$$

The elements $x_{1}, x_{2}, \ldots, x_{n}$ of X are called vertices, and the sets $E_{1}, E_{2}, \ldots, E_{m}$ are the edges of the hypergraph. A simple graph is a simple hypergraph each of whose edges has cardinality 2; a multigraph (with loops and multiple edges) is a hypergraph in which each edge has cardinality ≤ 2. Nonetheless we shall not consider isolated points of a graph to be vertices.

A hypergraph H may be drawn as a set of points representing the vertices. The edge E_{j} is represented by a continuous curve joining the two elements if $\left|E_{j}\right|=2$, by a loop if $\left|E_{j}\right|=1$, and by a simple closed curve enclosing the elements if $\left|E_{j}\right| \geq 3$.

One may also define a hypergraph by its incidence matrix $A=\left(\left(a_{j}^{i}\right)\right)$, with columns representing the edges $E_{1}, E_{2}, \ldots, E_{m}$ and rows representing the vertices $x_{1}, x_{2}, \ldots, x_{n}$, where $a_{j}^{i}=0$ if $x_{i} \notin E_{j}, a_{j}^{i}=1$ if $x_{i} \in E_{j}$ (cf. Figure 1).

Figure 1. Representation of a hypergraph H and its incidence matrix

The dual of a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on X is a hypergraph $H^{*}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ whose vertices $e_{1}, e_{2}, \ldots, e_{m}$ correspond to the edges of H, and with edges

$$
X_{i}=\left\{e_{j} / x_{i} \in E_{j} \text { in } H\right\}
$$

H^{*} clearly satisfies both conditions (1) and (2).
It is easily seen that the incidence mairix of H^{*} is the transpose of the incidence matrix of H and so we have $\left(H^{*}\right)^{*}=H$.

Figure 2. The dual hypergraph of the hypergraph in Figure 1.

As for a graph, the order of H, denoted by $n(H)$, is the number of vertices. The number of edges will be denoted by $m(H)$. Further the rank is $r(H)=\max _{j}\left|E_{j}\right|$, the anti-rank is $s(H)=\min _{j}\left|E_{j}\right| ;$ if $r(H)=s(H)$ we say that H is a uniform hypergraph;
a simple uniform hypergraph of rank r will also be called r-uniform, and in this case it will be understood that there is no repeated edge.

For a set $J \subset\{1,2, \ldots, m\}$ we call the family

$$
H^{\prime}=\left(E_{j} / j \in J\right)
$$

the partial hypergraph generated by the set J. The set of vertices of H^{\prime} is a nonempty subset of X.

For a set $A \subset X$ we call the family

$$
H_{A}=\left(E_{j} \cap A / 1 \leq j \leq m, E_{j} \cap A \neq \varnothing\right)
$$

the sub-hypergraph induced by the set A. (We define partial sub-hypergraphs etc. in a similar fashion).

Proposition. The dual of a subhypergraph of H is a partial hypergraph of the dual hypergraph H^{*}.

In the case of hypergraphs of rank 2 these reduce to the familiar definitions for graphs. All the concepts of graph theory may thus be generalised to hypergraphs which will allow us to find stronger theorems, and applications to objects other than graphs. Further the formulation of a combinatorial problem in terms of hypergraphs sometimes has the advantage of providing a remarkably simple statement having a familiar form.

A stronger result may be much easier to prove than the weak result!

2. Degrees

The other definitions from graph theory which may be extended without ambiguity to a hypergraph H are the following:

For $x \in X$, define the star $H(x)$ with centre x to be the partial hypergraph formed by the edges containing x. Define the degree $d_{H}(x)$ of x to be the number of edges of $H(x)$, so $d_{H}(x)=m(H(x))$.

The maximum degree of the hypergraph H will always be denoted by

$$
\Delta(H)=\max _{x \in X} d_{H}(x) .
$$

A hypergraph in which all vertices have the same degree is said to be regular.

4 Hypergraphs

Note that $\Delta(H)=r\left(H^{*}\right)$, and that the dual of a regular hypergraph is uniform.
For a hypergraph H of order n, the degrees $d_{H}\left(x_{i}\right)=d_{i}$ in decreasing order form an n-tuple $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ whose properties can be characterised if H is a simple graph (Erdös, Gallai [1960], cf. Graphs, Ch. 6, Th. 6). In general

Proposition 1. An n-tuple $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ is the degree sequence of a uniform hypergraph of rank r and order n (possibly with repeated edges) if and only if $\sum_{i=1}^{n} d_{i}$ is a multiple of r and $d_{n} \geq 1$.

Proof. Given such an n-tuple $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, we wish to construct the edges of a hypergraph H one by one on the set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

In the first step, associate with each vertex x_{i} a weight $d_{i}^{1}=d_{i}$ and form the first edge E_{1} by taking the r vertices of greatest weight. In the second step, associate with vertex x_{i} the weight

$$
d_{i}^{2}= \begin{cases}d_{i}^{1} & \text { if } x_{i} \notin E_{1} \\ d_{i}^{1}-1 & \text { if } x_{i} \in E_{1}\end{cases}
$$

Form E_{2} by taking the r vertices of greatest weight, etc. If $\Sigma d_{i}=m r$ we obtain H with the edges $E_{1}, E_{2}, \ldots, E_{m}$, and $d_{H}\left(x_{i}\right)=d_{i}$ for $i=1,2, \ldots, n$.

A hypergraph is connected if the intersection graph of the edges is connected. Then we have

Proposition 2 (Tusyadej [1978]). An n-tuple $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ is the degree sequence of a connected uniform hypergraph of rank r if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i} \text { is a multiple of } r \text {, } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
d_{i} \geq 1 \quad(i=1,2, \ldots, n) \tag{2}
\end{equation*}
$$

(3)

$$
\sum_{i=1}^{n} d_{i} \geq \frac{r(n-1)}{r-1}
$$

$$
\begin{equation*}
d_{1} \leq m=\frac{\sum d_{i}}{r} \tag{4}
\end{equation*}
$$

(For extensions to non-uniform hypergraphs, cf. Boonyasombat [1984]).

Theorem 1 (Gale [1957], Ryser [1957]). Given m integers $r_{1}, r_{2}, \ldots, r_{m}$ and an n-tuple of integers $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$, there exists a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $d_{H}\left(x_{i}\right)=d_{i}$ for $i \leq n$ and $\left|E_{j}\right|=r_{j}$ for $j \leq m$ if and only if

$$
\begin{equation*}
\sum_{j=1}^{m} \min \left\{r_{j}, k\right\} \geq d_{1}+d_{2}+\ldots+d_{k} \quad(k<n) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{m} r_{j}=d_{1}+d_{2}+\ldots+d_{n} \tag{2}
\end{equation*}
$$

Proof. We deduce this immediately from the theory of network flows (corollary to theorem 3, Ch. 5 in Graphs). Indeed, construct a network flow with vertices the points $j=1,2, \ldots, m$ and $x_{1}, x_{2}, \ldots, x_{n}$, with a source a and a sink z. The arcs are

- all arcs (a, j) with capacity r_{j}
- all arcs $\left(x_{i}, z\right)$ with capacity d_{i}
- all $\operatorname{arcs}\left(j, x_{i}\right)$ with capacity 1.

It suffices to show that there exists an integer flow satisfying the capacities, saturating each of the arcs (j, z) entering the sink z, that is to say that the maximum flow which can enter set $\left\{x_{i} / i \in I\right\}$ is always greater than or equal to the sum $\sum_{i \in Y} d_{i}$, for all $I \subset\{1,2, \ldots, n\}$. (Further, we note that thanks to the network flow theorem we may always suppose that such a flow never leaves empty an "entry" arc or an "exit" arc.)

Open Problem. Find a necessary and sufficient condition for an m-tuple (r_{j}) and an n-tuple $\left(d_{i}\right)$ to be respectively the $\left|E_{j}\right|$ and the $d_{H}\left(x_{i}\right)$ of a simple hypergraph H.

Let r, n be integers, $1 \leq r \leq n$. We define the r-uniform complete hypergraph of order n (or the r-complete hypergraph) to be a hypergraph denoted K_{n}^{r} consisting of all the r-subsets of a set X of cardinality n. We may now state in a complete form the celebrated Sperner's theorem [1926]; in fact the inequality (1), which allows for a

6 Hypergraphs

simple proof was discovered (independently) much later by Yamamoto, Meshalkin, Lubell and Bollobás.

Theorem 2 (Sperner [1028]; proof by Yamamoto, Meshalkin, Lubell, Bollobas). Every simple hypergraph H of order n satisfies

$$
\begin{equation*}
\sum_{E \in H}\binom{n}{|E|}^{-1} \leq 1 \tag{1}
\end{equation*}
$$

Further, the number of edges $m(H)$ satisfies

$$
\begin{equation*}
m(H) \leq\binom{ n}{[n / 2]} \tag{2}
\end{equation*}
$$

For $n=2 h$ even, equality in (2) is attained if and only if H is the hypergraph K_{n}^{h}. For $n=2 h-1$ odd, equality in (2) is attained if and only if H is the hypergraph K_{n}^{h} or the hypergraph K_{n}^{h+1}.

Proof. Let X be a finite set of cardinality n. Consider a directed graph G with vertices the subsets of X, and with an arc from $A \subset X$ to $B \subset X$ if $A \subset B$ and $|A|=|B|-1$.

Let $E \in H$, the number of paths in the graph G from the vertex \varnothing to the vertex E is $|E|!$, thus the total number of paths from \varnothing to X is $n!\geq \sum_{E \in H}(|E|)!(n-|E|)!$ (as H is a simple hypergraph, a path passing through E cannot pass through $E^{\prime} \in H$, $E^{\prime} \neq E$). We thus deduce inequality (1).

For the second part,

$$
\binom{n}{|E|} \leq\binom{ n}{[n / 2]} .
$$

whence

$$
1 \geq \sum_{E \in H}\left(\begin{array}{c}
n \\
|E|)^{-1} \geq m(H)
\end{array}\binom{n}{[n / 2]}^{-1} .\right.
$$

We immediately deduce inequality (2).
Let H be a hypergraph satisfying equality in (2). Then for all $E \in H$,

$$
\begin{equation*}
\binom{n}{|E|}=\binom{n}{[n / 2]} \tag{3}
\end{equation*}
$$

If $n=2 h$ is even, (3) implies that H is h-uniform, and since $m(H)=\binom{n}{h}$ we have $H=K_{n}^{h}$, and the proof is achieved.

If $n=2 h+1$, (3) implies that $h \leq|E| \leq h+1$ for all $E \in H$. Let X_{k} be the set of vertices in G which represent edges of H with cardinality k; the set $X_{h} \cup X_{h+1}$ is a stable set of G, and $m(H)=\left|X_{h} \cup X_{h+1}\right|$.

The number of arcs of G leaving X_{h} is equal to $\left|X_{h}\right|(n-h)$; the number of arcs entering the image ΓX_{h} of X_{h} is $\left|\Gamma X_{h}\right|(h+1)$. Thus

$$
\left|\Gamma X_{h}\right|(h+1) \geq\left|X_{h}\right|(n-h)
$$

or

$$
\left|\Gamma X_{h}\right| \geq \frac{2 h+1-h}{h+1}\left|X_{h}\right|=\left|X_{h}\right|
$$

If X_{h} is non-empty and is not the set $P_{h}(X)$ of all h-subsets of X, the above inequality is strict (because the bipartite subgraph of G generated by the h-subsets and ($h+1$)-subsets is connected), whence

$$
\begin{aligned}
m(H) & =\left|X_{h}\right|+\left|X_{h+1}\right| \leq\left|X_{h}\right|+\left|P_{h+1}(X)-\Gamma X_{h}\right| \\
& <\left|X_{h}\right|+\binom{n}{h+1}-\left|X_{h}\right|=\binom{n}{h+1}
\end{aligned}
$$

Thus, equality in (2) is possible only if $X_{h}=\varnothing$ or $X_{h}=\boldsymbol{P}_{h}(X)$, i.e. if $H=K_{n}^{h}$ or K_{n}^{h+1}.
Q.E.D.

For extensions of Theorem 2 see: Erdös [1845], Kleitman [1868], Meshalkin [1963], Kleitman [1965], Greene, Kleitman [1976], Katona [1966], Hochberg, Hirsch [1970], Erdös, Frankl, Katona [1084].

To generalise graphs without "pendent" vertices, we consider the following class of hypergraphs; a hypergraph H is said to be separable if for every vertex x, the intersection of the edges containing x is the singleton $\{x\}$ i.e. if $\bigcap_{E \in H(x)} E=\{x\}$.

Corollary. If an n-tuple $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ of positive integers is the degree sequence of a separable hypergraph $H=\left(E_{1}, \ldots, E_{m}\right)$ then

8 Hypergraphs

$$
\sum_{i=1}^{n}\binom{m}{d_{i}}^{-1} \leq 1 .
$$

Essentially H is separable if and only if its dual H^{*} is a simple hypergraph, which implies, by Theorem 2 ,

$$
\sum_{i=1}^{n}\left(\left\lvert\, \begin{array}{c}
m \\
X_{i}
\end{array}\right.\right)^{-1} \leq 1
$$

Q.E.D.

To generalise simple graphs, we say that a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ is linear if $\left|E_{i} \cap E_{j}\right| \leq 1$ for $i \neq j$. For example, the hypergraphs of Figures 1,2 are linear.

We have immediately

Proposition 3. The dual of a linear hypergraph is also linear.
Indeed, if H is linear, two edges X_{i} and X_{j} in H^{*} cannot intersect in two distinct points e_{1}, e_{2}, as then, in $H, E_{1} \supset\left\{x_{1}, x_{2}\right\}, E_{2} \supset\left\{x_{1}, x_{2}\right\}$, contradicting $\left|E_{1} \cap E_{2}\right| \leq 1$.

Theorem 3. For every linear hypergraph H of order n, we have

$$
\begin{equation*}
\sum_{E \in H}\binom{|E|}{2} \leq\binom{ n}{2} \tag{1}
\end{equation*}
$$

If in addition, H is r-uniform, then the number of edges satisfies

$$
\begin{equation*}
m(H) \leq \frac{n(n-1)}{r(r-1)} \tag{2}
\end{equation*}
$$

The bound in (2) is attained if and only if H is a Steiner system $S(2, r, n)$.
For, the number of pairs x, y which are contained in a same edge of H is

$$
\sum_{E \in H}\binom{|E|}{2} \leq\binom{ n}{2}
$$

whence we have (1). If H is r-uniform, (2) follows.
A Steiner system $S(2, r, n)$ is an r-uniform hypergraph on X, with $|X|=n$, in which every pair of vertices is contained in exactly one edge. A necessary and sufficient condition for the existence of an $S(2,3, n)$ system, due to T.P. Kirkman [1847], is
that $n \equiv 1$ or $3(\bmod 6)$.
To exclude some values of r it is easily seen that the following are necessary conditions for the existence of $S(2, r, n)$ systems:
(1) $\binom{n}{2}\binom{r}{2}^{-1}$ is an integer;
(2) $\quad(n-1)(r-1)^{-1}$ is an integer.

These conditions are necessary and sufficient for $r=3,4$ (Hanani). For $r=6$ these conditions are sufficient with a single exception: no $S(2,6,21)$ system exists. Wilson [1972] has further shown that if r is a prime power and if n is sufficiently large then (1) and (2) are necessary and sufficient.

For all questions on existence and enumeration of $S(2, r, n)$ systems, see Lindner and Rosa [1980]. We give here a list of $S(2, r, n)$ systems known for small values of r and of n :

$S(2,3,7)$	
$S(2,3,9)$	De Pasquale [1899], Brunel [1901], Cole [1913]
$S(2,4,13)$	De Pasquale [1899], Brunel [1901], Cole [1913]
$S(2,3,15)$	Cole [1917], White [1919], Fischer [1940]
$S(2,4,16)$	Witt [1938]
$S(2,3,19)$	Deherder [1876]
$S(2,3,21)$	Wilson [1974]
$S(2,5,21)$	Witt [1938]
$S(2,3,25)$	Wilson [1974]
$S(2,4,25)$	Brouwer, Rokowska [1977]
$S(2,5,25)$	McInnes [1977]
$S(2,3,27)$	McInnes [1977]
$S(2,4,28)$	Rokowska [1977]

We deduce that the bound in (2) of Theorem 3 is the best possible for $n=7$, $r=3$; or for $n=9, r=3$; etc.

3. Intersecting Families

Given a hypergraph H, we define an intersecting family to be a set of edges having non-empty pairwise intersection. For example, for every vertex x of H, the star $H(x)=\{E / E \in H, x \in E\}$ is an intersecting family of H. The maximum cardinality of an intersecting family, which we denote $\Delta_{0}(H)$, thus satisfies

$$
\Delta_{0}(H) \geq \max _{x \in X}|H(x)|=\Delta(H)
$$

In a multigraph, the intersecting families are just the stars and the triangles (perhaps with multiple edges).

Theorem 4. Every hypergraph H of order n with no repeated edge satisfies

$$
\Delta_{0}(H) \leq 2^{n-1}
$$

Further, every maximal intersecting family of the hypergraph of subsets of an n-set has cardinality 2^{n-1}.

Proof. Let A be a maximal intersecting family of the hypergraph of subsets of X, where $|X|=n$.

If $B_{1} \notin \mathcal{A}$ then there exists in A a set A_{1} disjoint from B_{1} (by the maximality of A); thus $X-B_{1} \supset A_{1}$, whence, for every $A \in A,\left(X-B_{1}\right) \cap A \neq \varnothing$. By virtue of the maximality of A, we deduce that $\left(X-B_{1}\right) \in A$. Conversely, if $\left(X-B_{1}\right) \in A$, we have $B_{1} \notin A$. Hence $B \rightarrow X-B$ is a bijection between $\mathcal{P}(X)-\mathcal{A}$ and A, whence

$$
|A|=\frac{1}{2}|P(X)|=2^{n-1} .
$$

Lemma (Greene, Katona, Kleitman [1975], anticipated by Bollobás). Let $x_{1}, x_{2}, \ldots, x_{n}$ be points in that order on a circle and let $A=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ be a family of circular intervals of points such that

$$
\begin{equation*}
\left|A_{i}\right| \leq \frac{n}{2} \text { for all } i \leq m \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A_{i} \cap A_{j} \neq \varnothing \text { for all } i, j \quad, i \neq j \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
A_{i} \nsubseteq A_{j} \text { for all } i, j \quad, i \neq j \tag{3}
\end{equation*}
$$

Then

$$
\begin{align*}
& m \leq \min _{i}\left|A_{i}\right| \tag{4}\\
& \sum_{i=1}^{m}\left|A_{i}\right|^{-1} \leq 1
\end{align*}
$$

Equality is attained in (5) if and only if A is a family of circular intervals of cardinality m each having a point in common.
(*) Proof. Let A_{1} be a set of minimum cardinality in A. From (2), $A_{1} \cap A_{i} \neq \varnothing$ for $i \neq 1$; and from (3), these $A_{1} \cap A_{i}$ are intervals with one and only one of their ends coinciding with an end of A_{1}. From (3) these intervals $A_{1} \cap A_{i}$ are all different. Thus the number of possible intervals of this form is $\leq 2\left(\left|A_{1}\right|-1\right)$. From (1) and (2) two sets $A_{1} \cap A_{i}$ and $A_{1} \cap A_{j}$ with $i \neq j, i \neq 1, j \neq 1$ cannot constitute a partition of A_{1}; thus only half of these possible intervals can occur, which gives us $m-1 \leq\left|A_{1}\right|-1$. Thus, for all $i,\left|A_{i}\right| \geq\left|A_{1}\right| \geq m$, so we have (4) and (5).

Finally, equality in (5) implies

$$
1=\sum_{i=1}^{m} \frac{1}{\left|A_{i}\right|} \leq \frac{m}{\left|A_{1}\right|} \leq 1
$$

So we have $\left|A_{i}\right|=\left|A_{1}\right|=m$, for $1 \leq i \leq m$. Thus the A_{i} are intervals of length m whose initial end-points are m successive points on the circle. Conversely if the A_{i} satisfy (1), (2), (3) and are all intervals of length m, then clearly we have equality in (5).

Theorem 5 (Erdös, Chao-Ko, Rado [1961], proof by Greene, Katona, Kleitman [1976]). Let H be a simple intersecting hypergraph of order n and of rank $r \leq n / 2$; then

$$
\begin{equation*}
\sum_{E \in H}\binom{n-1}{|E|-1}^{-1} \leq 1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
m(H) \leq\binom{ n-1}{r-1} \tag{2}
\end{equation*}
$$

Further we have equality in (2) when H is a star of K_{n}^{r} (and only then if $r<\frac{n}{2}$).

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the vertex set of H. For any permutation π of $1,2, \ldots, n$, denote by H_{π} the set of edges of H which are intervals for the circular sequence $x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}, x_{\pi(1)}$. For $E \in H$, put

$$
\beta(E)=\left|\left\{\pi / E \in H_{\pi}\right\}\right| .
$$

From the lemma,

$$
\begin{equation*}
\sum_{E \in H_{\pi}} \frac{1}{|E|} \leq 1 \tag{3}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\sum_{E \in H} \frac{\beta(E)}{|E|}=\sum_{E \in H} \sum_{\pi \mid E \in H_{\pi}} \frac{1}{|E|}=\sum_{\pi} \sum_{E \in H_{\pi}} \frac{1}{|E|} \leq n! \tag{4}
\end{equation*}
$$

Let E_{0} be an edge of H, with cardinality $\left|E_{0}\right|=h$, and let x_{0} be an element of E_{0}. Since E_{0} is also an edge of the hypergraph $K_{n}^{h}\left(x_{0}\right)=H^{\prime}$, and since from the lemma we have equality in (3) for H^{\prime}, we have equality in (4) for H^{\prime}, and

$$
\frac{\beta\left(E_{0}\right)}{\left|E_{0}\right|}=\frac{1}{m\left(H^{\prime}\right)} \sum_{E^{\prime} \in H^{\prime}} \frac{\beta\left(E^{\prime}\right)}{\left|E^{\prime}\right|}=\frac{n!}{m\left(H^{\prime}\right)}=n!\binom{n-1}{\left|E_{0}\right|-1}^{-1}
$$

We may thus write, using (4),

$$
\sum_{E \in H}\binom{n-1}{|E|-1}^{-1}=\frac{1}{n!} \sum_{E \in H} \frac{\beta(E)}{|E|} \leq \frac{n!}{n!}=1
$$

Thus we have (1).
Finally, every $E \in H$ satisfies $|E| \leq r \leq \frac{n}{2}$, so

$$
m(H)\binom{n-1}{r-1}^{-1} \leq \sum_{E \in H}\binom{n-1}{|E|-1}^{-1} \leq 1
$$

(2) follows.
Q.E.D.

For extensions to Theorem 5 see Schönheim [1968], Hilton and Milner [1967], Hilton [1979], Erdös, Chao-Ko, Rado [1961], Bollobás [1974], Frankl [1975], Frankl [1976].

If no restriction is made on the rank, then by analogous methods we obtain:

Generalisation (Greene, Kleitman, Katona [1976]). Let H be a simple hypergraph of order n. If H is intersecting, then

$$
\begin{equation*}
\sum_{\substack{E \in H \\|E| \leq \frac{n}{2}}}(|E| n \mid-1)^{-1}+\sum_{\substack{E \in H \\|E|>\frac{n}{2}}}\binom{n}{|E|}^{-1} \leq 1 \tag{1}
\end{equation*}
$$

(2) $m(H) \leq\binom{ n}{\left[\frac{n}{2}\right]+1}$.

Further, equality is attained in (2) for $H=K_{n}^{\left(\left.\frac{n}{2} \right\rvert\,+1\right.}$.
Remark. Theorem 5 shows that

$$
\Delta_{0}\left(K_{n}^{r}\right)= \begin{cases}\binom{n-1}{r-1} & \text { if } r \leq \frac{n}{2} \\ \binom{n}{r} & \text { if } r>\frac{n}{2}\end{cases}
$$

More precisely, we shall show that in the r-complete hypergraph K_{n}^{r}, the maximum intersecting families are: for $r<\frac{n}{2}$, the stars of the form $K_{n}^{r}(x)$; for $r=\frac{n}{2}$, the maximal intersecting families; for $r>\frac{n}{2}$, the set of edges of K_{n}^{r}.

- For $r<\frac{n}{2}$ the proof of Theorem 5 implies that the only maximum intersecting families are stars.
- For $r=\frac{n}{2}$, let H_{0} be a maximal intersecting family of $K_{2 r}^{r}$: if $E \in H_{0}$ then $X-E \notin H_{0}$.
If $E \notin H_{0}$ then there exists an edge $E_{j} \in H_{0}$ which does not meet E (by maximality of H_{0}) thus $X-E=E_{j} \in H_{0}$. Thus $\left|H_{0}\right|=\frac{1}{2} m\left(K_{2 r}^{r}\right)$. Hence all maximal intersecting families have the same cardinality.

14 Hypergraphs

Theorem 6 (Bollobás [1965]). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}, F_{1}, F_{2}, \ldots, F_{m}\right)$ be a hypergraph of order n with $2 m$ edges such that $E_{i} \cap F_{j}=\varnothing$ if and only if $i=j$. Then

$$
\begin{equation*}
\sum_{j=1}^{m}\binom{\left|E_{j}\right|+\left|F_{j}\right|}{\left|E_{j}\right|}^{-1} \leq 1 \tag{1}
\end{equation*}
$$

Further, we have equality in (1) if for some integers r, s with $r+s=n$, we have

$$
\left(E_{1}, E_{2}, \ldots, E_{m}\right)=K_{n}^{r} ; \quad\left(F_{1}, F_{2}, \ldots, F_{m}\right)=K_{n}^{s}
$$

(*) Proof. Inspired by an idea of Katona, we may prove the result as follows. Let X be the vertex set of H, and let Y be the set of pairs $\left(S_{j}, T_{j}\right)$ with $S_{j}, T_{j} \subset X$, $S_{j}, T_{j} \neq \varnothing, S_{j} \cap T_{j}=\varnothing$. Form a graph G on Y as follows: two vertices (S_{j}, T_{j}) and (S_{k}, T_{k}) are adjacent if $S_{j} \cap T_{k}=\varnothing$ or $S_{k} \cap T_{j}=\varnothing$. Given a permutation π on X and a set $S \subset X$, denote by \bar{S} the smallest interval of the sequence $\sigma=(\pi(1), \pi(2), \ldots, \pi(n))$ which contains the set S, and put

$$
Y(\pi)=\{(S, T) /(S, T) \in Y ; \bar{S} \cap \bar{T}=\varnothing ; \bar{S} \text { is before } \bar{T} \text { in } \sigma\} .
$$

If the vertices $\left(S_{j}, T_{j}\right)$ and $\left(S_{k}, T_{k}\right)$ of $Y(\pi)$ are non-adjacent then $\bar{S}_{j} \cap \bar{T}_{j}=\varnothing$, $\bar{S}_{k} \cap \bar{T}_{k}=\varnothing, \bar{S}_{j} \cap \bar{T}_{k} \neq \varnothing, \bar{S}_{k} \cap \bar{T}_{j} \neq \varnothing$ which is a contradiction. Thus $Y(\pi)$ is a clique of G.

Note that if in a graph G on a set Y we consider P cliques $C_{1}, C_{2}, \ldots, C_{p}$ and a stable set $S \subset Y$ we obtain, by counting in two different ways the number of pairs $\left(y, C_{i}\right)$ with $y \in S$ and $y \in C_{i}$,

$$
\sum_{y \in S}\left|\left\{i / y \in C_{i}\right\}\right|=\sum_{i=1}^{p}\left|C_{i} \cap S\right| \leq p
$$

As the $\left(E_{j}, F_{j}\right)$ for $j=1, \ldots, m$ constitute a stable set of G we have

$$
\begin{equation*}
\sum_{j=1}^{m}\left|\left\{\pi / y(\pi) \in\left(E_{j}, F_{j}\right)\right\}\right| \leq n! \tag{2}
\end{equation*}
$$

Further, for two disjoint sets $E, F \subset X$

$$
|\{\pi /(E, F) \in Y(\pi)\}|=\binom{n}{|E \stackrel{\cup}{\cup} F|}(n-|E \cup F|)!|E|!|F|!=
$$

$$
=n!\left(|E| E|F|{ }_{E}^{+} \mid\right)^{-1}
$$

This equality, together with (2) gives us relation (1) which was what we had to prove.

4. The coloured edge property and Chvátal's Conjecture

Let $H=\left(E_{1}, \ldots, E_{m}\right)$ be a hypergraph. The chromatic index of H is the least number of colours necessary to colour the edges of H such that two intersecting edges are always coloured differently. This number $q(H)$ has been extensively studied for graphs.

If $\Delta_{0}(H)=k$, then at least k distinct colours are needed to colour the edges of a family of k intersecting edges; thus

$$
q(H) \geq \Delta_{0}(H) \geq \Delta(H)
$$

We say that H has the coloured edge property if $q(H)=\Delta(H)$, i.e. it is possible to legally colour the edges of H with $\Delta(H)$ colours.

Example 1. Let X be a set of individuals; suppose that certain individuals wish to have meetings during the day, each meeting being defined by a subset E_{j} of \boldsymbol{X}. We suppose that each individual wishes to attend k meetings. Then we can complete all the reunions in k days if and only if the hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ has the coloured edge property (each colour of an optimal colouring allows us to define the meetings of a day).

Example 2: Bipartite graphs. Let H be a bipartite multigraph defined by a partition (X_{1}, X_{2}) of X and some edges E with $\left|E \cap X_{1}\right|=1$, $\left|E \cap X_{2}\right|=1$. A well known theorem of König states that H has the coloured edge property.

Example 3: Graphs. Let G be a simple graph, and let \hat{G} be the multigraph obtained from G by adjoining a loop to each vertex. Vizing's theorem says that $q(G) \leq \Delta(G)+1=\Delta(\hat{G})$. Then we may colour the edges of \hat{G} with $\Delta(\hat{G})$ colours: this is the coloured edge property.

16 Hypergraphs

Example 4: r-complete hypergraphs of order a multiple of r. All complete graphs $K_{2 p}$ of order $2 p$ even have the coloured edge property; this is an old theorem of Lucas [1892] which he formulated in the following way: a residence of $2 p$ girls go for a walk every day in rows of two. Each girl refuses to find herself twice with the same partner. Can you organise the walks for $2 p-1$ days? Each of these walks is determined by a colour of the edges of the complete graph $K_{2 p}$. Place the vertices $0,1, \ldots, n-1$ on a circle as in Figure 3, the first colour being determined by the segments of this figure, the others obtained by rotation of the segments about the centre 0 . In 1936 in Berlin, a student of Schur, R. Peltesohn, submitted a thesis showing that a school of $3 p$ girls can walk every day in rows of 3 , that is to say the complete hypergraph $K_{3 p}^{3}$ has the coloured edge property.

Figure 3

For $p=3$ this result had been discovered 40 years earlier by Walecki, who had obtained the 28 walks for 9 girls $P, Q, a, b, c, d, e, f, g$ by decomposing the 7 tables shown in Figure 4. Finally, in 1975, Baranyai put a final point on this area of research by showing clearly and simply that K_{n}^{r} has the coloured edge property if and only if n is a multiple of r. (For a proof, see $\S 5$, Chapter 4).

$$
\begin{aligned}
& \left|\begin{array}{lll}
P & b & c \\
d & e & Q \\
f & g & a
\end{array}\right| ;\left|\begin{array}{lll}
P & c & d \\
e & f & Q \\
g & a & b
\end{array}\right| ;\left|\begin{array}{lll}
P & d & e \\
f & g & Q \\
a & b & c
\end{array}\right| ;\left|\begin{array}{lll}
P & e & f \\
g & a & Q \\
b & c & d
\end{array}\right| ;\left|\begin{array}{lll}
P & f & g \\
a & b & Q \\
c & d & e
\end{array}\right| ;\left|\begin{array}{lll}
P & g & a \\
b & c & Q \\
d & e & f
\end{array}\right| .
\end{aligned}
$$

Figure 4. The seven tables determining the coloring of the edges of K_{9}^{3}.

Example 5. An interval hypergraph is a hypergraph whose vertices are points on a line, and each edge is a set of points in an interval. It is easy to see that such a hypergraph has the coloured edge property. This result is also a special case of a more general theorem which we shall prove in Chapter 5.

Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a simple hypergraph on X : its hereditary closure \hat{H} is the hypergraph on X whose edge set is the set of all non-empty subsets $F \subset X$ such that $F \subset E_{i}$ for at least one index i.

All families $\left(F_{j} / j \in J\right)$ of non-empty subsets of X such that $F \subset F_{j} \Rightarrow F=F_{k}$ for some k are called hereditary: clearly we may write this in a unique way as the hereditary closure of a simple hypergraph H.

Not all hereditary hypergraphs satisfy the coloured edge property (e.g. $\hat{K}_{7}^{3}, \hat{K}_{9}^{4}$, \hat{K}_{10}^{4}). Nonetheless, in 1974 Chvátal made the important conjecture:

Chvátal's Conjecture. Every hereditary hypergraph \hat{H} satisfies $\Delta_{0}(\hat{H})=\Delta(\hat{H})$.
In other words, in every hereditary hypergraph there is always a star amongst maximum intersecting families. We shall show various cases of this conjecture.

Theorem 7 (Berge [1976]). Let H be a star. Then \hat{H} has the coloured edge property.

Proof. Let H be a simple hypergraph on X, all of whose edges contain a vertex x_{0}. Assume the theorem to be true for all hypergraphs having fewer than $m(\hat{H})$ edges. Let A be a maximal subset of X of the form $A=E \cup F$ with $E, F \in \hat{H}$. By the maximality of A, we have $x_{0} \in A$. Set

$$
B=\{E / E \in \hat{H}, E \cup F=A \text { for some } F \in \hat{H}\}
$$

1. Observe that B consists of the sets $E_{\lambda} \in B$ with $x_{0} \in E_{\lambda}$ and of the sets of the form $A-E_{\lambda}$; thus we can colour B with $d_{B}\left(x_{0}\right)$ colours, using the same colour for $E_{\lambda} \in B$ as for $A-E_{\lambda}$. Thus if $\hat{H}=B$ we obtain a colouring of H in a number of colours equal to the degree of x_{0} in B and we are done.
2. Suppose $\hat{H} \neq B$: we shall show that $\hat{H}-B$ is an hereditary hypergraph.

Let $E \in \hat{H}-B$ and $E^{\prime} \subset E$. Since $E^{\prime} \in \hat{H}$ it suffices to show that $E^{\prime} \notin B$. Otherwise, $E^{\prime} \cup F^{\prime}=A$ for an $F^{\prime} \in \hat{H}$. By maximality of A, we have $E \cup F^{\prime}=A$; thus $E \in B$, a contradiction.
3. We now show that the maximal edges of $\hat{H}-B$ contain x_{0}. For, otherwise there exists some $E \in \max (\hat{H}-B)$ with $x_{0} \notin E$. Since H is a star, $E \cup\left\{x_{0}\right\}=E_{0} \in \hat{H}$. Thus $E_{0} \notin \hat{H}-B$ (by maximality of E); thus $E_{0} \in B$, thus $E_{0} \cup F_{0}=A$ for some $F_{0} \in H$. Thus $E \cup\left(F_{0} \cup\left\{x_{0}\right\}\right)=A$ and $E \in B$: contradiction.
4. By the induction hypothesis, the edges of $\hat{H}-B$ can be coloured with $d_{\hat{H}-B}\left(x_{0}\right)$ colours so, by using part 1 above, we may write:

$$
\Delta(\hat{H}) \leq q(\hat{H}) \leq d_{\hat{H}-B}\left(x_{0}\right)+d_{B}\left(x_{0}\right)=d_{\hat{H}}\left(x_{0}\right) \leq \Delta(\hat{H})
$$

Thus equality holds throughout. This shows that x_{0} is a vertex of maximum degree in \hat{H} and that $q(\hat{H})=\Delta(\hat{H})$.
Q.E.D.

The colouring of the edges of the hereditary closure of K_{n}^{r} is related to a well known problem in Operations Research, the "cutting-stock problem", which was solved by Gilmore and Gomory in [1961]; in this problem we wish to cut, from a stock of rods of length n, k_{1} poles of length $1, k_{2}$ of length $2, \ldots, k_{r}$ of length r, and to minimise the total number of rods.

Theorem 8 (Baranyai). Let $r \leq n$ be integers. \hat{K}_{n}^{r} has the coloured edge property if and only if it is possible to solve without waste the cutting stock problem with $k_{i}=\binom{n}{i}$ for $i=1,2, \ldots r$, that is to say, there exists an integer solution $\left(x_{j}^{i}\right)$ to the system

$$
x_{j}^{i} \geq 0
$$

x_{j}^{i} is the number of i-subsets to colour with j,

$$
\begin{array}{ll}
\sum_{i=1}^{r} i x_{j}^{i}=n & (j=1,2, \ldots) \\
\sum_{j} x_{j}^{i}=\binom{n}{i} & (i=1,2, \ldots, r) .
\end{array}
$$

It is clear that this condition is necessary; it is also sufficient, as we shall show later (Corollary to Baranyai's Theorem, §5, Chapter 4).

Just as the r-complete hypergraph K_{n}^{r} generalises the complete graph, we may generalise the complete bipartite graph by the r-partite complete hypergraph $K_{n_{1}, n_{2}, \ldots, n_{r}}^{r}$ defined as follows: let $X^{1}, X^{2}, \ldots, X^{r}$ be disjoint sets with $\left|X^{i}\right|=n_{i}$ for $i=1,2, \ldots, r$.

The vertices are the elements of $X^{1} \cup X^{2} \cup \cdots \cup X^{r}$, and the edges are all sets of the form $\left\{x^{1}, x^{2}, \ldots, x^{r}\right\}$ with $x^{1} \in X^{1}, x^{2} \in X^{2}, \ldots, x^{r} \in X^{r}$.

Theorem 9 (Berge, Johnson [1977]). The r-partite complete hypergraph $K_{n_{1}, n_{2} \ldots, n_{r}}^{r}$ and its hereditary closure have the coloured edge property.

Proof.

1. Let $H=K_{n_{1}, n_{2} \ldots, n_{r}}^{r}$, with $1 \leq n_{1} \leq n_{2} \cdots \leq n_{r}, r \geq 2$. We shall show that we can colour the edges of H with $\Delta(H)=n_{2} n_{3} \ldots n_{r}$ colours. We denote the elements of X^{k} by $x_{1}^{k}=0, x_{2}^{k}=1, \ldots, x_{n_{k}}^{k}=n_{k}-1$. As usual, denote by $[p]_{k}$ the integer $\leq k-1$ congruent to p modulo k. Associate with each edge $\bar{x}=x^{1} x^{2} \ldots x^{r}$ of H the ($r-1$)-tuple

$$
\xi(\bar{x})=\left(\left[x^{2}+x^{1}\right]_{n_{2}}\left[x^{3}+x^{1}\right]_{n_{g^{\prime}}} \ldots,\left[x^{r}+x^{1}\right]_{n_{r}}\right)
$$

If two distinct edges $\bar{x}=x^{1} x^{2} \ldots x^{r}$ and $\bar{y}=y^{1} y^{2} \ldots y^{r}$ intersect, then one of the two following cases occurs:
(i) $x^{1}=y^{1}$ and then there is an $i \geq 2$ with $x^{i} \neq y^{i}$, so

$$
\left[x^{i}+x^{1}\right]_{n_{i}} \neq\left[y^{i}+y^{1}\right]_{n_{i}} \text { and } \xi(\bar{x}) \neq \xi(\bar{y}) ;
$$

(ii) $x^{1} \neq y^{1}$ and then there is an $i \geq 2$ with $x^{i}=y^{i}$, so

$$
\left[x^{i}+x^{1}\right]_{n_{i}} \neq\left[y^{i}+y^{1}\right]_{n_{i}} \text { and } \xi(\bar{x}) \neq \xi(\bar{y}) .
$$

We may consider the map $\bar{x} \rightarrow \xi(\bar{x})$ as a colouring of the edges, and the number of distinct colours used is at most $n_{2} n_{3} \cdots n_{r}=\Delta\left(K_{n_{1}, n_{2}, \ldots, n_{r}}^{r}\right)$.

20 Hypergraphs

2. We shall show that \hat{H} can be coloured with $\Delta(\hat{H})$ colours. For $i=1,2, \ldots, n$, consider an additional vertex a^{i}, and put $Y^{i}=X^{i} \cup\left\{a^{i}\right\}$; consider the hypergraph $H^{\prime}=K_{n_{1}+1, n_{2}+1, \ldots, n_{r}+1}^{r}$ determined by the classes $Y^{i},\left|Y^{i}\right|=n_{i}+1$.

For each edge E of \hat{H} there is an edge F of H^{\prime} defined by $F=E \cup\left\{a^{i} / E \cap X^{i}=\varnothing\right\}$.

Thus there is a bijection between the edges of \hat{H} and those of H^{\prime}. As we have shown that the r-partite complete hypergraph has the coloured edge property, we can colour the edges of H^{\prime} with

$$
\Delta\left(H^{\prime}\right)=\left(n_{2}+1\right)\left(n_{3}+1\right) \ldots\left(n_{r}+1\right)
$$

colours. If we colour each edge E of \hat{H} with the colour of the corresponding edge F of H^{\prime}, it is clear that two edges of \hat{H} which intersect have different colours. Hence

$$
q(\hat{H}) \leq q\left(H^{\prime}\right)=\Delta\left(H^{\prime}\right)=\Delta(\hat{H}) \leq q(\hat{H})
$$

Thus $q(\hat{H})=\Delta(\hat{H})$ and the hypergraph \hat{H} has the coloured edge property.
Q.E.D.

The main hypergraphs H for which it has been shown that $\Delta_{0}(\hat{H})=\Delta(\hat{H})$ are the following:

1. H is a star (Schönheim [1973]). In this case, Theorem 7 shows that \hat{H} has a stronger property, the coloured edge property.
2. H is 2-uniform (Vizing).
3. H is 3-uniform (Sterboul [1974]). In this case it can also be shown that the maximum intersecting families of \hat{H} have one of the following structures:

- $\quad \hat{H}(a)(\mathrm{star}) ;$
- $\quad\{a b, a c, b c, a b c\} ;$
- $\quad\{a b, a c, a d, a b c, a b d, a c d, b c d\}$
- $\left\{a b x_{1}, a b x_{2}, \ldots a b x_{p}, a c x_{1}, \ldots a c x_{p}, b c x_{1}, \ldots b c x_{p}, a b, a c, b c, a b c\right\}$.

4. H is linear.

If H is uniform, see Sterboul [1874];

For all H, see Stein [1983].
5. H is of degree $\Delta(H)=2$ (Stein, Schönheim [1978], Wang and Wang [1983]).
6. H is an r-partite complete hypergraph. In this case Theorem 9 shows that \hat{H} has the stronger coloured edge property.
7. H is the complete hypergraph K_{n}^{r} with $r \leq \frac{n}{2}$ (from Theorem 5).

Example 4 suggests the following conjecture:
Conjecture. If H is linear then \hat{H} has the coloured edge property.
This conjecture is true if H is a graph (Vizing); if H is a projective plane on 7 points $1,2, . ., 7$, we can colour the edges of \hat{H} with $\Delta(\hat{H})=10$ colours in the following way:
colour 1: 123, 45, 6, 7 colour 6: 345, 12, 67
colour 2: 147, 56, 23 colour 7: 367, 14, 25
colour 3: $156,34,27$ colour 8: $17,36,24,5$
colour 4: 246, 37, 15 colour 9: 16, 35, 47, 2
colour 5: 257, 13, 46 colour 10: 57, 26, 1, 3, 4.

5. The Helly property

Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a simple hypergraph. We say that H has the Helly property if every intersecting family of H is a star, i.e. for $J \subset\{1,2, \ldots, m\}$,

$$
E_{j} \cap E_{k} \neq \varnothing \quad(j, k \in J)
$$

implies

$$
\bigcap_{j \in J} E_{j} \neq \varnothing
$$

Hence a graph has the Helly property if and only if its is triangle-free; hypergraphs with the Helly property have also other properties which generalise those of triangle free graphs.

Example 1. Let H be an interval hypergraph: its vertices are points on a line, and its edges are intervals of points. A theorem of Helly shows that H has the Helly property.

Example 2 (Algebra). Let (X, \leq be a lattice, i.e. an ordered set such that for each pair (a, b) there exists a least upper bound $a \vee b$ and a greatest lower bound $a \wedge b$.

22 Hypergraphs

Let H be a family of intervals of the form

$$
E(a, b)=\{x / a \leq x \leq b\} .
$$

Then it can be shown that H has the Helly property. If X is the set of natural numbers, and if the edges of H are arithmetic progressions, the Helly property is known as the "Chinese Remainder Theorem" (cf. Ore [1952]).

We shall say that a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ is k-Helly if for every set $J \subset\{1,2, \ldots, m\}$, the following two conditions are equivalent:
$\left(D_{k}\right) \quad I \subset J,|I| \leq k$, implies $\bigcap_{i \in I} E_{i} \neq \varnothing$;
(D) $\quad \bigcap_{j \in J} E_{j} \neq \varnothing$

Clearly if J satisfies (D) then it also satisfies $\left(D_{k}\right)$; if H is not k-Helly there are also sets J which satisfy $\left(D_{k}\right)$ but not (D).

Clearly, a hypergraph is 2-Helly if and only if it satisfies the Helly property. Note also that if a hypergraph is k-Helly, we have $\left(D_{k+1}\right) \Rightarrow\left(D_{k}\right) \Rightarrow(D)$; thus a $(k+1)$-Helly hypergraph is also k-Helly.

Example. Let H be a hypergraph such that if each vertex is a point of $\boldsymbol{R}^{\boldsymbol{d}}$ and each edge is the set of points contained in a convex set: an interval hypergraph corresponds to the case $d=1$. A theorem of Helly states that such a hypergraph in \boldsymbol{R}^{d} is $(d+1)$ Helly.

Theorem 10 (Berge, Duchet [1975]). A hypergraph H is k-Helly if and only if for every set A of vertices with $|A|=k+1$, the intersection of the edges E_{j} with $\left|E_{j} \cap A\right| \geq k$ is non-empty.

Proof.

1. Let H be a k-Helly hypergraph on X; let A be a subset of X with $|A|=k+1$. Set

$$
J=\left\{j /\left|E_{j} \cap A\right| \geq k\right\}
$$

We shall show that $\bigcap_{j \in J} E_{j} \neq \varnothing$.

Case 1. $|J| \leq k$. We bave $\cap_{j \in J} E_{j} \neq \varnothing$ since otherwise the bipartite incidence graph G of the vertices of A versus the edges $\left(E_{j} / j \in J\right)$ satisfies

$$
|J| k \leq \sum_{j \in J} d_{G}(j)=m(G) \leq(|J|-1)|A|=(|J|-1)(k+1)
$$

which implies $|J| \geq k+1$: a contradiction.
Case 2. $|J| \geq k+1$. In this case each set $I \subset J$ with $|I| \leq k$ satisfies $\bigcap_{i \in I} E_{i} \neq \varnothing$ (from Case 1); thus J satisfies $\left(D_{k}\right)$ and hence (D). Thus

$$
\bigcap_{j \in J} E_{j} \neq \varnothing
$$

2. Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph such that for each $A \subset X$ with $|A|=k+1$, the family $\left(E_{j} /\left|E_{j} \cap A\right| \geq k\right)$ has a non-empty intersection. We shall show that H is k-Helly, that is for every $J \subset\{1,2, \ldots, m\},\left(D_{k}\right) \Rightarrow(D)$.

The proof is by induction on $|J|$. Clearly this is true for $|J| \leq k$, so assume $|J|>k$; let $j_{1}, j_{2}, \ldots, j_{k+1}$ be distinct elements of J. Then the condition $\left(D_{k}\right)$ implies

$$
\left(\forall I \subset J-\left\{j_{\lambda}\right\},|I| \leq k\right): \bigcap_{i \in I} E_{j} \neq \varnothing
$$

By the induction hypothesis this implies

$$
\cap_{j \in J-\left\{j_{\lambda}\right\}} E_{j} \neq \varnothing
$$

Let a_{λ} be an element in this intersection. The elements $a_{1}, a_{2}, \ldots, a_{k+1}$ are different (otherwise we are done). For $A=\left\{a_{1}, a_{2}, \ldots, a_{k+1}\right\}$,

$$
\left|E_{j} \cap A\right| \geq k \quad(j \in J)
$$

whence

$$
\bigcap_{j \in J} E_{j} \neq \varnothing
$$

Q.E.D.

Corollary. A hypergraph H has the Helly property if and only if for any three vertices a_{1}, a_{2}, a_{3}, the family of edges containing at least two of the vertices a_{i} has a non-empty intersection.

Application: Family of subtrees of a tree. Let G be an acyclic connected graph on X, i.e. G is a tree. Consider a family H of subsets of X which induce a subtree of
G. We shall show, with the help of the preceding corollary, that H has the Helly property. To see this, consider three vertices a, b, c of G. If $\mu[x, y]$ denotes the unique path in the tree G connecting the vertices x and y it is easy to see that the three paths $\mu[a, b], \mu[b, c]$ and $\mu[c, a]$ have a common vertex x_{0} (otherwise G would have a cycle). This vertex x_{0} belongs to every edge of H containing two of the points a, b, c. Thus H has the Helly property.
(Note that if G is a path P_{n} we obtain Helly's Theorem).
Theorem 11 (Tuza [1984]). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a simple k-Helly hypergraph of order n. If $\min _{j}\left|E_{j}\right| \geq k+1$ then

$$
\sum_{j=1}^{m}\binom{n-1}{\left|E_{j}\right|-1}^{-1} \leq 1
$$

(*) Proof.

1. We shall show first that every edge E_{j} contains a vertex a_{j} such that $E_{j}-\left\{a_{j}\right\}$ is not contained in any edge other than E_{j}. Indeed, if this is not the case, there exists an edge $E_{0}=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ with $r \geq k+1$, such that, say, $E_{0}-\left\{a_{i}\right\} \subset E_{i}$ for $i=1,2, \ldots, r$. Since H is a simple hypergraph, we have $E_{0} \cap E_{i}=E_{0}-\left\{a_{i}\right\}$ for $i=1,2, \ldots, r$. Thus

$$
\bigcap_{j=0}^{\tau} E_{j}=\varnothing
$$

However, the intersection of $r-1$ of the sets $E_{0}, E_{1}, \ldots, E_{r}$ is non-empty. Since $r-1 \geq k$, and since H is k-Helly, we have also:

$$
\bigcap_{j=1}^{r} E_{j} \neq \varnothing .
$$

A contradiction follows.
2. Thus every edge E_{j} contains a vertex a_{j} such that

$$
\left(E_{j}-\left\{a_{j}\right\}\right) \cap\left(X-E_{i}\right) \neq \varnothing \quad \text { for all } i \neq j
$$

Set

$$
\begin{aligned}
E_{j}^{\prime} & =E_{j}-\left\{a_{j}\right\} \\
F_{j}^{\prime} & =X-E_{j}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& E_{j}^{\prime} \cap F_{j}^{\prime}=\varnothing \\
& E_{j}^{\prime} \cap F_{i}^{\prime} \neq \varnothing \text { if } i \neq j
\end{aligned}
$$

We may now apply Theorem 6 and

$$
\sum_{j=1}^{m}\binom{\left|X-E_{j}\right|+\left|E_{j}\right|-1}{\left|E_{j}\right|-1} \leq 1,
$$

The theorem follows.

Corollary (Bollobás, Duchet [1979]). Let H be a simple k-Helly hypergraph of order n with $\min _{j}\left|E_{j}\right| \geq k+2$ and $\max _{j}\left|E_{j}\right|=r \leq \frac{n}{2}$. Then

$$
\begin{equation*}
m(H) \leq\binom{ n-1}{r-1} . \tag{1}
\end{equation*}
$$

Proof. Every $E \in H$ satisfies:

$$
\binom{n-1}{|E|-1} \leq\binom{ n-1}{r-1} .
$$

Hence

$$
m(H)\binom{n-1}{r-1}^{-1} \leq \sum_{E \in H}\binom{n-1}{|E|-1}^{-1} \leq 1 .
$$

Inequality (1) follows.

For a hypergraph H with the Helly property, more precise results can be proved:

Theorem 13 (Bollobás, Duchet [1983]). Let H be a simple hypergraph of rank $r \geq 3$, $r \leq \frac{n}{2}$, with the Helly property. Then

$$
\begin{equation*}
m(H) \leq\binom{ n-1}{r-1} \tag{1}
\end{equation*}
$$

Further, equality holds in (1) if and only if H is a star of K_{n}^{r}.
Theorem 14 (Bollobás, Duchet [1983]). Let H be a simple hypergraph of order $n \geq 5$ with the Helly property. Then

$$
m(H) \leq\binom{ n-1}{[n / 2]}
$$

Further, equality holds in $\left(1^{\prime}\right)$ if and only if one of the following is true:
(i) $n=2 h$ is even and H is a star of K_{n}^{h};
(ii) $n=2 h+1$ is odd ≥ 7 and H is a star of K_{n}^{h+1};
(iii) $n=5$ and H is a star of K_{5}^{3}, or is the bipartite complete graph $K_{2,3}$ with one class of 2 vertices and one of 3 vertices.

6. Section of a hypergraph and the Kruskal-Katona Theorem

Let H be a simple hypergraph on X of rank r, and let $k \leq r$ be a positive integer. Define the k-section of H to be a hypergraph $[H]_{k}$ whose edges are the sets $F \subset X$ satisfying either $|F|=k$, and $F \subseteq E$ for some $E \in H$; or $|F|<k$ and $F=E$ for some $E \in H$.

Observe that $[H]_{k}$ is a simple hypergraph on X. Further its rank is k.
For $k=2$, the 2 -section $[H]_{2}$ is thus a graph; if H contains no loops then $[H]_{2}$ is a simple graph which is obtained by joining two vertices of X if they belong to the same edge of H. If H is a simple r-uniform hypergraph with m edges, what can we say about the number of edges of $[H]_{r-1}$?

The best possible lower bounds for all m were obtained independently by Kruskal [1963] and Katona [1968]. The proof was simplified by Daykin [1976], and that which we now give, shorter still, is due to Frankl [1984]. We need two preliminary lemmas.

Lemma 1. Let m and r be positive integers. Then there exist integers $a_{r}, a_{r-1}, \ldots, a_{s}$ such that

$$
\begin{equation*}
m=\binom{a_{r}}{r}+\binom{a_{r-1}}{r-1}+\cdots+\binom{a_{s}}{s} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a_{r}>a_{r-1}>\cdots>a_{s} \geq s \geq 1 \tag{2}
\end{equation*}
$$

Further the a_{i} 's are defined uniquely by (1) and (2). In particular, a_{r} is the largest integer such that

$$
m-\binom{a_{r}}{r} \geq 0
$$

(*) Proof (by induction on r). For $r=1$, we have $1=r \geq s \geq 1$ so $s=1$ and $a_{s}=m$; thus the decomposition (1) exists and is unique. Assume now the existence and uniqueness of decomposition (1) for $r-1$. Let a_{τ} be the largest integer such that $m-\binom{a_{r}}{r} \geq 0$. Then by the induction hypothesis,

$$
\begin{aligned}
& m-\binom{a_{r}}{r}=\binom{a_{r-1}}{r-1}+\cdots+\binom{a_{s}}{s} \\
& a_{r-1}>a_{r-2}>\cdots>a_{s} \geq s
\end{aligned}
$$

We must have $a_{r}>a_{r-1}$ since otherwise we could write

$$
m \geq\binom{ a_{r}}{r}+\binom{a_{r-1}}{r-1} \geq\binom{ a_{r}}{r}+\binom{a_{r}}{r-1}=\binom{a_{r}+1}{r}
$$

This contradicts the definition of a_{r}. Hence the existence of decomposition (1) is proven.

To show uniqueness, suppose there exist two distinct decompositions of m :

$$
m=\binom{a_{r}}{r}+\cdots+\binom{a_{s}}{s}=\binom{b_{r}}{r}+\cdots+\binom{b_{s}}{s}
$$

Observe that

$$
m \leq\binom{ a_{r}}{r}+\binom{a_{r}-1}{r-1}+\cdots\binom{a_{r}-r-1}{r}=\binom{a_{r}+1}{r}
$$

If $a_{r}<b_{r}$ then

$$
m \leq\binom{ a_{r}+1}{r} \leq\binom{ b_{r}}{r} \leq m
$$

This implies $m=\binom{a_{r}+1}{r}$ contradicting the definition of r.
Hence $a_{r}=b_{r}$, and as the decomposition of $m-\binom{a_{r}}{r}=m-\binom{b_{r}}{r}$ is unique (induction hypothesis) the two decompositions of m are identical.

Lemma 2 (Frankl [1984]). Let H be an r-uniform hypergraph on X and let $x_{1} \in X$. There exists an r-uniform hypergraph H^{\prime} on X with $m\left(H^{\prime}\right)=m(H)$, $m\left(\left[H^{\prime}\right]_{r-1}\right) \leq m\left([H]_{r-1}\right)$ and satisfying

28 Hypergraphs

$$
F \in\left[H^{\prime}-H^{\prime}\left(x_{1}\right)\right]_{r-1} \Rightarrow F \cup\left\{x_{1}\right\} \in H^{\prime} .
$$

(*) Proof. For a vertex $x \neq x_{1}$, put

$$
\sigma_{x} E= \begin{cases}(E-\{x\}) \cup\left\{x_{1}\right\} & \text { if } x \in E, x_{1} \notin E \\ E & \text { otherwise }\end{cases}
$$

Put $\sigma_{x} H=\left\{\sigma_{x} E / E \in H\right\}$. It is easy to see that $\left[\sigma_{x} H\right]_{r-1} \subset \sigma_{x}[H]_{r-1}$. By repeating the operation σ_{y} on $\sigma_{x} H$ as many times as necessary we get a hypergraph H^{\prime} with $m\left(H^{\prime}\right)=m(H), m\left(\left[H^{\prime}\right]_{r-1} \leq m\left([H]_{r}\right)\right.$, and $\sigma_{x} H^{\prime}=H^{\prime}$ for all $x \neq x_{1}$.

Theorem 14 (Kruskal, Katona). Let H be an r-uniform hypergraph with

$$
\begin{aligned}
& m(H)=m=\binom{a_{r}}{r}+\binom{a_{r}-1}{r-1}+\cdots+\binom{a_{s}}{s} \\
& a_{r}>a_{r-1}>\cdots>a_{s} \geq s \geq 1 .
\end{aligned}
$$

Then

$$
m\left([H]_{r-1}\right) \geq\binom{ a_{r}}{r-1}+\binom{a_{r-1}}{r-2}+\cdots+\binom{a_{s}}{s-1}
$$

(*) Proof (by induction on r and m).

1. We may assume that H satisfies

$$
\begin{equation*}
F \in\left[H-H\left(x_{1}\right)\right]_{r-1} \Rightarrow F \cup\left\{x_{1}\right\} \in H \tag{1}
\end{equation*}
$$

(simply by replacing H by the hypergraph H^{\prime} defined in Lemma 2). Set $H_{1}=\left(E-\left\{x_{1}\right\} / E \in H\left(x_{1}\right)\right)$. Then

$$
\begin{equation*}
m\left([H]_{r-1}\right) \geq m\left(H_{1}\right)+m\left(\left[H_{1}\right]_{r-2}\right) \tag{2}
\end{equation*}
$$

2. The theorem holds trivially for $r=1$ or $m=1$; proceed now by induction on r and on m.

Suppose first
(3)

$$
m\left(H_{1}\right) \geq\binom{ a_{r-1}}{r-1}+\cdots+\binom{a_{s}-1}{s-1}
$$

By applying the induction hypothesis to the hypergraph H_{1} (less some edges if the inequality is strict), we obtain

$$
m\left(\left[H_{1}\right]_{r-2}\right) \geq\binom{ a_{r}-1}{r-2}+\cdots+\binom{a_{s}-1}{s-2}
$$

Thus, from (2),

$$
\begin{aligned}
m\left([H]_{r-1}\right) & \geq m\left(H_{1}\right)+m\left(\left[H_{1}\right]_{r-2}\right) \\
& \geq\binom{ a_{r}-1}{r-1}+\cdots+\binom{a_{s}-1}{s-1}+\binom{a_{r}-1}{r-2}+\cdots+\binom{a_{s}-1}{s-2} \\
& =\binom{a_{r}}{r-1}+\cdots+\binom{a_{s}}{s-1}
\end{aligned}
$$

which is what we had to show.
Suppose now that

$$
\begin{equation*}
m\left(H_{1}\right)<\binom{a_{r}-1}{r-1}+\binom{a_{r-1}-1}{r-2}+\cdots+\binom{a_{s}-1}{s-1} \tag{4}
\end{equation*}
$$

As a consequence we can write

$$
\begin{aligned}
m\left(H-H\left(x_{1}\right)\right) & =m(H)-m\left(H_{1}\right)>\binom{a_{r}}{r}+\cdots+\binom{a_{s}}{s}-\binom{a_{r}-1}{r-1}-\cdots-\binom{a_{s}-1}{s-1} \\
& =\binom{a_{r}-1}{r-1}+\binom{a_{r-1}-1}{r-1}+\cdots+\binom{a_{s}-1}{s}
\end{aligned}
$$

From (1), and applying the induction hypothesis on m to $H-H\left(x_{1}\right)$,

$$
m\left(H_{1}\right) \geq m\left(\left[H-H\left(x_{1}\right)\right]_{r-1}\right) \geq\binom{ a_{r}-1}{r-1}+\binom{a_{r-1}-1}{r-2}+\cdots+\binom{a_{s}-1}{s-1}
$$

which contradicts (4).

Corollary. Let H be an r-uniform hypergraph and let k be an integer with $r>k \geq 2$. If a is the largest integer such that $m(H) \geq\binom{ a}{r}$ then

$$
m\left([H]_{k}\right) \geq\binom{ a}{k}
$$

Proof. Let H_{1} be a partial hypergraph of H with $m\left(H_{1}\right)=\binom{a}{r}$. From Theorem 14,

$$
m\left(\left[H_{1}\right]_{r-1}\right) \geq\binom{ a}{r-1}
$$

Let H_{2} be a partial hypergraph of $\left[H_{1}\right]_{r-1}$ with $m\left(H_{2}\right)=(\underset{r-1}{a})$. By Theorem 14,

$$
m\left(\left[H_{2}\right]_{r-2}\right) \geq\binom{ a}{r-2},
$$

etc. Finally, $m\left(\left[H_{r-k}\right]_{k}\right) \geq\binom{ a}{k}$. Since $[H]_{k} \supset\left[H_{r-k}\right]_{k}$ we also have

$$
m\left([H]_{k}\right) \geq\binom{ a}{k}
$$

Q.E.D.

7. Conformal Hypergraphs

We say that a hypergraph H is conformal if all the maximal cliques of the graph $[H]_{2}$ are edges of H. If H is simple, it is conformal if and only if the edges of H are the maximal cliques of a graph.

More generally, consider an integer $k \geq 2$. Every edge A of a hypergraph H satisfies the property: the edges of $[H]_{k}$ contained in A constitute a k-complete hypergraph. If every set $A \subset X$ maximal with this property is an edge of H the hypergraph is said to be k-conformal. Hence a hypergraph is conformal if and only if it is 2 -conformal.

Proposition. A hypergraph H is k-conformal if and only if for every set $A \subset X$ the following two conditions are equivalent:
$\left(C_{k}\right) \quad$ every $S \subset A$ with $|S| \leq k$ is contained in some edge of H,
(C) the set A is contained in an edge of H.

Observe that (C) always implies $\left(C_{k}\right)$.

Lemma. A hypergraph is k-conformal if and only if its dual is k-Helly.

Proof. In the hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ the set $A=\left\{x_{j} / j \in J\right\}$ satisfies the condition $\left(C_{k}\right)$ if and only if in the dual hypergraph $H^{*}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ the set J satisfies
$\left(D_{k}\right) \quad I \subset J,|I| \leq k$ implies $\bigcap_{i \in I} X_{i} \neq \varnothing$

Similarly, the set A satisfies Condition (C) if and only if in the dual hypergraph H^{*}, the set J satifies

$$
\begin{equation*}
\bigcap_{j \in J} X_{j} \neq \varnothing \tag{D}
\end{equation*}
$$

Thus $\left(C_{k}\right)$ is equivalent to (C) if and only if $\left(D_{k}\right)$ is equivalent to (D).

Theorem 15. A simple hypergraph H is k-conformal if and only if for each partial hypergraph $H^{\prime} \subset H$ having $k+1$ edges, the set $\left\{x / x \in X, d_{H^{\prime}}(x) \geq k\right\}$ is contained in an edge of H.

Proof. From Theorem 10, the dual hypergraph $H^{*}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is k-Helly if and only if for a set $F=\left\{e_{j} / j \in J\right\}$ with $|J|=k+1$, the intersection of the X_{i} with $\left|X_{i} \cap J\right| \geq k$ is non-empty. Or, again, for each $H^{\prime}=\left\{E_{j} / j \in F\right\}$ with $|J|=k+1$ there exists an edge of H which contains the set

$$
\left\{x / d_{H^{\prime}}(x) \geq k\right\}
$$

Corollary (Gilmore's Theorem). A necessary and sufficient condition for a hypergraph H to be conformal is that for any three edges E_{1}, E_{2}, E_{3}, the hypergraph H has an edge containing the set

$$
\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{3}\right) \cup\left(E_{2} \cap E_{3}\right)
$$

It suffices to put $k=2$ in the statement of Theorem 15.

8. Representative Graphs

Given a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on X, its representative graph, or linegraph $L(H)$ is a graph whose vertices are points $e_{1}, e_{2}, \ldots, e_{m}$ representing the edges of H, the vertices e_{i}, e_{j} being adjacent if and only if $E_{i} \cap E_{j} \neq \varnothing$.

Example 1. The representative graph of a simple graph G was characterised by Beineke [1968]: a graph is an $L(G)$ if and only if it does not contain as an induced subgraph any of the graphs $G_{1}, G_{2}, \ldots, G_{9}$ shown in Figure 5.
Example 2. The representative graph of a multigraph G was characterised by Bermond and Meyer [1973]: a graph is an $L(G)$ if and only if it does not contain any of the graphs $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{7}^{\prime}$ shown in Figure 6.

Figure 5. The 9 forbidden configurations for the representative graph of a simple graph.

Example 3. The representative graph of a multigraph without triangles or loops is characterised by: each vertex appears in at most 2 maximal cliques.

Example 4. The representative graph of a bipartite multigraph is characterised by: each vertex appears in at most two maximal cliques, and every elementary odd cycle contains two sides of a triangle.

Example 5. If H is a family of intervals on a line, there is a characterisation of $L(H)$ due to Gilmore and Hoffman (cf. Graphs, Chapter 16, Theorem 12) : it is a triangulated complement of a comparability graph. This concept has a simple interpretation: if m individuals were present during various intervals of time in a meeting room, a detective who demands of each person whom he has met can trace the "graph of meetings": if nobody lies, the graph represents a family of intervals.

We do not know any similar characterisation for the representative graph of a family of convex sets in the plane, but we do know that every graph represents convex sets in the 3 -dimensional space (Wegner [1885]).

Figure 6. The 7 forbidden configurations for the representative graph of a multigraph.

Proposition 1. The representative graph of a hypergraph H is the 2-section $\left[H^{*}\right]_{2}$. Further, the following two properties are equivalent:
(i) H satisfies the Helly property and G is the representative graph of H;
(ii) the maximal edges of H^{*} are the maximal cliques of G.

Clearly the graph $\left[H^{*}\right]_{2}$ is isomorphic to $L(H)$, but $\left[H^{*}\right]_{2}$ can have loops if H^{*} has loops.

For the other part, if H has the Helly property, H^{*} is conformal; thus (i) implies that $G=\left[H^{*}\right]_{2}$ has as cliques the maximal edges of H^{*}. Similarly (ii) implies (i).

Observe that if $G=L(H)$ and if H does not satisfy the Helly property it can happen that H^{*} does not contain the maximal cliques of $L(H)$. For example, if H is the hypergraph H_{2} in Figure 8, $L(H)$ is the graph G in Figure 8; the maximal cliques of G are not the edges of H^{*}.

Proposition 2. Every graph is the representative graph of a linear hypergraph.
A simple graph G on $\left\{x_{1}, \ldots, x_{n}\right\}$ is the representative graph of a linear hypergraph $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ if we take for X_{i} the set of edges of G adjacent to the vertex x_{i}.

Proposition 3. A graph G is the representative graph of an r-uniform hypergraph if and only if G contains a family C of cliques with the following properties:
(II_{0}) each clique of \mathcal{C} is of cardinality $\geq \mathbf{2}$;
$\left(\mathrm{II}_{1}\right) \quad$ every edge of G is contained in at least one clique of C;
$\left(\Pi_{2}\right) \quad$ each vertex of G appears in at most r cliques of C;
$\left(\Pi_{3}\right) \quad$ for each vertex x which is covered by exactly cliques of \mathcal{C}, the intersection of these cliques is $\{x\}$.
Indeed, consider the r-regular hypergraph \mathcal{C}^{\prime} obtained from \mathcal{C} by adjoining loops, which is always possible because of $\left(\Pi_{2}\right)$. Let H be the dual of the hypergraph \mathcal{C}^{\prime}. By $\left(\Pi_{1}\right)$ we have $L(H)=\left[H^{*}\right]_{2}=[\mathcal{C}]=G$. By $\left(\Pi_{3}\right)$ the hypergraph H has no repeated edges: it is thus an r-uniform hypergraph.

Proposition 4. A graph G is the representative graph of a linear r-uniform hypergraph if and only if, in G there exists a family C of cliques satisfying $\left.\left(\Pi_{0}\right), \Pi_{2}\right)$ and
$\left(\Pi_{1}^{\prime}\right) \quad$ each edge is contained in exactly one clique of \mathcal{C}.

Let C^{\prime} be the r-regular hypergraph obtained from \mathcal{C} by adding loops, which is possible from $\left(\Pi_{2}\right)$. Let H be the dual hypergraph of \mathcal{C}^{\prime}. From $\left(\Pi_{1}^{\prime}\right), L(H)=G$, the hypergraph \mathcal{C} is linear and hence its dual H is linear (Proposition 3, §3).

One can ask if it is possible to characterise $L(H)$ by a finite family of forbidden subgraphs in the case $r \neq 2$. In fact, Nickel, then Gardner, then Bermond, Germa, Sotteau [1977] exhibited an infinite family of forbidden configurations for a representative graph of a 3 -uniform hypergraph.

The graphs $G_{1}(t), G_{2}(t), G_{3}(t)$ of Figure 7 constitute infinite families of minimal excluded configurations for the representative graph of a 3 -uniform linear hypergraph.

Nonetheless, it can be shown that

Theorem 16 (Naik, Rao, Shrikhande, Singhi [1982]). There exists a finite family \mathbf{F}_{3} of graphs such that every graph G with minimum degree ≥ 69 is the representative

Figure 7
graph of a linear 3-uniform hypergraph if and only if G contains no member of \mathcal{F}_{3} as an induced subgraph.

More generally, they show the existence of a cubic polynomial $f(k)$ with the property that for each k there exists a finite family \mathcal{F}_{k} of forbidden graphs such that every graph G of minimum degree $\geq f(k)$ is the representative graph of a linear k-uniform hypergraph if and only if G does not contain a member of \boldsymbol{F}_{k} as an induced subgraph.

By way of example, we can check the preceding propositions on the graph G of Figure 8 which is, at one and the same time, the representative graph of the hypergraphs H_{1}, H_{2} and H_{3} of Figure 8.

Figure 8

We shall denote by $\Omega(G)$ the minimum order of those hypergraphs H with $G=L(H)$; for example, for the graph G in Figure $8, \Omega(G)=2$ since $G=L\left(H_{1}\right)$.

The determination of $\Omega(G)$ brings us back to the determination of the chromatic number by the following result.

Lemma. Let G be a graph on $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ without isolated vertices, and let \bar{G} be the graph whose vertices correspond to the edges of G, the vertices corresponding to the edges $[a, b]$ and $[x, y]$ of G being adjacent if and only if $\{a, b, x, y\}$ is not a clique in G (i.e. at least one of $a x, a y, b x, b y$ is not an edge of G). Then the minimum order $\Omega(G)$ of the hypergraphs for which G is the representative graph is equal to the chromatic
number of \bar{G}.

Proof.

1. We shall show that to each q-colouring $\left(\bar{S}_{1}, \ldots, \bar{S}_{q}\right)$ of the vertices of \bar{G} with q colours we may associate a hypergraph $H=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of order q such that $G=L(H)$.

Indeed, the set \bar{S}_{i} of vertices of \bar{G} coloured with colour i is stable; if $[a, b]$ is an edge of G belonging to \bar{S}_{i}, the vertex a is adjacent to each end of any edge in \bar{S}_{i}. The ends of the edges of \bar{S}_{i} thus generate a clique E_{i} of G. The hypergraph $\mathcal{C}=\left(E_{1}, E_{2}, \ldots, E_{q}\right)$ is such that each edge and each vertex of G is covered by at least one of the E_{i}. Thus the dual hypergraph $H=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of \mathcal{C} satisfies $L(H)=[C]_{2}=G$, and H is of order q.
2. We shall show that to each hypergraph $H=\left(X_{1}, \ldots, X_{n}\right)$ of order q for which $G=L(H)$, we may associate a q-colouring ($S_{1}, S_{2}, \ldots, S_{q}$) of the vertices of \bar{G}. Indeed, denote by E^{k} the set of vertices of H which belong to exactly k of the sets X_{i}. We have

$$
q=\left|E^{1}\right|+\left|E^{2}\right|+\left|E^{3}\right|+\cdots
$$

To each $e \in E^{1}$, which belongs to exactly one set $X_{i(e)}$, associate the 1-clique $\left\{x_{i(e)}\right\}$; to each $e \in E^{2}$, which belongs to exactly two sets $X_{i(e)}$ and $X_{j(e)}$, associate the 2-clique $\left\{x_{i(e)}, x_{j(e)}\right\}$ of G; to each e of E^{3} belonging to exactly three sets $X_{i(e)}, X_{j(e)}, X_{k(e)}$ associate the 3 -elique $\left\{x_{i(e)}, x_{j(e)}, x_{k(e)}\right\}$ of the graph G; etc.

We have thus defined in G a family ($E_{1}, E_{2}, \ldots, E_{q}$) of q cliques and it is evident that each edge $\left[x_{i}, x_{j}\right]$ of G belong to at least one of these (since $X_{i} \cap X_{j}$ contains a point of H). Denote by \bar{S}_{1} the set of edges of G contained in the clique E_{1}, by \bar{S}_{2} the set of edges of G contained in E_{2} which are not already contained in E_{1}; etc. The family $\left(\bar{S}_{1}, \bar{S}_{2}, \ldots, \bar{S}_{q}\right)$ is then a q-colouring the vertices of \bar{G}.

It follows from points 1 and 2 that the chromatic number of \bar{G} is equal to the least order of a hypergraph H such that $G=L(H)$.

Theorem 17. Let G be a simple graph without isolated vertices, without triangles, with m edges; the minimum order of the hypergraphs for which G is the representative graph is $\Omega(G)=m$.

38 Hypergraphs

Indeed, the graph \bar{G} defined in the lemma is the clique K_{m}; the minimum order $\Omega(G)$ is thus m, the chromatic number of \bar{G}.

Theorem 18 (Erdös, Goodman, Pósa [1966]). Let G be a graph of order n without isolated points; then

$$
\begin{equation*}
\Omega(G) \leq\left[n^{2} / 4\right] . \tag{1}
\end{equation*}
$$

Further, for each n, this bound is the best possible.

Proof.

1. Indeed, we know (cf. Graphs, Theorem 5, Chapter 1) that we can always cover the edges and the vertices of a graph G by a family of 2 -cliques and 3-cliques $\mathcal{C}=\left(E_{1}, E_{2}, \ldots, E_{k}\right)$ with $k \leq\left[\frac{n^{2}}{4}\right] ;$ since $G=[C]_{2}$ is the representative graph of the dual of the hypergraph \mathcal{C}, and since this dual is of order k, we have

$$
\Omega(G) \leq k \leq\left[\frac{n^{2}}{4}\right]
$$

which gives us (1).
2. We show that for every n, we can have equality in (1).

If $n=2 k$ is even, take for G the complete bipartite graph $K_{k, k}$; since it has no triangles or isolated vertices we have, from Theorem 17

$$
\Omega\left(K_{k, k}\right)=k^{2}=\frac{n^{2}}{4}=\left[\frac{n^{2}}{4}\right] .
$$

If $n=2 k+1$ is odd, take for the G bipartite complete graph $K_{k, k+1}$ which gives

$$
\begin{aligned}
\Omega\left(K_{k, k+1}\right) & =k(k+1)=\frac{(n-1)}{2} \frac{(n+1)}{2}=\frac{n^{2}-1}{4} \\
& =\left[\frac{n^{2}}{4}\right] .
\end{aligned}
$$

Thus we can have equality in (1).

Exercises on Chapter 1

Exercise 1 (§1)

Give conditions that a simple graph must satisfy in order that is dual is also a simple graph.

Exercise 2 (§1)

Define an "interval hypergraph" to be a hypergraph whose vertices can be represented by points on a line in such a way that the edges are intervals of the line. Show that if an interval hypergraph is simple then its dual is also an interval hypergraph. Show that a subhypergraph of an interval hypergraph is an interval hypergraph.

Exercise 3 (§1)

For two integers $n \geq r \geq 2$ the r-uniform complete hypergraph of order n is the hypergraph K_{n}^{r} whose vertex set is a set X of cardinality n, and whose edges are all the r-subsets of X. What is the rank of K_{n}^{r} and of its dual $\left(K_{n}^{r}\right)^{*}$?

Exercise 4 (§3)

Let H be an intersecting family of order n, of rank $r=\max _{i}\left|E_{i}\right|$ and anti-rank $s=\min _{i}\left|E_{i}\right|$. Hilton [1975] showed that

$$
m(H) \leq \sum_{i=s}^{r}\binom{n-1}{r-1}
$$

Show that this result generalises the Erdös, Chao-Ko, Rado Theorem.

Exercise 5 (§3)

Show how Theorem 6 implies relation (1) of Sperner's Theorem (Theorem 2).

Exercise 6 (§3)

Let $H=\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$ be a hypergraph satisfying

$$
E_{j} \nsubseteq E_{k} \quad(j \neq k)
$$

40 Hypergraphs

$$
\begin{aligned}
& E_{j} \cap E_{k} \neq \varnothing \\
& E_{j} \cup E_{k} \neq X .
\end{aligned}
$$

Show that $H^{\prime}=\left(E_{1}, E_{2}, \ldots, E_{m}, X-E_{1}, \ldots, X-E_{m}\right)$ is a simple hypergraph. Deduce the following inequality (Schönheim [1868]):

$$
m(H) \leq \frac{1}{2}\binom{n}{[n / 2]},
$$

and this bound is best possible.

Exercise 7 (§3)

Show as in the lemma:
Let $A=\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ be a family of m circular intervals on a circle of n points with
(i) $\quad\left|A_{i}\right|>n / 2$;
(ii) $\quad A_{i} \cap A_{j} \neq \varnothing \quad(i \neq j)$
(iii) $\quad A_{i} \nsubseteq A_{j} \quad(i \neq j)$

Then we have $m \leq n$, with equality if \boldsymbol{A} is the family \boldsymbol{A}_{k} of distinct circular intervals having fixed cardinality $k>\frac{n}{2}$.

Exercise 8 (§3)

Let A be a family of circular intervals satisfying conditions (2) and (3) of Exercise 7, and for $A \in A$, put:

$$
\begin{aligned}
p(A) & =\frac{n-|A|+1}{|A|} \text { if }|A| \leq \frac{n}{2} \\
& =1 \text { if }|A|>\frac{n}{2} .
\end{aligned}
$$

Show that $\Sigma p(A) \leq n$.

Exercise 9 (§3) (Open Problem)
Let H be a hypergraph on X of order n, let $k \geq 2$ and $t \leq n$ be integers. Erdös and Frankl [1979] conjectured that

$$
I \subset\{1,2, \ldots, m\}, \quad|I|=k
$$

implies

$$
\left|\bigcup_{i \in I} E_{i}\right| \leq n-t
$$

and if m is the maximum with this condition then $H=\{F / F \subset X,|F \cap Y| \leq s\}$ for an integer s and for a set Y of cardinality $t+k s$.

Katona showed that the conjecture is true if $k=2, t \neq 1$. Frankl [1979] showed that the conjecture is true for $k>2, t<\frac{k 2^{k}}{150}$.

Exercise 10 (§4)

Show, using the methods of proof of Theorem 7, that if H is an hereditary hypergraph, the graph $\overline{L(H)}$ (complement of the representative graph) admits a matching covering every vertex, except at most one in each connected component of odd order (Berge [1976]).

Exercise 11 (§5)

Show, using Theorem 5, that the dual of an interval hypergraph has the Helly property.

Exercise 12 (§5)

Consider integers $a_{1}<m_{1}, a_{2}<m_{2}, \ldots, a_{k}<m_{k}$. Show that the system $x \equiv a_{i} \bmod m_{i}$ for $i=1,2, \ldots, k$
has a solution \boldsymbol{x} if and only if every pair (i, j) with $1 \leq i<j \leq k$ satisfies

$$
a_{i} \equiv a_{j} \bmod \operatorname{lcm}\left(m_{i}, m_{j}\right)
$$

(Use Corollary to Theorem 10).

Exercise 13 (§5)

Show that for $k \geq 3$, every simple graph is k-Helly.

Exercise 14 (§6)

Using Frankl's lemma (Lemma 2 of Theorem 14), prove the following result, due to Lovász (which generalises the corollary to Theorem 14):

Let H be an r-uniform hypergraph and let x be a positive real number such that

42 Hypergraphs

$$
m(H)=\frac{x(x-1) \ldots(x-r+1)}{r!}
$$

Then

$$
m\left([H]_{r-1}\right) \geq \frac{x(x-1) \ldots(x-r+2)}{(r-1) 1}
$$

Exercise 15 (§8)

Let $d(m)$ be the minimum cardinality of a set X having the property that every graph of order m is the representative graph of at least m distinct subsets of X. Show (by induction on m) that

$$
\begin{aligned}
& d(2)=2 \\
& d(3)=3 \\
& d(m)=\left[\frac{m^{2}}{4}\right] \text { if } m \geq 4
\end{aligned}
$$

(Erdös, Goodman, Pósa [1966]).

Chapter 2

Transversal Sets and Matchings

1. Transversal hypergraphs

Let $H=\left(E_{1}, \ldots, E_{m}\right)$ be a hypergraph on a set X. A set $T \subset X$ is a transversal of H if it meets all the edges, that is to say:

$$
T \cap E_{i} \neq \varnothing \quad(i=1,2, \ldots, m)
$$

The family of minimal transversals of H constitutes a simple hypergraph on X called the transversal hypergraph of H, and denoted by $\operatorname{Tr} H$.

Example 1. If the hypergraph is a simple graph G, a set S is stable if it contains no edge, that is, if its complement $X-S$ meets all the edges of G. Thus,

$$
\operatorname{Tr} G=\{X-S / S \text { is a maximal stable set of } G\} .
$$

Example 2. The complete r-uniform hypergraph K_{n}^{r} on X admits as minimal transversals all the subsets of X with $n-r+1$ elements. Thus

$$
\operatorname{Tr}\left(K_{n}^{\tau}\right)=K_{n}^{n-r+1}
$$

Example 3. Let us consider the complete r-partite hypergraph $K_{n_{1}, n_{2} \ldots, n_{r}}^{r}$ in which the set of vertices is $X^{1} \cup X^{2} \cup \cdots \cup X^{r}$ and the edges are the r-tuples $\left\{x^{1}, x^{2}, \ldots, x^{r}\right\}$ with $x^{1} \in X^{1}, x^{2} \in X^{2}, \ldots, x^{r} \in X^{r}$. Clearly $X^{1}, X^{2}, \ldots, X^{r}$ are all minimal transversals. If there existed a minimal transversal $T \neq X^{1}, X^{2}, \ldots, X^{r}$, there would exist for every i a vertex $a_{i} \in X^{i}-T$. The set $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ would not meet T, and since it is an edge of the hypergraph, we have a contradiction. Therefore there are no other minimal transversals besides $X^{1}, X^{2}, \ldots, X^{+}$, and consequently:

$$
\operatorname{Tr}\left(K_{n_{1}, n_{2} \ldots, n_{r}}^{t}\right)=\left(X^{1}, X^{2}, \ldots, X^{r}\right)
$$

Example 4. Let G be a transport network, i.e. a directed graph with a "source" a and a "sink" z (cf. Graphs, Chap. 6). An edge of H would be a set of arcs of G making up an elementary path from a to z. Clearly, H is a simple hypergraph, and $\operatorname{Tr} H$
is the set of minimal "cuts" between a and z.

Generalizing the "arc-colouring lemma" which has proved its effectiveness in the study of transport networks (example 4), we can state:

Vertex-colouring lemma. Let $H=\left(E_{1}, E_{2}, \ldots\right)$ and $H^{\prime}=\left(F_{1}, F_{2}, \ldots\right)$ be two simple hypergraphs on a set X. Then $H^{\prime}=\operatorname{Tr} H$ if and only if every pair (A, B) with $A, B \subset X, A \cup B=X, A \cap B=\varnothing$, satifies:
(i) there exists either an $E \in H$ contained in A or an $F \in H^{\prime}$ contained in B;
(ii) these two cases cannot happen simultaneously.

Proof.

1. Let $H^{\prime}=\operatorname{Tr} H$, and consider a bipartition (A, B) of X. If A contains an $E \in H$, we have (i). If not, then $X-A=B$ is a transversal of H and therefore contains a minimum transversal $T \in T r H$. Thus T is an edge F of H^{\prime} and $F \supset B$; we therefore again have (i). Moreover (ii) is obvious.
2. Let H^{\prime} and $H^{\prime \prime}$ be two simple hypergraphs such that every pair (A, B) satisfies (i) and (ii) with H and H^{\prime} on the one hand, and H and $H^{\prime \prime}$ on the other. We show that this implies $H^{\prime}=H^{\prime \prime}$. (As we have (i) and (ii) with H and $H^{\prime \prime}=\operatorname{Tr} H$ from (1), this certainly shows that $H^{\prime}=\operatorname{Tr} H$).

If not, there exists a set $F^{\prime} \in H^{\prime}-H^{\prime \prime}$. As the pair ($X-F^{\prime}, F^{\prime}$) satisfies (ii) with H, H^{\prime}, there is no edge $E \in H$ contained in $X-F^{\prime}$; and as the pair ($X-F^{\prime}, F^{\prime}$) satisfies (i) with H, $H^{\prime \prime}$, there exists an $F^{\prime \prime} \in H^{\prime \prime}$ such that $F^{\prime \prime} \subset F^{\prime}$. On the other hand $X-F^{\prime \prime}$ does not contain an edge $E \in H$, (as above); since the pair ($X-F^{\prime \prime}, F^{\prime \prime}$) satisfies (i) with H and H^{\prime}, there exists a $F_{1}^{\prime} \in H^{\prime}$ with $F_{1}^{\prime} \subset F^{\prime \prime}$.

Thus, $F_{1}^{\prime} \subset F^{\prime \prime} \subset F^{\prime} ;$ and as H^{\prime} is a simple hypergraph $F_{1}^{\prime}=F^{\prime}$, thus $F^{\prime} \in H^{\prime \prime}$; a contradiction. By symmetry there cannot exist a set $F^{\prime \prime} \in H^{\prime \prime}-H^{\prime}$ either.

Therefore $H^{\prime}=H^{\prime \prime}$.
If we take for $H^{\prime \prime}$ the hypergraph $\operatorname{Tr} H$, which is possible from (1), we get $H^{\prime}=\operatorname{Tr} H$, which gives the proof.

Corollary 1. Let H and H^{\prime} be two simple hypergraphs. Then $H^{\prime}=\operatorname{Tr} H$ if and only if $H=\operatorname{Tr} H^{\prime}$.

Indeed $H^{\prime}=\operatorname{Tr} H$ if and only if every pair (A, B) satisfies (i) and (ii) with H, H^{\prime}; that is every pair (B, A) satisfies (i) and (ii) with H^{\prime}, H; that is $H=\operatorname{Tr} H^{\prime}$.

Corollary 2. Let H be a simple hypergraph. Then $\operatorname{Tr}(\operatorname{Tr} H)=H$.
(From Corollary 1).

Application: Problem of the keys of the safe. An administrative council is composed of a set X of individuals. Each of them carries a certain weight in decisions, and it is required that every set $E \subset X$ carrying a total weight greater than some threshold fixed in advance, should have access to documents kept in a safe with multiple locks. The minimal "coalitions" which can open the safe constitute a simple hypergraph H. The problem consists in determining the number of locks necessary so that by giving one or more keys to every individual, the safe can be opened if and only if at least one of the coalitions of H is present.

If $\operatorname{Tr} H=\left(F_{1}, F_{2}, \ldots, F_{m}\right)$, and if the key to the i-th lock is given to all the members of F_{i}, it is clear that every coalition $E \in H$ would be able to open the safe; on the other hand, if $A \subset X$ does not contain any edge of H, the individuals making up the set A will not be able to open the safe, since A is not a transversal of $\operatorname{Tr} H$ (Corollary 2). The minimum number of locks that are necessary is therefore $m(\operatorname{Tr} H)$. In particular if all the n members of the administrative council have the same weight, and if the presence of r individuals is necessary in order to open the safe, the number of locks necessary is

$$
m\left(K_{n}^{n-r+1}\right)=\binom{n}{n-r+1} .
$$

We now propose to study the transversal hypergraph of an intersecting hypergraph. If H and H^{\prime} are two simple hypergraphs on X, we write $H \subset H^{\prime}$ if every edge of H is also an edge of H^{\prime}; we write $H=H^{\prime}$ if $H \subset H^{\prime}$ and $H^{\prime} \subset H$. We write $H<H^{\prime}$ if every edge of H contains an edge of H^{\prime}. Therefore:

$$
H \subset H^{\prime} \Rightarrow H<H^{\prime}
$$

Finally we denote by a $\chi(H)$ the chromatic number of H, that is to say the smallest number of colours necessary to "colour" the vertices of H such that no edge of cardinality >1 is monochromatic.

Lemma 1. If H and H^{\prime} are simple hypergraphs on X, then

$$
\left.\begin{array}{l}
H<H^{\prime} \\
H^{\prime}<H
\end{array}\right\} \Rightarrow H=H^{\prime} .
$$

Indeed, sinc̣e $H<H^{\prime}$, every edge E_{i} of H contains an edge F of H^{\prime}; since $H^{\prime}<H$, the edge F of H^{\prime} contains an edge E_{j} of H. Hence

$$
E_{i} \supset F \supset E_{j}
$$

Since H is a simple hypergraph, $i=j$, and hence every edge of H is an edge of H^{\prime}. By symmetry, $H=H^{\prime}$.

Lemma 2. A simple hypergraph H without loops satisfies $\chi(H)>2$ if and only if $\operatorname{Tr} H<H$.

Indeed, if $\chi(H)>2$, we have $\operatorname{Tr} H<H$. Otherwise there exists a $T \in \operatorname{Tr} H$ containing no edge of H. But then the bipartition ($T, X-T$) is such that no edge of H is contained in a single class; it is therefore a bicolouring of H, and that contradicts $\chi(H)>2$.

Conversely, if $\operatorname{Tr} H<H$, we have $\chi(H)>2$. Otherwise there exists a bicolouring (A, B) of the vertices of H. From the vertex colouring lemma, B contains a set $T \in \operatorname{Tr} H$, and since $\operatorname{Tr} H<H$, we have also $B \supset E$ for an $E \in H$, which contradicts the fact that (A, B) is a bicolouring of H.

Lemma 3. A hypergraph H is intersecting if and only if $H<\operatorname{Tr} H$.
For if H is intersecting, every $E \in H$ is a transversal of H, and therefore E contains a minimal transversal $T \in \operatorname{Tr} H$, so $H<\operatorname{Tr} H$.

Conversely, if $H<\operatorname{Tr} H$, every $E \in H$ contains a transversal of H, and therefore meets all the edges of H, that is, H is intersecting.

Theorem 1. A simple hypergraph H without loops satisfies $H=\operatorname{Tr} H$ if and only if:

$$
\begin{equation*}
\chi(H)>2 ; \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
H \text { is intersecting. } \tag{ii}
\end{equation*}
$$

This is obvious from Lemmas 1,2 and 3.

Corollary. Let H be a simple intersecting hypergraph without loops. Then either $\chi(H)=2$, or $\chi(H)=3$ and every hypergraph H^{\prime} obtained from H by replacing an edge E by a new edge of the form $E \cup\{x\}$ with $x \in X-E$ is bicolourable.

For if $\chi(H)>2$, we have $H=\operatorname{Tr} H$ from Theorem 1. As E is a transversal set of H, and hence of H^{\prime}, we have $E \cup\{x\} \notin \operatorname{Tr} H^{\prime}$ so that $H^{\prime} \neq \operatorname{Tr} H^{\prime}$ and hence $\chi\left(H^{\prime}\right)=2$, from Theorem 1.

A 3-colouration of H can be obtained from a bicolouring of H^{\prime} by replacing the colour of a $y \in E$ by a third colour not already used. Therefore $\chi(H)=3$.

We give a few examples of hypergraphs H for which $H=\operatorname{Tr} H$.

Example 1. The complete r-uniform hypergraph $K_{2 r-1}^{r}$ satisfies $\operatorname{Tr}\left(K_{2 r-1}^{r}\right)=K_{2 r-1}^{r}$.
Example 2. The finite projective plane P_{7} on 7 points satisfies $\operatorname{Tr}\left(P_{7}\right)=P_{7}$, for it is an intersecting family and non-bicolourable: If one wanted to colour the vertices with two colours + and -, the last vertex to be coloured could not be given either + or - (cf. Figure 1).

Figure 1.

Figure 2.

Example 3. The "fan" of rank r is a hypergraph F_{r} having r edges of cardinality 2 and one edge of cardinality r, arranged as in Figure 2. It is an intersecting family and non-bicolourable; therefore $\operatorname{Tr}\left(F_{r}\right)=F_{r}$.

Example 4. Lovasz's hypergraph L_{r} is a hypergraph defined by r sets of vertices $X^{1}=\left\{x_{1}^{1}\right\}, X^{2}=\left\{x_{1}^{2}, x_{2}^{2}\right\}, X^{3}=\left\{x_{1}^{3}, x_{2}^{3}, x_{3}^{3}\right\}, \cdots, X^{r}=\left\{x_{1}^{r}, x_{2}^{r}, \ldots, x_{r}^{r}\right\}$, and having as edges all the sets of the form

$$
X^{i} \cup\left\{x_{k_{1}}^{i+1}, x_{k_{2}}^{i+2}, \ldots, x_{k_{r}}^{r}\right\}
$$

Clearly, L_{r} is an intersecting family. Moreover $\chi\left(L_{r}\right)>2$. Otherwise there exists a bicolouring (A, B), and at least one of the sets X^{i} is monochromatic (in particular X^{1},
which has cardinality 1); let i be the largest integer such that X^{i} is monochromatic. Then there exists a monochromatic edge of the form $X^{i} \cup\left\{x_{k_{1}}^{i+1}, \ldots, x_{k_{r}}^{r}\right\}$, which contradicts the fact that (A, B) is a bicolouring of L_{r}.

Therefore, by virtue of Theorem $1, \operatorname{Tr}\left(L_{r}\right)=L_{r}$.

Example 5. In the same way, using Theorem 1, we show that the hypergraph $\overline{L_{3}}=\left(X-E / E \in L_{3}\right)$ satisfies $\operatorname{Tr} \overline{L_{3}}=\overline{L_{3}}$.

Example 6. The "generalised fan" is a hypergraph H having as edges r distinct sets $E_{1}, E_{2}, \ldots, E_{r}$ with $E_{i} \cap E_{j}=\left\{x_{0}\right\}$ for $i \neq j$ and $2=\left|E_{1}\right| \leq\left|E_{2}\right| \leq \cdots \leq\left|E_{r}\right|$, to which are added the edges of the complete r-partite hypergraph on $\left(E_{1}-\left\{x_{0}\right\}\right.$, $\left.E_{2}-\left\{x_{0}\right\}, \cdots, E_{r}-\left\{x_{0}\right\}\right)$. We show in the same way that $\operatorname{Tr} H=H$.

We shall represent by a diagram the different envisaged properties which generalise, for a hypergraph H, the relation $H=\operatorname{Tr} H$. We shall prove those implications in this diagram which have not already been proved by the preceding propositions.

Proposition 1. For a simple hypergraph H, the following two conditions are equivalent:
(i) $\quad H$ has no loops and $\chi(H)>2$;
(ii) $\quad \operatorname{Tr} H$ is intersecting and is not a star.

For if (i) holds, then $\operatorname{Tr} H \prec H$ (from Lemma 2), and the hypergraph $H^{\prime}=\operatorname{Tr} H$ is not a star. Thus $H^{\prime}=\operatorname{Tr} H<H=\operatorname{Tr} H^{\prime}$ and hence H^{\prime} is intersecting (from Lemma 3). The converse is proved in the same way.

Proposition 2. Every hypergraph H with property (7) satisfies property (8).
We note that if H satisfies property (7) it has no loops and is simple.
Since $\chi(H-E)=2$, there exists a bicolouring (A, B) of $H-E$, and E is monochromatic in this bicolouring. Suppose for example that $E \subset A$. If we change the colour of an arbitrary point x of E, a new edge $E^{\prime} \in H$ will become coloured B, whence $E \cap E^{\prime}=\{x\}$. From this (8) follows.

Proposition 3. Every simple hypergraph H without loops having property (2) satisfies property (8).

Figure 3.
(H simple and without loops)

Since every $E \in H$ is a minimal transversal of H, the set $E-\{x\}$ is disjoint with some edge $E^{\prime} \in H$, whence $E \cap E^{\prime}=\{x\}$. From this (8) follows.

Proposition 4 (Seymour [1974]). Let H be a hypergraph on X with property (7) and let $A \subset X$; then there is no bipartition $\left(A_{1}, A_{2}\right)$ of A into two transversal sets of H_{A}.

We note that since H satisfies property (7), it has no loops and is simple. Suppose that such a bipartition $\left(A_{1}, A_{2}\right)$ exists and consider the partial hypergraph $H^{\prime}=(E / E \in H, E \cap A=\varnothing)$. We have $H^{\prime} \neq \varnothing$, for if not then $\left(A_{1}, A_{2}\right)$ would extend to a bicolouring of H. We have $H^{\prime} \neq H$, since $A \neq \varnothing$. Thus from property (7), the hypergraph H^{\prime} has a bicolouring (B_{1}, B_{2}) and $B_{1} \cup B_{2} \subset X-A$. Since H has no loops, $E \in H^{\prime}$ implies

$$
E \cap B_{1} \neq \varnothing, E \cap B_{2} \neq \varnothing
$$

Furthermore $E \in H-H^{\prime}$ implies

$$
E \cap A_{1} \neq \varnothing, E \cap A_{2} \neq \varnothing
$$

Thus $\left(A_{1} \cup B_{1}, A_{2} \cup B_{2}\right)$ generates a bicolouring of H, which contradicts (7).
Proposition 5 (Seymour [1974]). Let H be a hypergraph on X with property (7). Every $A \subset X$ meets at least $|A|$ edges of H, with equality possible only if $A=\varnothing$ or $A=X$.
(*) Proof. We consider three cases.

Case 1. $A=\varnothing$; the result is trivial.

Case 2. $A=X$; the incidence matrix M of H defines a system of $m(H)=m$ linear equations: $M^{*} \mathbf{z}=\mathbf{0}$. If $m<|X|=n$, we have m linear equations with $n>m$ unknowns, and hence there exists a solution $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \neq 0$.

Let $A=\left\{x_{i} / z_{i} \neq 0\right\}, A^{+}=\left\{x_{i} / z_{i}>0\right\}, A^{-}=\left\{x_{i} / z_{i}<0\right\}$.
Clearly $\left(A^{+}, A^{-}\right)$is a bipartition of A into two transversal sets of H_{A}, which contradicts Proposition 4. Hence $m \geq n$, and the result follows.

Case 3. $A \neq X, A \neq \varnothing$. We put

$$
\begin{aligned}
H^{\prime} & =\{E / E \in H, E \subset A\} \\
H^{\prime \prime} & =\{E / E \in H, E \cap A=\varnothing\}
\end{aligned}
$$

Since $A \neq X, A \neq \varnothing$, we have $H^{\prime} \neq H, H^{\prime \prime} \neq H$. Thus there exists, from (7), a bicolouring (A_{1}, A_{2}) of H^{\prime} and a bicolouring (B_{1}, B_{2}) of $H^{\prime \prime}$. Since ($A_{1} \cup B_{1}, A_{2} \cup B_{2}$) cannot define a bicolouring of H (since $\chi(H)>2$) we have

$$
H \neq H^{\prime} \cup H^{\prime \prime}
$$

Thus there is an edge $E_{0} \in H-\left(H^{\prime} \cup H^{\prime \prime}\right)$ that is to say with:

$$
\left\{\begin{array}{l}
E_{0} \nsubseteq A \tag{1}\\
E_{0} \cap A \neq \varnothing
\end{array}\right.
$$

Suppose that the set A does not meet more than $|A|$ edges of H. We see as in Case 2 that there exists on A a real function $z(x)$, not identically zero, such that

$$
\sum_{x \in E \cap A} z(x)=0 \quad\left(E \in H-E_{0}\right)
$$

Put $\bar{z}(x)=z(x)$ if $x \in A$ and $\bar{z}(x)=0$ if $x \notin A$. Then

$$
\sum_{x \in E} \bar{z}(x)=0 \quad\left(E \in H-E_{0}\right) .
$$

We cannot have $\sum_{x \in E_{0}} \bar{z}(x)=0$, since the sets $A^{+}=\{x / \bar{z}(x)>0\}$ and $A^{-}=\{x / \bar{z}(x)<0\}$ would contradict Proposition 4. Suppose for example that

$$
\sum_{x \in E_{0}} \bar{z}(x)>0
$$

We then have, by virtue of Proposition $4, E_{0} \cap A^{-}=\varnothing$.
The hypergraph $H_{1}=\left\{E / E \in H, E \subset X-\left(A^{+} \cup A^{-}\right)\right\}$is bicolourable (since $H_{1} \neq H$), and admits a bicolouring (B_{1}, B_{2}).

The set $A^{+} \cup B_{1}$ is a transversal of H; for we have either $E \in H_{1}$ or $E \cap A^{+} \neq \varnothing$. Since $\operatorname{Tr} H \subset H$, there exists an edge $E_{1} \in H$ contained in $A^{+} \cup B_{1}$.

If $E_{1} \subset B_{1}$, then $E_{1} \in H_{1}$, which contradicts the fact that (B_{1}, B_{2}) is a bicolouring of H_{1}. Hence $E_{1} \cap A^{+} \neq \varnothing$, and consequently

$$
\sum_{x \in E_{1}} \bar{z}(x)>0
$$

Thus $E_{1}=E_{0}$, and consequently

$$
\begin{equation*}
E_{0} \subset A^{+} \cup B_{1} \tag{2}
\end{equation*}
$$

By the same arguments we obtain

$$
\begin{equation*}
E_{0} \subset A^{+} \cup B_{2} \tag{3}
\end{equation*}
$$

As B_{1} and B_{2} are disjoint, (2) and (3) give $E_{0} \subset A^{+} \subset A$, which contradicts (1).

Proposition 6. Every hypergraph H with property (7) satisfies property (9).
For the preceding proposition shows that the bipartite graph $G=(X, H ; \Gamma)$ of the vertex-edge incidence of a hypergraph H with property (7) satisfies $|\Gamma A| \geq|A|$ for every $A \subset X$. From König's Theorem, this condition implies that to 'very $x \in X$ we

52 Hypergraphs

can make correspond an edge $E_{x} \in H(x)$ such that the E_{x} are distinct edges. Then (7) implies the condition (9).

We deduce that $m(H) \geq n(H)$. The case where $m(H)=n(H)$ is characterised by the following theorem.

Theorem 2 (Seymour [1974]). Let H be a hypergraph with property (7), and with $m(H)=n(H)$. Consider for every $x \in X$ an edge $E_{x} \in H(x)$ such that the E_{x} for $x \in X$ are distinct edges. Then the directed graph G defined on X by making an arc from x to y if $y \in E_{x}$, is strongly connected and has no even elementary circuits. Conversely, if $G=(X, \Gamma)$ is a directed graph on X which is strongly connected and without even elementary circuits, the hypergraph $H_{G}=(\{x\} \cup \Gamma x / x \in X)$ is a hypergraph on X with property (7) and with $m\left(H_{G}\right)=n\left(H_{G}\right)$.

The proof arises from the previous propositions (cf. Seymour [1974]).

Corollary. If H satisfies property (7) with $m(H)=n(H)$, then its dual H^{*} also satisfies property (7) with $m\left(H^{*}\right)=n\left(H^{*}\right)$.

For in this case the maximum matching of the bipartite vertex-edge incidence graph establishes a bijection between the set of vertices of H and the set of edges of H. The graphs G_{H} and $G_{H^{*}}$ therefore have the same properties.

Algorithm to determine $\operatorname{Tr} H$. If $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ and $H^{\prime}=\left(F_{1}, F_{2}, \ldots, F_{m^{\prime}}\right)$ are two hypergraphs, put:

$$
\begin{aligned}
H \cup H^{\prime} & =\left(E_{1}, E_{2}, \ldots, E_{m}, F_{1}, F_{2}, \ldots, F_{m^{\prime}}\right) \\
H \vee H^{\prime} & =\left(E_{i} \cup F_{j} / i \leq m, j \leq m^{\prime}\right) \\
\operatorname{Min} H & =(E / E \in H ;(\forall F \in H, F \subset E): F=E)
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\operatorname{Tr}\left(H \cup H^{\prime}\right)=\operatorname{Min}\left(\operatorname{Tr} H \vee \operatorname{Tr} H^{\prime}\right) \tag{1}
\end{equation*}
$$

Indeed, T_{0} is a transversal of $H \cup H^{\prime}$ if and only if T_{0} is a transversal of H and a transversal of H^{\prime}, i.e.

$$
T_{0} \supset T \cup T^{\prime}, T \in \operatorname{Tr} H, \quad T^{\prime} \in \operatorname{Tr} H^{\prime}
$$

Or, equivalently:

$$
T_{0} \in \operatorname{Tr} H \vee \operatorname{Tr} H^{\prime}
$$

The formula (1) follows.
No polynomial algorithm for determining $\operatorname{Tr} H$ is known (it belongs to the class of NP-complete problems). Nevertheless, for hypergraphs with a few vertices we have at hand many methods that are sufficiently effective (Maghout [1966], Lawler [1966], Roy [1970], etc.). We could use formula (1) in the following manner:
Put $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ and $H_{i}=\left(E_{1}, E_{2}, \ldots, E_{i}\right)$. Determine successively $\operatorname{Tr} H_{1}, \operatorname{Tr} H_{2}$, $\ldots, \operatorname{Tr} H_{i}, \ldots$, by the formulas:

$$
\begin{aligned}
\operatorname{Tr} H_{1} & =\left(\{x\} / x \in E_{1}\right) \\
\operatorname{Tr} H_{2} & =\operatorname{Tr}\left(H_{1} \cup\left\{E_{2}\right\}\right)=\operatorname{Min}\left(\operatorname{Tr} H_{1} \vee\left(\{x\} / x \in E_{i}\right)\right) \\
\operatorname{Tr} H_{i} & =\operatorname{Min} \operatorname{Tr}\left(H_{i-1} \cup\left\{E_{i}\right\}\right) \\
& =\operatorname{Min}\left(\operatorname{Tr} H_{i-1} \vee\left(\{x\} / x \in E_{i}\right)\right)
\end{aligned}
$$

etc. ...
Finally we obtain $\operatorname{Tr} H_{m}=\operatorname{Tr} H$.

2. The coefficients τ and τ^{\prime}.

For a hypergraph H we denote by $\tau(H)$ the transversal number, that is to say, the smallest cardinality of a transversal; similarly, we denote by $\tau^{\prime}(H)$ the largest cardinality of a minimal transversal. Clearly:

$$
\tau(H)=\min _{T \in T r H}|T| \leq \max _{T \in T r H}|T|=\tau^{\prime}(H) .
$$

Example 1: The finite projective plane of rank r. By definition, a projective plane of rank r is a hypergraph having $r^{2}-r+1$ vertices ("points"), and $r^{2}-r+1$ edges ("lines"), satisfying the following axioms:
(1) every point belongs to exactly r lines;
(2) every line contains exactly r points;
(3) two distinct points are on one and only one line;
(4) two distinct lines have exactly one point in common.

Projective planes do not exist for every value of r (for example, if $r=7$), but it is known that if $r=p^{\alpha}+1$, with p prime, $p \geq 2, \alpha \geq 1$, there exists a projective plane of rank r denoted $P G\left(2, p^{\alpha}\right)$ built on a field of p^{α} elements. For example, the projective plane with seven points ("Fano configuration") is $P G(2,2)$.

54 Hypergraphs

It is clear that in a projective plane every line is a minimal transversal set of H. In the projective plane of seven points there are no others because $H=\operatorname{Tr} H$ (given that any two edges meet and that the chromatic number of this hypergraph is >2). For the projective planes of rank $r>3$, we have $\tau(H)=r$, but there exist other minimal transversals which are all of cardinality $\geq r+2$ (Pelikan [1971]). Hence $\tau^{\prime}(H) \geq r+2$.

On the other hand, Bruen [1971], has proved that every projective plane H of rank r satisfies $\tau^{\prime}(H) \geq r+\sqrt{r-1}$.

Indeed, the minimal cardinality of a transversal T which is not a line is given by the following table for the different known projective planes of rank $r \leq 9$.

r	3	4	5	6	-	8	9
n	7	13	21	31	-	57	73
$\min \|T\|$	-	6	7	9	-	12	$?$

Example 2: The affine plane of rank k.

By an affine plane is meant the subhypergraph H of rank k obtained from a finite projective plane of rank $k+1$ by suppressing the points of a given line. Every edge of H is called a line, and two lines of H which have an empty intersection are said to be parallel.

Thus an affine plane of rank k satisfies the following properties:
Every line contains k points;
Every point belongs to $k+1$ lines;
There are k^{2} points and $k^{2}+k$ lines;
Two distinct points have one and only one line in common;
Two distinct lines have either no points in common ("parallel"), or a common point ("secant");
Parallelism is an equivalence relation which partitions the set of lines into $k+1$ classes of k edges each;
Through every point not belonging to a given line, there passes one and only one line parallel to the given line.

Bruen and Resmini [1983] showed that for an affine plane H of order q, we have $r(H) \leq 2 q-1$, and Brouwer and Schrijver [1976] showed that for the affine plane H constructed on a field of q elements, we have $\tau(H)=2 q-1$. Finally Jamison [1977]
has shown that for the hypergraph H on the vector space with a base $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ constructed on a field K of q elements and having as edges the planes $\left\{\Sigma x_{i} \mathbf{e}_{i} / \Sigma a_{i} x_{i}=b\right\}$ we have $\tau(H)=n(q-1)+1$. This cardinality is obtained with the obvious transversal $T=\left\{k \mathbf{e}_{i} / k \in K, i=1,2, \ldots, n\right\}$, but it is shown that we cannot do better than that.

Example 3: The ($\mathbf{n}, \mathrm{k}, \lambda$)-configuration. This is by definition a k-uniform hypergraph H of order n such that every pair of vertices is contained in exactly λ edges. From this definition we easily deduce that

$$
\begin{equation*}
H \text { is regular and of degree } \Delta(H)=\lambda \frac{n-1}{k-1} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
H \text { has } m(H)=\lambda \frac{n(n-1)}{k(k-1)} \text { edges. } \tag{ii}
\end{equation*}
$$

For certain known (n, k, λ) configurations, the transversal number τ is given by the following table.

$$
\begin{array}{c|ccccc}
(n, k, \lambda) & (13,3,1) & (10,4,2) & (9,4,3) & (11,3,3) & (12,4,3) \\
\hline \tau & 7 & 4 & 4 & 7 & 6
\end{array}
$$

Theorem 3. Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph on X with $\tau^{\prime}(H)=t$, and let k be an integer ≥ 1. If $k<\left|E_{1}\right| \leq\left|E_{2}\right| \leq \cdots \leq\left|E_{m}\right|$, and if every k-tuple of X is contained in at most λ edges of H, then

$$
\sum_{j=1}^{i}\binom{\left|E_{j}\right|-1}{k} \leq \lambda\binom{n-t}{k}
$$

Proof. Let T be a minimal transversal of H. For every $x \in T$, there exists an edge E_{x} such that $E_{x} \cap T=\{x\}$. Since $E_{x} \neq E_{y}$ for $x \neq y$, the family $H^{\prime}=\left(E_{x} / x \in T\right)$ is a partial hypergraph of H.

By counting in two different ways the pairs (A, E) where $E \in H^{\prime}$ and where A is a k-tuple of $X-T$ contained in E, we obtain

56 Hypergraphs

$$
\begin{equation*}
\sum_{x \in T}\binom{\left|E_{x}-\{x\}\right|}{k}=\sum_{\substack{A \subset X-T \\|A|-k}}\left|\left\{E_{x} / E_{x} \supset A\right\}\right| \tag{1}
\end{equation*}
$$

from whence, a fortiori,

$$
\sum_{j=1}^{t}\binom{\left|E_{j}\right|-1}{k} \leq \lambda\binom{n-t}{k}
$$

Corollary 1. Let H be a hypergraph of order n with no loops, and put $s=\min \left|E_{i}\right|$ and $\triangle=\Delta(H)$. Then $\tau^{\prime}(H) \leq\left[\frac{n \triangle}{\Delta+s-1}\right]$. Furthermore, this bound is the best possible for $s=2$.

Indeed, Theorem 3 with $k=1$ gives

$$
t\binom{s-1}{1} \leq \Delta\binom{n-t}{1}
$$

Whence $\tau^{\prime}(H)=t \leq \frac{n \Delta}{\Delta+s-1}$. For $s=2$, the equality is obtained with the Turan graph.

Corollary 2. Let H be a linear hypergraph of order n with $\min \left|E_{i}\right|=s>2$. Then

$$
\tau^{\prime}(H) \leq n+\frac{1}{2}\left(s^{2}-3 s+1\right)-\frac{1}{2} \sqrt{4 n\left(s^{2}-3 s+2\right)+\left(s^{2}-3 s+1\right)^{2}} .
$$

Proof. Theorem 3 with $k=2$ and $\lambda=1$ gives

$$
t\binom{s-1}{2} \leq\binom{ n-t}{2}
$$

that is to say

$$
t^{2}-t\left(s^{2}-3 s+2 n+1\right)+\left(n^{2}-n\right) \geq 0
$$

Equality gives a quadratic equation which has two solutions t^{\prime} and $t^{\prime \prime}$, and we note that $t^{\prime}<n<t^{\prime \prime}$. Since $\tau^{\prime}(H) \leq n$, we have also $\tau^{\prime}(H) \leq t^{\prime}$. The result follows.

Corollary 3 (Erdös, Hajnal [1966]). Let H be a linear 9-uniform hypergraph of order n; then

$$
\tau(H) \leq n-\sqrt{ } 2 n+\frac{1}{4}+\frac{1}{2}
$$

This follows from Corollary 2 with $s=3$.
Theorem 4 (Meyer [1975]). Let H be a hypergraph with $\min \left|E_{i}\right|=s>1$, and suppose that the vertices of X are labelled in such a way that

$$
d_{H}\left(x_{1}\right) \leq d_{H}\left(x_{2}\right) \leq \cdots \leq d_{H}\left(x_{n}\right)
$$

Then the number $\tau^{\prime}(H)=t$ satisfies

$$
\sum_{i=1}^{t}\left[d_{H}\left(x_{i}\right)+s-1\right] \leq \sum_{i=1}^{n} d_{H}\left(x_{i}\right) .
$$

Proof. Using formula (1) of the proof of Theorem 3 with $k=1$, we obtain

$$
\sum_{x \in T}\left(\left|E_{x}-\{x\}\right|\right) \leq \sum_{x \in X-T} d_{H}(x)
$$

This implies: $t(s-1) \leq \sum_{i=t+1}^{n} d_{H}\left(x_{i}\right)$. The stated inequality follows easily.
We note that Theorem 4 generalises Corollary 1, and, in the case of graphs, generalises the theorem of Zarankiewicz (Graphs, chapter 13). (For an independent proof by induction, see Hansen, Lorea [1976]).

Theorem 5 (Berge, Duchet [1975]). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph on X. Let $\bar{E}_{j}=X-E_{j}$. We have $\tau^{\prime}(H) \leq k$ if and only if the hypergraph $\bar{H}=\left(\bar{E}_{1}, \bar{E}_{2}, \ldots, \bar{E}_{m}\right)$ is k-conformal.

Proof. To say that \bar{H} is k-conformal, is to say that for every $A \subset X$ the following two conditions are equivalent:
$\left(C_{k}\right) \quad(\forall S \subset A,|S| \leq k)\left(\exists \bar{E}_{j} \in \bar{H}\right): \bar{E}_{j} \supset S$.
(C) $\quad\left(\exists \bar{E}_{j} \in \bar{H}\right): \bar{E}_{j} \supset A$.

Let us consider the negations of these conditions, that is:
$\left(\bar{C}_{k}\right) \quad(\exists S \subset A,|S| \leq k)\left(\forall E_{j} \in H\right): E_{j} \cap S \neq \varnothing$.

$$
\begin{equation*}
\left(\forall E_{j} \in H\right): E_{j} \cap A \neq \varnothing . \tag{C}
\end{equation*}
$$

To say that \bar{H} is k-conformal is to say that $\left(\bar{C}_{k}\right)$ is equivalent to (\bar{C}). On the other hand, to say that $\tau^{\prime}(H) \leq k$, is equivalent to saying that every transversal A contains a transversal S with $|S| \leq k$; that is to say: $(\bar{C}) \Rightarrow\left(\bar{C}_{k}\right)$.
Since we have always $\left(\bar{C}_{k}\right) \Rightarrow(\bar{C})$, we have $\tau^{\prime}(H) \leq k$ if and only if $\left(\bar{C}_{k}\right)$ is equivalent to (\bar{C}), that is to say if and only if \bar{H} is a k-conformal hypergraph.

Corollary 1. Let H be a simple hypergraph on X and let k be an integer ≥ 2. We have $\tau^{\prime}(H) \leq k$ if and only if for every partial hypergraph $H^{\prime} \subset H$ with $k+1$ edges there exists an edge $E \in H$ contained in the set $\left\{x / d_{H^{\prime}}(x)>1\right\}$.

Proof. From Theorem 15 (Chapter 1), the k-conformity of \bar{H} is equivalent to saying that for every $\bar{H}^{\prime} \subset \bar{H}$ with $k+1$ edges, the set

$$
A=\left\{x / x \in X, d_{\bar{H}^{\prime}}(x) \geq k\right\} .
$$

is contained in an edge \bar{E} of \bar{H}. Since

$$
d_{\bar{H}^{\prime}}(x)=\left|H^{\prime}\right|-d_{H^{\prime}}(x)=(k+1)-d_{H^{\prime}}(x)
$$

this condition is also equivalent to:

$$
\left\{x / x \in X, d_{H^{\prime}}(x) \leq 1\right\}=A \subset \bar{E}
$$

From this the stated result follows.

Corollary 2. Let H be a simple hypergraph with $\tau(H)=t \geq 2$. The hypergraph $\operatorname{Tr} H$ is uniform if and only if for every hypergraph $H^{\prime} \subset H$ of $t+1$ edges, there exists an edge $E \in H$ contained in

$$
\left\{x / x \in X, d_{H^{\prime}}(x)>1\right\}
$$

3. τ-critical hypergraphs

We say that a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ is τ-critical if the deletion of any edge decreases the transversal number, that is to say, if

$$
\tau\left(H-E_{j}\right)<\tau(H) \quad(j=1,2, \ldots, m)
$$

Since we cannot have $\tau\left(H-E_{j}\right)<\tau(H)-1$, this is equivalent to saying that if H is τ-critical with $\tau(H)=t+1$, then $\tau(H-E)=t$ for every $E \in H$.

Example 1. The hypergraph K_{t+r}^{r} is τ-critical, since $\tau\left(K_{t+r}^{r}\right)=t+1$ and if E is an edge of K_{t+r}^{r}, the hypergraph $K_{t+r}^{r}-E$ has a transversal $X-E$ of cardinality t.

Example 2. Consider the family A of all the ($r-1$)-tuples of a set X with $t+r-1$ elements; with every $A \in \mathcal{A}$, let us associate a new point y_{A}, these points forming a set Y with cardinality $\binom{t+r-1}{r-1}$. Consider the hypergraph $H=\left(A \cup\left\{y_{A}\right\} / A \in \mathcal{A}\right)$ on $X \cup Y$. Clearly, $\tau(H)=t+1$; since $H-\left(A \cup\left\{y_{A}\right\}\right)$ has a transversal $X-A$ of cardinality t, the hypergraph H is τ-critical.

For $r=2$, the concept of a τ-critical graph is due to Zykov in 1949. The systematic study started in 1961 with an article by Erdös and Gallai, who showed that a τ-critical graph G without isolated vertices satisfies $2 \tau(G)-n(G) \geq 0$.

Examples of τ-critical graphs are shown in Figures 4 and 5.

Figure 4

$\tau=5$
$2 \tau-n=3$
Figure 5

60 Hypergraphs

Proposition 1. Every τ-critical hypergraph is simple.

For if $H=\left(E_{1}, \ldots, E_{m}\right)$ is τ-critical and not simple, there exist two indices i and j with $E_{i} \subset E_{j}$. An optimal transversal of $H-E_{j}$ has $\tau(H)-1$ vertices, and since it meets E_{i} it also meets E_{j}. Therefore $\tau(H) \leq \tau(H)-1$, a contradiction.

Proposition 2. Every hypergraph H with $\tau(H)=t+1$ has as a partial hypergraph, a τ-critical hypergraph H^{\prime} with $\tau\left(H^{\prime}\right)=t+1$.

Indeed, to obtain H^{\prime} it is enough to remove from H as many edges as one can without changing the transversal number.

In a hypergraph H a vertex x is said to be critical if
(1) $\tau(H-H(x))<\tau(H)$.

We note that (1) is equivalent to:

$$
\begin{equation*}
\tau(H-H(x))=\tau(H)-1 \tag{2}
\end{equation*}
$$

Indeed, if (1) holds then the hypergraph $H_{1}=H-H(x)$ has a transversal T_{1} of cardinality $\tau(H)-1$. The set $T_{1} \cup\{x\}$ is a transversal of H and, since its cardinality is $\tau(H)$, it is a minimum transversal. From this we obtain (2).

Conversely, if (2) holds, let T be a minimum transversal of H containing x. Then $T-\{x\}$ is a transversal of $H-H(x)$ of cardinality $\tau(H)-1$, from which (1) follows.

Proposition 3. Every vertex of a τ-critical hypergraph is critical.
Let H be a τ-critical hypergraph and let x be one of its vertices. Since x is contained in an edge, E say,

$$
\tau(H-H(x)) \leq \tau(H-E)<\tau(H)
$$

Thus x is a critical vertex.

Example 1. Let us consider a simple graph $G=(X, E)$, connected and without bridges. Let H be the hypergraph whose vertices are the edges of G and whose edges are the elementary cycles of G. Through every edge of a graph without bridges there passes a cycle; hence H is a simple hypergraph on E.

For $e_{0} \in E$ there exists a maximal tree (X, F) with $e_{0} \in F$ which spans G; we have $\tau(H)=m(G)-n(G)+1$, and every co-tree of G is a transversal of H. Therefore $E-F$ is a minimum transversal of H containing e_{0}. Thus every vertex of H is critical.

Example 2. The analogous situation holds also for a strongly connected digraph G_{0}. Let H be the hypergraph whose vertices are the arcs of G_{0} and the edges are the elementary circuits of G_{0} (for example, take G_{0} to be the Möbius ladder represented in Figure 6).
Here the edges of H are:

$$
\begin{aligned}
& E_{1}=\{a b, b d, d c, c a\} \\
& E_{2}=\{a b, b f, f e, e a\} \\
& E_{3}=\{a b, b f, f e, e d, d c, a c\} \\
& E_{4}=\{a b, b d, d c, c f, f e, e a\} \\
& E_{5}=\{c f, f e, e d, d c\}
\end{aligned}
$$

Figure 6

It is easy to see that $\tau(H)=2$ and that every vertex of H belongs to a transversal of cardinality 2. Hence every vertex of H is critical. By way of an exercise the reader can verify Proposition 4 with this example.

Theorem 6 (Tuza [1984]). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a τ-critical hypergraph with $\tau(H)=t+1$. Then

$$
\sum_{j=1}^{m}\binom{\left|E_{j}\right|+t}{t}-1 \leq 1
$$

Proof. For every edge E_{j} there exists a set $T_{j} \in \operatorname{Tr}\left(H-E_{j}\right)$ of cardinality t. Clearly $E_{j} \cap T_{i}=\varnothing$ if and only if $i=j$; thus from Theorem 6, Chapter 1,

$$
\sum_{j=1}^{m}\binom{\left|E_{j}\right|+\left|T_{j}\right|}{\left|E_{j}\right|}^{-1} \leq 1
$$

The stated inequality follows.
Corollary 1 (Bollobas [1965]; Jaeger, Payan [1971]). Let H be a τ-critical hypergraph of rank r, with $\tau(H)=t+1$; then the number of its edges satisfies:

62 Hypergraphs

$$
m(H) \leq\binom{ r+t}{t}
$$

Moreover this bound is attained with the hypergraph K_{t+r}^{+}.

Proof. Let $E \in H$. Since $|E| \leq r$ we have

$$
\binom{|E|+t}{t} \leq\binom{ r+t}{t}
$$

Thus

$$
m(H)\binom{r+t}{t}^{-1} \leq \sum_{E \in H}\binom{|E|+t}{t}^{-1} \leq 1
$$

The stated inequality follows.
We verify immediately that equality holds for $H=K_{t+r}^{r}$.

Corollary 2 (Theorem of Erdös, Hajnal and Moore). If G is a simple graph of order n with $\alpha(G)=k$ and $\alpha\left(G-E_{j}\right)=k+1$ for every edge E_{j}, then

$$
m(G) \leq\binom{ n-k+1}{2}
$$

Since every maximum stable set of G is the complement of a minimal transversal G and vice versa, we have $\tau(G)=n-k, \tau\left(G-E_{j}\right)=n-k-1$ for every j. The stated inequality then follows from Corollary 1.

The following result is a theorem of Gyarfas, Lehel, Tuza [1980], which extends a theorem of Hajnal (Graphs, Theorem 8, Chapter 13).

Theorem 7. Let H be a τ-critical hypergraph on X with $\tau(H)=t+1$. Let A be the set of subsets A of X such that $A \notin H$ and $A \cup\{x\} \in H$ for some $x \in X$. For $x \in X$ and $Y \subset X$, put

$$
\begin{aligned}
& \Gamma x=\{A / A \in A, A \cup\{x\} \in H\} \\
& \Gamma Y=\cup_{x \in Y} \Gamma x
\end{aligned}
$$

Then every set $S \subset X$ such that $|S \cap E| \leq 1$ for all $E \in H$ satisfies $|\Gamma S| \geq|S|$.
(*) Proof. Let S be the family of $S \subset X$ such that $|S \cap E| \leq 1$ for every $E \in H$. We shall suppose that there exists in S a set S which satisfies $|\Gamma S|<|S|$, and which is minimal with respect to this property. We shall then deduce a contradiction.

From the König-Hall theorem (Graphs, Theorem 5, Chapter 7) this means that the bipartite graph $G=(X, \mathcal{A} ; \Gamma)$ has no matching of S into \mathcal{A}, but for every $y \in S$ there exists a matching of $S-\{y\}$ into A. Since in G the degree of a point of X is ≥ 1, and since $|\Gamma S|<|S|$, there exists a set $A_{0} \in \Gamma S$ and two distinct points $y_{1}, y_{2} \in S$ such that

$$
\begin{array}{ll}
A_{0} \cup\left\{y_{1}\right\}=E_{1} \in H, & y_{1} \in S \\
A_{0} \cup\left\{y_{2}\right\}=E_{2} \in H, & y_{2} \in S .
\end{array}
$$

Since $\tau\left(H-E_{1}\right)=t$, let T_{1} be a transversal set of the hypergraph $H-E_{1}$ having cardinality t. Since $T_{1} \cap E_{1}=\varnothing$, we have $y_{1} \notin T_{1}$, and consequently

$$
T_{1} \cap A \neq \varnothing \quad\left(A \in \Gamma y_{1}, A \neq A_{0}\right)
$$

Figure 7

Because of the minimality of S, we have $|\Gamma Y| \geq|Y|$ for every $Y \subset S-\left\{y_{1}\right\}$, and hence there exists a matching of $S-\left\{y_{1}\right\}$ into ΓS. This matching makes correspond to every $y \in S-\left\{y_{1}\right\}$ a set $A(y) \in \Gamma y$; and, since $|\Gamma S|=|S|-1$, every $A \in \Gamma S$ is the image of some $y \in S-\left\{y_{1}\right\}$.

Consider a set T_{2} obtained from T_{1} by replacing every vertex $y \in S-\left\{y_{1}\right\}$ which belongs to T_{1} by a vertex chosen arbitrarily from the set $A(y)$.

We note that if an $A \in \Gamma S$ satisfies $T_{1} \cap A=\varnothing$, then all the points $y \in S-\left\{y_{1}\right\}$ joined to A in G are elements of T_{1}. Hence

$$
T_{2} \cap A \neq \varnothing \quad(A \in \Gamma S)
$$

Since $S \in S$ this implies that

$$
T_{2} \cap E \neq \varnothing \quad(E \in H, E \cap S \neq \varnothing)
$$

It follows that T_{2} is a transversal of H, and since $\left|T_{2}\right| \leq\left|T_{1}\right|=t$ we have a contradiction.

4. The König property

A matching in a hypergraph H is a family of pairwise disjoint edges, and the maximum cardinality of a matching is denoted $\nu(H)$.

A matching can also be defined as a partial hypergraph H_{0} with $\Delta\left(H_{0}\right)=1$.
We note that for every transversal T and for every matching H_{0},

$$
|T \cap E| \geq 1 \quad\left(E \in H_{0}\right)
$$

Thus $\left|H_{0}\right| \leq|T|$, from whence

$$
\nu(H)=\max \left|H_{0}\right| \leq \tau(H)
$$

We say that H has the König property if $\nu(H)=\tau(H)$.
A covering of H will be a family of edges which covers all the vertices of H, that is to say a partial hypergraph H_{1} with $\delta\left(H_{1}\right)=\min _{x \in X} d_{H_{1}}(x) \geq 1$. We write

$$
\rho(H)=\min \left|H_{1}\right| .
$$

Finally, a strongly stable set of H is by definition a set $S \subset X$ such that $\left|S \cap E_{1}\right| \leq 1$ for every $E \in H$, and we write

$$
\bar{\alpha}(H)=\max |S| .
$$

It is seen immediately that $\rho(H)=\tau\left(H^{*}\right), \bar{\alpha}(H)=\nu\left(H^{*}\right)$; for this reason we say that H has the dual König property if $\rho(H)=\bar{\alpha}(H)$.

Example 1: The r-partite complete hypergraph. If $n_{1} \leq n_{2} \leq \cdots \leq n_{r}$, the hypergraph $K_{n_{1}, n_{2} \ldots, n_{r}}^{r}$ has the König property since $\tau=n_{1}$ and $\nu=n_{1}$. It also has the dual König property since $\rho=n_{r}$ and $\bar{\alpha}=n_{r}$.

Example 2: Semi-convex polyominoes. A polyomino P is a finite set of unit
squares in the plane arranged like a chessboard with some of its squares cut out. With every polyomino P one can associate a hypergraph whose vertices are the unit squares of P and whose edges are the maximal rectangles contained in P.

It is easy to see that this hypergraph P has the Helly property and is conformal.
Moreover, if P is "semi-convex", that is to say if every horizontal line of the plane intersects P in an interval, the hypergraph P has the König property (Berge, Chen, Chvatal, Seow [1981]) and the dual König property (Györi [1984]). The smallest polyomino P with $\nu(P) \neq \tau(P)$ is shown in Figure 8.

Figure 8.
Polyomino with $\nu=6$ and $\tau=7$.

Figure 9.
Polyomino with $\rho=8$ and $\bar{\alpha}=7$.

Figure 10. Semi-convex polyomino with $\nu=\tau=3, \rho=\bar{\alpha}=7$.

66 Hypergraphs

Example 3: Paving with bricks. Consider the integers $a \leq b, p \leq q$, and a rectangular chessboard of dimensions $p \times q$, which is to be paved with bricks of dimensions $a \times b$. What is the maximum number of bricks that one can place on the chessboard?

We can consider the hypergraph H whose vertices are the unit squares and whose edges are all the rectangles of dimension $a \times b$; the answer to the problem is then $\nu(H)$. Brualdi and Foregger [1974] have proved that H has the König property for every (p, q) if and only if a is a divisor of b. For example, for $a=2, b=3$, there exists a chessboard of dimensions 9×6 which determines a hypergraph H with $\nu(H)=9, \tau(H)=10$, thus not satisfying the König property (Figure 11).

Figure 11. The squares marked with a cross represent an optimal transversal of H.

If one wishes to pave with bricks of dimension $a \times b$ a "truncated" chessboard, we have, in general, neither the König property nor the dual König property; nevertheless, the truncated chessboard of 24 squares represented in Figures 12 and 13 satisfies these two properties with bricks of dimensions 1×4, as the reader can easily verify.

Figure 12.
The squares marked with a cross constitute a transversal of H and consequently this matching is is optimal.

Figure 13.
The squares marked with a circle constitute a strongly stable set and consequently this covering is optimal.

Example 4: Hypergraph of subtrees of a tree. Let G be a tree on $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a family of subsets of X which induce a subtree. We have seen that H has the Helly property. It follows from the theory of perfect graphs that H also has the König property.

Let us give a proof by induction on $\tau(H)=t$ for the equality $\nu=\tau$. If $t=1$, it is clear that $\nu=\tau$. So, we may assume that H has an optimal transversal $T=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ with $t \geq 2$.

Let $S \subset X$ be a minimal set such that the subgraph G_{S} is a tree containing T. Furthermore, let us choose T such that $|S|$ is minimum. A pendent vertex x_{1} of the tree G_{S} is therefore in T.

Since T is a minimal transversal of H, the partial hypergraph $H_{1}=\left(E / E \in H, E \cap T=\left\{x_{1}\right\}\right)$ is non-empty; there exists an edge $E_{1} \in H_{1}$ such that $E_{1} \cap\left(S-\left\{x_{1}\right\}\right)=\varnothing$ (by the minimality of $\left.|S|\right)$.

The hypergraph $H^{\prime}=H-H\left(x_{1}\right)$ has a transversal of cardinality $t-1$. Thus $\nu\left(H^{\prime}\right)=t-1$ (by the induction hypothesis). An optimal matching of H^{\prime} augmented by the edge E_{1}, forms a matching of H with cardinality t, and hence $\nu(H) \geq t=\tau(H)$. We therefore have $\nu(H)=\tau(H)$.

Example 5: Bipartite multigraphs. A famous theorem of König states that a

68 Hypergraphs

bipartite multigraph has the König property, and also the dual König property.
For non-bipartite graphs, those having the König property have been characterised by Sterboul and this result will be proved later on (Chapter 4, Theorem 6).

Example 6: Interval hypergzaphs. A theorem of Gallai states that an interval hypergraph has the König property. This follows also from Example 2 or Example 4 above. We shall see later on that it also has the dual König property.

Example 7: The hypergraph of circuits of a digraph. Let G_{0} be a strongly connected digraph, and let H be the hypergraph whose vertices are the arcs of G_{0} and whose edges are the elementary circuits of G_{0}.

If G_{0} is planar, a theorem of Lucehesi and Younger in [1978] shows that the hypergraph H has the König property. If G_{0} is non-planar, the hypergraph H does not in general have the König property: for the graph G_{0} of Figure 6 we find that $\nu(H)=1$ and $\tau(H)=2$. Younger has also conjectured that if G_{0} is planar, the hypergraph $\operatorname{Tr} H$ has the König property; Kahn [1984] has shown that for G_{0} planar the hypergraph H_{1} of minimal length circuits of G_{0} has its transversal hypergraph $\operatorname{Tr} H_{1}$ with the König property.

Theorem 8 (Seymour [1982]). A linear hypergraph H with $n(H)$ vertices and $m(H)$ edges without repeated loops satisfies

$$
\nu(H) \geq \frac{m(H)}{n(H)}
$$

(*) Proof. Let H be a linear hypergraph with $m(H)=m, n(H)=n$. Let $p(H)=p$ be the least integer $\geq \frac{m}{n}$. Thus

$$
\begin{equation*}
p \geq \frac{m}{n} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
p-1<\frac{m}{n} \tag{2}
\end{equation*}
$$

We show that $\nu(H) \geq p$. As this is trivial for $p=1$, we may assume that $p(H) \geq 2$ and prove the result by induction on m.

1. We can suppose that for every $E \in H$, there are at least $(p-2)|E|+n+1$ edges of H which meet E.

For if not, the hypergraph $H_{1}=(F / F \in H, F \cap E=\not \subset)$ satisfies

$$
m-m\left(H_{1}\right)<(p-2)|E|+n+1
$$

Hence, from (2),

$$
m\left(H_{1}\right)>n(p-1)+1-(p-2)|E|-n-1=(n-|E|)(p-2) .
$$

In this case

$$
\frac{m\left(H_{1}\right)}{n\left(H_{1}\right)} \geq \frac{(n-|E|)(p-2)}{n-|E|}=p-2
$$

By virtue of the induction hypothesis the hypergraph H_{1}, which is linear, satisfies $\nu\left(H_{1}\right) \geq p-1$. By adjoining E to a matching of H_{1} with $p-1$ edges we obtain a matching of H with p edges, and the theorem is proved.
2. If $S \subset X,|S| \leq p-1$, there exists an edge $E \in H$ with $E \cap S=\varnothing$.

Let $x \in X$. The sets $E-\{x\}$ with $E \in H(x)$ are pairwise disjoint (by the linearity of H); since their union has at most $n-1$ points, and only one of them can be empty, we have $|H(x)| \leq n$. Thus the maximum degree of H is $\Delta(H) \leq n$.

Using (2) we see that the partial hypergraph $H^{\prime}=(E / E \in H, E \cap S \neq \varnothing)$ satisfies

$$
m\left(H^{\prime}\right) \leq|S| \Delta(H) \leq(p-1) n<m=m(H)
$$

Thus there is an edge $E \in H-H^{\prime}$, and $E \cap S=\varnothing$.
3. We shall define progressively distinct edges $F_{1}, F_{2}, \ldots, F_{p}$ and distinct vertices $x_{1}, x_{2}, \ldots, x_{p}$ by the following rules:
(I) F_{1} is an edge of maximum cardinality; x_{1} is a point of F_{1} with the smallest degree.
(II) For $i>1, F_{i}$ is an edge such that $F_{i} \cap\left\{x_{1}, x_{2}, \ldots x_{i-1}\right\}=\varnothing$ with the smallest cardinality (from assertion 2 above such an edge exists); x_{i} is a vertex of F_{i} for which $d_{H}(x)$ is maximum.

Put

$$
\left|F_{i}\right|=f_{i}
$$

$$
\begin{aligned}
& H_{i}=\left(E / E \in H, E \cap\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}=\left\{x_{i}\right\}\right) \\
& H_{i}^{0}=\left(E / E \in H_{i},|E|=f_{i}\right)
\end{aligned}
$$

We note that $f_{1} \leq f_{2} \leq \cdots \leq f_{p}$ and that $F_{1} \in H_{i}^{0}$. We show that

$$
\begin{equation*}
\left|H_{i}^{0}\right| \geq f_{i}\left|H_{i}\right|-n+1+\sum_{j \in J_{i}}\left(f_{j}-1\right) \tag{3}
\end{equation*}
$$

where

$$
J_{i}=\left\{j / 1 \leq j<i ; x_{i} \in \cup_{E \in H_{i}} E\right\}
$$

We note that if $j \in J_{i}$ there exists a unique edge $E \in H_{j}$ which satisfies $x_{i} \in E$ and that this edge E has at least f_{j} elements. Thus

$$
\begin{aligned}
n-1 & \geq \sum_{x_{i} \in E}(|E|-1)=\sum_{E \in H_{i}}(|E|-1)+\sum_{j \leq i} \sum_{\substack{E \in H_{j} \\
x_{i} \in E}}(|E|-1) \\
& \geq \sum_{E \in H_{i}} f_{i}-\sum_{E \in H_{i}^{\mathbf{q}}} 1+\sum_{j \in J_{i}}\left(f_{j}-1\right) \\
& =f_{i}\left|H_{i}\right|-\left|H_{i}^{0}\right|+\sum_{j \in J_{i}}\left(f_{j}-1\right)
\end{aligned}
$$

From this (3) follows.
4. We show
(4) $\quad f_{i}\left|H_{i}\right|-n \geq f_{i}\left(p-1-\left|J_{i}\right|\right)$.

From assertion 1 above the number of edges of H which meet F_{i} is at least $(p-2) f_{i}+n+1$. For $x \in F_{i}$,

$$
|H(x)| \leq\left|H\left(x_{i}\right)\right| .
$$

Thus

$$
(p-2) f_{i}+n+1 \leq f_{i}\left(\left|H_{i}\right|+\left|J_{i}\right|-1\right)+1
$$

From this (4) follows.
5. We show that

$$
\begin{equation*}
\left|H_{i}^{0}\right|>p-i+\sum_{j<i}\left(f_{j}-1\right) \tag{5}
\end{equation*}
$$

From (3) and (4) we obtain

$$
\begin{aligned}
\left|H_{i}^{0}\right| & \geq 1+f_{i}\left(p-1-\left|J_{i}\right|\right)+\sum_{j \in J_{i}}\left(f_{j}-1\right) \\
& =1+f_{i}\left(p-1-\left|J_{i}\right|\right)-\sum_{\substack{j<i \\
j \notin J_{j}}}\left(f_{j}-1\right)+\sum_{j<i}\left(f_{j}-1\right)
\end{aligned}
$$

However,

$$
\begin{aligned}
& f_{i}\left(p-1-\left|J_{i}\right|\right)-\sum_{\substack{j<j_{j} \\
j \notin J_{i}}}\left(f_{j}-1\right) \geq f_{i}\left(p-1-\left|J_{i}\right|\right)-\Sigma f_{j} \\
& \quad=f_{i}\left(p-1-\left|J_{i}\right|\right)-f_{i}\left(i-1-\left|J_{i}\right|\right)=f_{i}(p-1) \geq p-i .
\end{aligned}
$$

From this (5) follows.
6. We shall define a sequence of edges $E_{1}, E_{2}, \ldots, E_{p}$ one by one; if $E_{1}, E_{2}, \ldots, E_{i-1}$ have been defined, we take $E_{i} \in H_{i}^{0}$ so that $E_{i} \cap Z_{i}=\varnothing$, where

$$
Z_{i}=\left\{x_{1}, x_{2}, \ldots, x_{i-1}\right\} \cup \bigcup_{j<i}\left(E_{j}-\left\{x_{j}\right\}\right)
$$

Such an edge E_{i} exists, for the sets ($E-\left\{x_{i}\right\} / E \in H_{i}^{0}$) are pairwise disjoint and there are at least $1+\left|Z_{i}\right|$ of them from (5); thus at least one of them is disjoint from Z_{i}.

Every edge E_{j} with $j<i$ is disjoint from the edge E_{i} since $x_{j} \notin E_{i}$ (because $\left.E_{i} \in H_{i}^{0} \subset H_{i}\right)$, and $\left(E_{j}-\left\{x_{j}\right\}\right) \cap E_{i} \subset Z_{i} \cap E_{i}=\varnothing$.

Thus $\left(E_{1}, E_{2}, \ldots, E_{p}\right)$ is a matching, and hence $\nu(H) \leq p$.
Q.E.D.

Corollary (Theorem of DeBruijn and Erdös, completed by Ryser [1970]). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a family of distinct subsets of X, where $|X|=n$, such that $\left|E_{i} \cap E_{j}\right|=1$ for $i \neq j$. Then $m \leq n$. Furthermore, if $m=n$, we have one of the following cases:
(i) $\quad H$ is a projective plane of rank $r \geq 3$;
(ii)

$$
H=(\{1\},\{1,2\},\{1,3\}, \ldots,\{1, n\}), \quad n \geq 1 ;
$$

$$
\begin{equation*}
H=(\{1,2\},\{1,3\}, \ldots,\{1, n\},\{2,3, \ldots, n\}), \quad n \geq 3 . \tag{iii}
\end{equation*}
$$

Inequality $m \leq n$ is obvious since, from Theorem 8,

$$
\nu(H)=1 \geq \frac{m}{n}
$$

We note that by using this result, Seymour has also shown that if H is a linear hypergraph H and satisfies $\nu(H)=\frac{m}{n}$, then we have either (i), (ii), (iii) or
(iv) $\quad H=K_{n}$, where n is odd and ≥ 5.

Exercises on Chapter 2.

Exercise 1 (§2)

Show that if H has the Helly property and if we put

$$
H_{i}=\left\{E / E \in H, E \subset X-E_{i}\right\}
$$

then $\tau(H) \leq \max _{i} m\left(H_{i}\right)$.

Exercise 2 (§2)

Let H be an r-uniform hypergraph of maximum degree $\Delta=2$. The upper bound for $\tau(H)$ has been determined by Sterboul [1970]:
if r is even, it is $\left[\left[\frac{2 n}{r}\right] \frac{2}{3}\right]$;
if r is odd, it is $\left[\frac{4 n}{3 r+1}\right]$ or $\left[\frac{4 n}{3 r+1}\right]$.
Try to construct hypergraphs for which this bound is obtained.

Exercise 3 (§2)

If H is a 3 -uniform regular of degree $\Delta=3$, then

$$
\tau(H) \leq\left[\frac{n}{2}\right]
$$

Show that this bound is the best possible. (Henderson, Dean [1974]).

Exercise $4(\S 2)$ Let H be a hypergraph without loops on X. For every $Y \subset X$, define

$$
H / Y=\left(E_{i} / E_{i} \in H, \quad E_{i} \subset Y\right)
$$

Put $\tau(H)=0$ if H is "empty" (having no edges), and suppose that

$$
\tau(H / Y) \leq \frac{|Y|}{2} \quad(Y \subset X)
$$

Show that for every maximal transversal $T=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, there exist distinct elements $y_{1}, y_{2}, \ldots, y_{t}$ of $S=X-T$ such that $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right], \ldots,\left[x_{t}, y_{t}\right]$ are the edges of the graph $[H]_{2}$. (Lehel [1982]).

Hint: Consider the bipartite graph $G=(T, S ; \Gamma)$ formed by the edges of $[H]_{2}$. The partial hypergraph $H_{1}=\left(E_{i} / E_{i} \in H, E_{i} \subset A \cup \Gamma_{G} A\right)$ has a transversal T_{1} with

$$
\left|T_{1}\right| \leq \frac{1}{2}\left|A \cup \Gamma_{G} A\right|
$$

$T_{0}=T_{1} \cup(T-A)$ is a transversal of H and $\left|T_{0}\right| \geq|T|$ implies that $\left|\Gamma_{G} A\right| \geq|A|$, from which the theorem follows.

Exercise 5 (\$4)

Show that the hypergraph P defined by a polyomino (Example 2, §4) is conformal. Show that there exists a vertex of degree 1. Show that there exist distinct vertices $x_{1}, x_{2}, \ldots, x_{m}$ such that $x_{i} \in E_{i}$ for $i=1,2, \ldots, m$.

Exercise 6 (\$4)

Show that the hypergraph P defined by a semi-convex polyomino (Example 2, § 4) has a set $S \subset X$ which is a transversal and is strongly stable.

Exercise 7 (\$4)

Use the results of Seymour to prove the "friendship theorem" (Erdös): if in a set of n individuals, any two of them have exactly one friend in common, then there exists someone who is a friend of all the others.

Chapter 3

Fractional Transversals

1. Fractional transversal number

Let s be a positive integer. An $s-$ matching of a hypergraph H on X is a function q on the edges of H such that for each edge $E, q(E) \in\{0,1,2, \ldots, s\}$, and for each vertex x,

$$
\sum_{E \in H(x)} q(E) \leq s
$$

The value of an s-matching is $\sum_{E \in H} q(E)$; we denote by $\nu_{s}(H)=\max _{q} \sum_{E \in H} q(E)$ the maximum value of the s-matchings of the hypergraph H. Clearly, for $s=1$, an s-matching is a matching and $\nu_{1}(H)=\nu(H)$.

A fractional matching is a real-valued function q such that
(1) $0 \leq q(E) \leq 1 \quad(E \in H)$
(2) $\sum_{E \in H(x)} q(E) \leq 1 \quad(x \in X)$

We denote the maximum value of a fractional matching of H by:

$$
\nu^{*}(H)=\max _{q} \sum_{E \in H} q(E)
$$

Example: Consider a truncated checkerboard, for example that of Figure 1 which has 27 squares. We wish to place a number of rectangular cards of dimension 2×3 on the board so that each card covers exactly 6 squares (or "polyominoes" of shape 2×3). What is the maximum number of polyominoes which we may place on the board so that no two of them overlap? If we let H be the hypergraph on the set of squares of the board whose edges are the sets of squares which may be covered by a polyomino, the answer is $\nu(H)$. Here $\nu(H)=3$, and a matching of value 3 is shown in Figure 1. More difficult is the following problem: What is the maximum number of polyominos which may be placed on the board in such a way that no square is covered more than twice? The answer is $\nu_{2}(H)$. Here $\nu_{2}(H)=7$, and a 2 -matching of value 7 is shown in Figure 2. A more detailed study shows further that $\nu^{*}(H)=\frac{7}{2}$.

For an integer $k \geq 1$ we define a k-transversal of H to be a function p on X such that for each vertex $x, p(x) \in\{0,1,2, \ldots, k\}$ (the "weights") and

$$
\sum_{x \in E} p(x) \geq k \quad(E \in H)
$$

The value of a k-transversal p is $\sum_{x \in X} p(x)$, and we shall denote by $\tau_{k}(H)$ the minimum value of the k-transversals of H. Clearly, for $k=1$ a k-transversal is a transversal and $\tau_{1}(H)=\tau(H)$.

A fractional transversal of H is a real function $p(x)$ such that
(1) $0 \leq p(x) \leq 1 \quad(x \in X)$
(2) $\sum_{z \in E} p(x) \geq 1 \quad(E \in H)$

The fractional transversal number of H is the minimum value $\tau^{*}(H)$ of the fractional transversals of H; this number will be our principal subject of study in this chapter.

Example. If H is the graph C_{5} (a cycle of length 5) we see immediately that $p(x) \equiv 1$ is a 2-transversal, and $\tau_{2}(H)=5$. Further $p(x) \equiv 0.5$ is a fractional transversal, and $\tau^{*}(H)=2.5$. Further, $\nu_{1}(H)=2, \nu_{2}(H)=5, \nu^{*}(H)=2.5$.

Remark: Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph on $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and let $A=\left(\left(a_{j}^{i}\right)\right)$ be the incidence matrix of H :

$$
a_{j}^{i}=\left\{\begin{array}{l}
0 \text { if } x_{i} \notin E_{j} \\
1 \text { if } x_{i} \in E_{j}
\end{array}\right.
$$

A fractional matching may be interpreted as a vector $\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{m}\right)$ of the polyhedron:

$$
Q=\left\{\mathbf{q} / \mathbf{q} \in \mathbb{R}^{m}, \mathbf{q} \geq \mathbf{0}, A \mathbf{q} \leq 1\right\}
$$

This polyhedron in m-dimensional space is thus called the matching polytope of H, and a matching is a vector of Q whose coordinates are either 0 or 1 . Similarly, a fractional transversal may be interpreted as a vector $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ of the polytope:

$$
P=\left\{\mathbf{p} / \mathbf{p} \in R^{n}, \mathbf{p} \geq \mathbf{0}, A^{*} \mathbf{p} \geq \mathbf{1}\right\}
$$

This polyhedron is called the transversal polytope.

Theorem 1 (Berge, Lovász, Simonovits). Every hypergraph H satisfies:

$$
\begin{aligned}
& \nu(H)=\min _{s \geq 1} \frac{v_{s}(H)}{s} \leq \max _{H^{\prime} \subseteq H} \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \leq \max _{s \geq 1} \frac{\nu_{s}(H)}{s}=\nu^{*}(H) \\
= & \tau^{*}(H)=\min _{k \geq 1} \frac{\tau_{k}(H)}{k} \leq \min _{A \subseteq X} \frac{|A|}{s\left(H_{A}\right)} \leq \max _{k \geq 1} \frac{\tau_{k}(H)}{k}=\tau(H) .
\end{aligned}
$$

These inequalities are called the "fundamental inequalities"; the expressions "max" (or "min") imply that the upper (or lower) bound is attained.

Proof. 1. $\nu(H)=\min \frac{\nu_{s}(H)}{s}$.
If H^{\prime} is a matching of size $\nu(H)$, the hypergraph $s H^{\prime}$ obtained from H by repeating each edge s times is an s-matching: thus $\nu_{s}(H) \geq s \nu(H)$. The equality is satisfied for $s=1$, so indeed $\min \frac{\nu_{s}(H)}{s}=\nu(H)$.
2. $\min \frac{\nu_{s}(H)}{s} \leq \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)}$.

Let $H^{\prime \prime}$ be a maximum matching of H; we have

$$
\begin{aligned}
& \nu(H)=\frac{m\left(H^{\prime \prime}\right)}{\Delta\left(H^{\prime \prime}\right)} \leq \max _{H^{\prime} \subseteq H} \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \\
& \text { 3. } \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \leq \sup \frac{\nu_{s}(H)}{s} .
\end{aligned}
$$

Let $H^{\prime \prime} \subset H$ be such that $\frac{m\left(H^{\prime \prime}\right)}{\Delta\left(H^{\prime \prime}\right)}=\max _{H^{\prime} \subseteq H} \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)}$. If we set $s=\Delta\left(H^{\prime \prime}\right)$, then

$$
\max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)}=\frac{m\left(H^{\prime \prime}\right)}{\Delta\left(H^{\prime \prime}\right)} \leq \frac{\nu_{s}(H)}{s} \leq \sup _{s} \frac{\nu_{s}(H)}{s}
$$

4. $\sup _{s} \frac{\nu_{s}(H)}{s}=\max \frac{\nu_{s}(H)}{s}=\nu(H)$.

Let $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ be a maximum s-matching of H. Since $\frac{\mathbf{z}}{s} \in Q$, we have

$$
\text { (1) } \frac{\nu_{s}(H)}{s}=\Sigma \frac{z_{i}}{s} \leq \nu^{*}(H) \text {. }
$$

Conversely, let q be a fractional matching with $\Sigma q_{i}=\nu^{*}(H)$. Since such a q will be an extremal point of a polyhedron Q defined by linear inequalities with integer coefficients, we may assume that the q_{i} 's are rational. Let z be a vector such that

$$
q_{i}=\frac{z_{i}}{s} ; s, z_{1}, z_{2}, \ldots, z_{m} \text { integers } \geq 0
$$

Since $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right) \geq 0$ and $A \mathbf{z}=A(s \mathbf{q})=s A \mathbf{q} \leq s .1$, the vector \mathbf{z} is an s-matching, whence

$$
\nu^{*}(H)=\frac{1}{s} \sum_{i=1}^{m} z_{i} \leq \frac{\nu_{s}(H)}{s}
$$

Consequently, from (1), $\frac{\nu_{s}(H)}{s}=\nu^{*}(H)$, and

$$
\sup \frac{\nu_{s}(H)}{s}=\max \frac{\nu_{s}(H)}{s}=\nu^{*}(H)
$$

5. $\nu^{*}(H)=\tau^{*}(H)$.

This is an immediate result of the duality theorem in linear programming: $\min _{p \in P} \Sigma p_{i}=\max _{q \in Q} \Sigma q_{j}$.
6. $\tau^{*}(H)=\min \frac{\tau_{k}(H)}{k}=\inf \frac{\tau_{k}(H)}{k}$.

Let \mathbf{p} be a fractional transversal with $\sum p_{i}=\tau^{*}(H)$. We may assume that the coordinates of \mathbf{p} are rational (since the extremal points of the polyhedron P have rational coordinates). Let $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ be such that

$$
p_{i}=\frac{t_{i}}{k} ; t_{1}, t_{2}, \ldots, t_{n} \text { integers } \geq 0
$$

Since $A^{*} \mathbf{p} \geq 1$ we have $A^{*} \mathbf{t} \geq k$: thus \mathbf{t} is a k-transversal, whence

$$
\tau^{*}(H)=\frac{\Sigma t_{i}}{k} \geq \frac{\tau_{k}(H)}{k}
$$

Conversely, every integer k satisfies $\frac{\tau_{k}(H)}{k} \geq \tau^{*}(H)$ and consequently

$$
\inf _{k} \frac{\tau_{k}(H)}{k}=\min _{k} \frac{\tau_{k}(H)}{k}=\tau^{*}(H) .
$$

7. $\min \frac{\tau_{k}(H)}{k} \leq \min \frac{|A|}{s\left(H_{A}\right)}$.

Let A be a set of vertices of H. Put

$$
s=s\left(H_{A}\right)=\min _{i}\left|E_{i} \cap A\right| .
$$

Then the characteristic function of the set A is an s-transversal, whence $\tau_{s}(H) \leq|A|$ and consequently

$$
\min _{k} \frac{\tau_{k}(H)}{k} \leq \frac{\tau_{s}(H)}{s} \leq \frac{|A|}{s\left(H_{A}\right)} .
$$

Since this is true for all $A \subseteq X$,

$$
\min _{k} \frac{\tau_{k}(H)}{k} \leq \min _{A} \frac{|A|}{s\left(H_{A}\right)}
$$

8. $\min \frac{|A|}{s\left(H_{A}\right)} \leq \max \frac{\tau_{k}(H)}{k}$.

Let T be a minimum transversal of H; we have

$$
\min _{A} \frac{|A|}{s\left(H_{A}\right)} \leq \frac{|T|}{s\left(H_{T}\right)}=|T|=\frac{\tau_{1}(H)}{1} \leq \max _{k} \frac{\tau_{k}(H)}{k}
$$

9. $\max \frac{\tau_{k}(H)}{k}=\tau(H)$.

Let T be a minimum transversal and let $t(x)$ be its characteristic function:

$$
t(x)=\left\{\begin{array}{l}
1 \text { if } x \in T \\
0 \text { if } x \notin T
\end{array}\right.
$$

For each integer k, the function $k t(x)$ is a k-transversal; thus

$$
\tau_{k}(H) \leq \sum_{x \in X} k t(x)=k|T|
$$

whence:

$$
\max _{k} \frac{\tau_{k}(H)}{k} \leq|T|=\tau(H)
$$

Corollary 1. A hypergraph H with the König property contains k disjoint edges if the only if

$$
k s\left(H_{A}\right) \leq|A| \quad(A \subset X)
$$

Indeed, for a hypergraph H satisfying $\nu(H)=\tau(H)$ we have $\nu(H)=\min _{A \subseteq X} \frac{|A|}{s\left(H_{A}\right)}$. Hence $\nu(H) \geq k$, which is equivalent to the condition stated.

Corollary 2. A hypergraph H having the König property contains a set of k vertices which meet every edge if and only if

$$
k \Delta\left(H^{\prime}\right) \geq m\left(H^{\prime}\right) \quad\left(H^{\prime} \subset H\right)
$$

(Similar proof).
Corollary 3. Every r-uniform regular hypergraph has $p(x) \equiv \frac{1}{r}$ as an optimal fractional transversal.

Indeed, consider a regular r-uniform hypergraph H of order n. By counting the number of edges in the bipartite edge-vertex incidence graph in two different ways we see that $m(H) r=\Delta(H) n$. Thus, from Theorem 1,

$$
\frac{n}{r}=\frac{m(H)}{\Delta(H)} \leq \max _{H^{\prime}} \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \leq \tau^{*}(H) \leq \min _{A} \frac{|A|}{s\left(H_{A}\right)} \leq \frac{n}{r}
$$

Thus $\tau^{*}(H)=\frac{n}{r}$ and consequently $p(x) \equiv \frac{1}{r}$ is optimal.
For example, for the complete hypergraph K_{n}^{r}, Corollary 3 gives

$$
\tau^{*}\left(K_{n}^{r}\right)=\frac{n}{r}
$$

and we have

$$
\nu\left(K_{n}^{r}\right)=\left[\frac{n}{r}\right] \leq \tau^{*}\left(K_{n}^{r}\right)=\frac{n}{r} \leq \tau\left(K_{n}^{r}\right)=n-r+1
$$

As another example, for the cycle C_{5}, Corollary 3 gives

80 Hypergraphs

$$
\tau *\left(C_{5}\right)=\frac{5}{2}
$$

and we have

$$
\nu\left(C_{5}\right)=2 \leq \tau^{*}\left(C_{5}\right)=\frac{5}{2}=\tau\left(C_{5}\right)=3 .
$$

Theorem 1 may equally well be applied to the dual hypergraph H^{*}; it then has a totally different interpretation.

For an integer $k \geq 1$, a strongly k-stable function is a function f which assigns to each vertex x of H an integer $f(x) \in\{0,1,2, \ldots, k\}$ such that

$$
\sum_{x \in E} f(x) \leq k \quad(E \in H)
$$

We denote by $\bar{\alpha}_{k}(H)$ the maximum value of $\sum_{x \in X} f(x)$ for the strongly k-stable functions of H. It is clear that, for $k=1$, a strongly k-stable function may be identified with a stable set, and $\bar{\alpha}_{1}(H)=\bar{\alpha}(H)$.

Proposition 1. If H^{*} is the dual of H then

$$
\bar{\alpha}_{k}(H)=\nu_{k}\left(H^{*}\right)
$$

Indeed, a strongly k-stable function on H defines a k-matching of H^{*}, and vice versa.

Proposition 2. Let H be an r-uniform hypergraph of order n, and let λ, k, k^{\prime} be integers with $k+k^{\prime}=\lambda r$. Then

$$
\bar{\alpha}_{k}(H)=\lambda n=\tau_{k^{\prime}}(H) .
$$

Indeed, f is a k-stable function if

$$
\sum_{x \in E} f(x) \leq k \quad(E \in H)
$$

This is equivalent to saying that the function $p(x)=\lambda-f(x)$ satisfies

$$
\sum_{x \in E} p(x)=\lambda r-\sum_{x \in E} f(x) \geq \lambda r-k=k^{\prime}
$$

This means that p is a k-transversal of H. Further

$$
\sum_{x \in X} f(x)=\lambda n-\sum_{x \in X} p(x)
$$

Thus

$$
\bar{\alpha}_{k}(H)=\max \sum_{x \in X} f(x)=\lambda n-\min \sum_{x \in X} p(x)=\lambda n-\tau_{k^{\prime}}(H) .
$$

Observe that if the hypergraph is a graph G, we may set $\lambda=k=k^{\prime}=1$ to obtain the well known equality

$$
\alpha(G)+\tau(G)=n
$$

For an integer $s \geq 1$, an s-covering of H is a function g which assigns to each edge E an integer $g(E) \in\{0,1,2, \ldots, s\}$ such that

$$
\sum_{E \in H(x)} g(E) \geq s \quad(x \in X)
$$

We denote by $\rho_{s}(H)$ the minimum value of an s-covering of H.

Proposition 3. If H^{*} is the dual of the hypergraph H, then

$$
\rho_{k}(H)=\tau_{k}\left(H^{*}\right) .
$$

Indeed, an \boldsymbol{s}-covering of H corresponds in H^{*} to an s-transversal, and vice-versa.

Proposition 4. Let H be a regular hypergraph with $\Delta(H)=h$, and let λ, s, t be integers such that $s+t=\lambda h$. Then

$$
\rho_{s}(H)=\lambda m-\nu_{t}(H)
$$

Indeed, the hypergraph H^{*} is h-uniform, and from Propositions 1, 2 and 3,

$$
\rho_{s}(H)=\tau_{s}\left(H^{*}\right)=\lambda m-\bar{o}_{t}\left(H^{*}\right)=\lambda m-\nu_{t}(H) .
$$

By duality we obtain:

Theorem 1'. Every hypergraph H satisfies:

$$
\begin{aligned}
& \bar{\alpha}(H)=\min _{k \geq 1} \frac{\bar{\alpha}_{k}(H)}{k} \leq \max _{A \subseteq X} \frac{|A|}{r\left(H_{A}\right)} \leq \max _{k \geq 1} \frac{\bar{\alpha}_{k}(H)}{k}=\alpha^{*}(H) \\
& =\min _{k} \frac{\rho_{k}(H)}{k} \leq \min _{H^{\prime} \subseteq H} \frac{m\left(H^{\prime}\right)}{\delta\left(H^{\prime}\right)} \leq \max _{k \geq 1} \frac{\rho_{k}(H)}{k}=\rho(H) .
\end{aligned}
$$

Corollary. The edges of a hypergraph H with the dual König property are coverable with k edges if and only if

82 Hypergraphs

$$
k r\left(H_{A}\right) \geq|A| \quad(A \subset X)
$$

Indeed, if $\bar{\alpha}(H)=\rho(H)$ we have

$$
\rho(H)=\max _{A \subseteq X} \frac{A}{r\left(H_{A}\right)} \leq k
$$

This is equivalent to the stated condition.

Example: Consider the celebrated problem of Gauss: what is the maximum number of queens which may be placed on an 8×8 chessboard such that no two lie in the same row, column or diagonal. If we consider diagram A we see that it is possible to place 8 queens in such a manner, and 8 is clearly the maximum. In other words, the hypergraph H on the set of squares, whose edges are the rows, columns and diagonals of the chessboard, satisfies $\bar{\alpha}(H)=8$. Clearly $\rho(H)=8$, since the 8 columns constitute a covering, and the hypergraph H has the dual König property: $\bar{\alpha}(H)=\rho(H)$.

More difficult is the following problem: what is the minimum number of queens necessary to cover every row, column and diagonal at least once? Clearly $\nu(H)=14$, since we may form a matching with the 7 white diagonals parallel to the leading white diagonal and the 7 black diagonals parallel to the leading black diagonal. Further, we also have $\tau(H)=14$, a transversal of 14 elements being represented in diagram B . Hence $\nu(H)=\tau(H)$, and the hypergraph H satisfies the König property.

Note that this is not the same as the domination problem: what is the minimum number of queens necessary to dominate all the squares? The answer is 5 , and the solution of diagram C corresponds to a maximal strongly stable set of minimum weight: thus $\bar{\alpha}(H)=5$.

We may also ask the question: is it possible to place 16 queens in such a way that each row, column and diagonal contains at most two queens? Since $\bar{\alpha}_{2}(H)=2 \bar{\alpha}(H)=16$ this is clearly possible if we allow two queens to occupy the same square. However, diagram D gives as a solution a $0-1$ vector, that is to say an optimal strongly 2 -stable "set".

Finally, we may consider the problem: does there exists a 2 -transversal which is a set of 28 queens, all placed on different squares? An optimal 2-transversal with 0-1 coordinates is represented in diagram E.

E
Figure 3

2. Fractional matchings of a graph

We now suppose that the hypergraph is a simple graph denoted by $G=(X, E)$. From Theorem 1, we have

$$
\nu(G)=\min _{k \geq 1} \frac{\nu_{k}(G)}{k} \leq \max _{G^{\prime}} \frac{m\left(G^{\prime}\right)}{\Delta\left(G^{\prime}\right)}=\tau^{*}(G)=
$$

84 Hypergraphs

$$
=\min _{k \geq 1} \frac{\tau_{k}(G)}{k} \leq \max _{k \geq 1} \frac{\tau_{k}(G)}{k}=\tau(G)
$$

Theorem 2. Every graph G satisfies

$$
\tau^{*}(G)=\frac{\nu_{2}(G)}{2}=\frac{\tau_{2}(G)}{2}
$$

Further, there exists a maximum 2-matching, $H \subset 2 G$ whose connected components are isolated vertices, pairs of parallel edges, and odd cycles.

For such a 2-matching H, there exists a minimum fractional transversal t such that $t(x)=0$ if x is an isolated vertex of $H ; t(x)=0, t(y)=1$ (or $t(x)=t(y)=\frac{1}{2}$) if x and y are the endpoints of a pair of parallel edges of $H ; t(x)=\frac{1}{2}$ if x belongs to an odd cycle of H.

Proof: Let $H \subset 2 G$ be a 2 -matching with $m(H)$ maximum. Each connected component of H which is a path of even length or an even cycle may be replaced by pairs of parallel edges without changing $m(H)$. No component of H is a path of odd length, since we could then augment $m(H)$ by replacing it by pairs of parallel edges. We may thus suppose that H is of the indicated type.

We now label each vertex of G with a 0 , a 1 or a $\frac{1}{2}$, step by step, according to the following rules:
(1) an isolated vertex of H is labelled 0 ;
(2) a vertex which is adjacent in G to a vertex labelled 0 is labelled 1 ;
(3) a vertex which is adjacent in H to a vertex labelled 1 is labelled 0 ;
(4) each vertex which cannot be labelled by rules $1,2,3$ is labelled $\frac{1}{2}$.

Observe that an odd path starting at an isolated vertex of H followed alternately by edges of $G-H$ and double edges of H cannot terminate in an isolated vertex of H : otherwise, by replacing in H the double edges of this path by the path itself we obtain a 2-matching H^{\prime} with $m\left(H^{\prime}\right)=m(H)+1$, contradicting the maximality of H. Similarly, an odd path of this type cannot terminate in an odd cycle of H. Finally an odd path of this type cannot contain any other vertex labelled 0.

Hence a single label $t(x)$ may be given to each vertex x and t indeed takes the values given in the statement. From rule 2, the function $t(x)$ is a fractional transversal of G, and, by Theorem 1, we obtain:

$$
\frac{m(H)}{2}=\frac{\nu_{2}(G)}{2} \leq \tau^{*}(G) \leq \sum_{x \in X} t(x)=\frac{m(H)}{2}
$$

Thus we have equality throughout, which shows that $t(x)$ is a maximum fractional transversal of G, and that

$$
\tau^{*}(G)=\frac{\nu_{2}(G)}{2}=\frac{\tau_{2}(G)}{2}
$$

Theorem 3 (Lovász [1975]). Every graph G satisfies

$$
\tau^{*}(G) \leq \frac{1}{2}(\nu(G)+\tau(G))
$$

Proof: Let T be a minimum transversal of the graph $G=(X, E)$; the set $S=X-T$ is then a maximum stable set. Let k be the maximum number of disjoint edges having an end in S. From König's Theorem on maximum matchings in bipartite graphs (cf. Graphs, chapter 7), there exists a subset A_{0} of S such that

$$
\left|S-A_{0}\right|+\left|\Gamma_{G} A_{0}\right|=\min _{A \subseteq S}\left(|S-A|+\left|\Gamma_{G} A\right|\right)=k
$$

Put

$$
t(x)=\left\{\begin{array}{l}
0 \text { if } x \in A_{0} \\
1 \text { if } x \in \Gamma_{G} A_{0} \\
\frac{1}{2} \text { if } x \in X-\left(A_{0} \cup \Gamma_{G} A_{0}\right)
\end{array}\right.
$$

Clearly, $t(x)$ is a fractional transversal of G; whence:

$$
\begin{aligned}
2 \tau^{*}(G) & \leq 2 \sum_{x \in X} t(x)=|T|+\left|\Gamma_{G} A_{0}\right|+\left|S-A_{0}\right| \\
& =\tau(G)+k \leq \tau(G)+\nu(G)
\end{aligned}
$$

from which we deduce the result.

Corollary. For a graph G the following conditions are equivalent:
(1) $\tau^{*}(G)=\tau(G)$
(2) $\nu(G)=\tau(G)$

Proof: Since, from the fundamental inequalities, (2) implies (1), it suffices to show that (1) implies (2). Let G be a graph satisfying (1); from Theorem 3,

86 Hypergraphs

$$
\tau(G)=\tau^{*}(G) \leq \frac{1}{2}(\nu(G)+\tau(G)) \leq \frac{1}{2}(\tau(G)+\tau(G))
$$

We thus have equality throughout, which implies (2).

Remark: It is not true that $\tau^{*}(G)=\nu(G)$ implies $\nu(G)=\tau(G)$. For example, $\tau *\left(K_{4}\right)=\nu\left(K_{4}\right)=2$, but $\tau\left(K_{4}\right)=3$.

An optimal 2-matching H of the form given in Theorem 2 determines an optimal fractional matching q; the set of edges e of G with $q(e) \neq 0$ defines a partial subgraph of G whose connected components are: isolated vertices, isolated edges and odd cycles. Such an optimal fractional matching is said to be canonical. Balinski [1970] showed that the canonical matching are the extreme points of the matching polytope. We have:

Theorem 4 (Uhry [1875]). Let $G=(X, E)$ be a graph, and let q be a canonical fractional matching such that the set of edges e with $q(e)=\frac{1}{2}$ is minimal with respect to inclusion. Then we obtain a maximum matching M of G on taking the union of $M_{0}=\{e / q(e)=1\}$ and all the M_{i} 's where M_{i} denotes a maximum matching of the odd cycle μ_{i} of $\{e / e \in E ; q(E) \neq 0\}$.
(*) Proof: Let μ_{1}, μ_{2}, \ldots be the odd cycles formed by those edges e with $q(e)=\frac{1}{2}$; denote by X_{i} the set of vertices of μ_{i} and set $X_{0}=X-\bigcup_{i \geq 1} X_{i}$.

Clearly M_{0} is a maximum matching of the subgraph $G_{X_{0^{*}}}$. We shall show that $M=M_{0} \cup M_{1} \cup M_{2} \cup \cdots$ is a maximum matching of G.

Suppose that the matching M is not maximum. From the alternating path lemma (cf. Graphs, chapter $7 \S 1$), there exists an alternating path $\mu[a, b]$ between two vertices a and b unsaturated by M. In the subgraph of G induced by X_{0}, the edges of M form a maximum matching, and consequently the chain $\mu[a, b]$ meets at least one of the X_{i} 's, say X_{1}. Further, since the subgraph of G induced by X_{1} contains a single unsaturated vertex by M, one of the ends of $\mu[a, b]$ is in $X-X_{1}$, say b. Let a^{\prime} be the last point of the path $\mu[a, b]$ which is in X_{1}.

Since no edge of M joins X_{1} and $X-X_{1}$, we may suppose perhaps after modifying the maximum matching M_{1} of X_{1}, that a^{\prime} is unsaturated: in other words we may suppose that $a^{\prime}=a$.

Case 1: $a \in X_{1}, b \in X_{2}$.

Figure 4
For every set $F \subset E$, denote the characteristic function of F by $\phi_{F}(e)$ and let

$$
q^{\prime}(e)= \begin{cases}1-q(e) & \text { if } e \in \mu[a, b] \\ \phi_{M_{1}}(e) & \text { if } e \in \mu_{1} \\ \phi_{M_{2}}(e) & \text { if } e \in \mu_{2} \\ q(e) & \text { otherwise }\end{cases}
$$

Clearly $q^{\prime}(e)$ is a fractional matching of H. Since

$$
\Sigma q^{\prime}(e)=\Sigma q(e)
$$

q^{\prime} is also an optimal fractional matching. As q^{\prime} has fewer edges weighted $\frac{1}{2}$ than q, this contradicts the definition of q.

Case 2: $a \in X_{1}, b \in X_{0}$.
Let

$$
q^{\prime}(e)= \begin{cases}1-q(e) & \text { if } e \in \mu[a, b] \\ \phi_{M_{1}}(e) & \text { if } e \in \mu_{1} \\ q(e) & \text { otherwise }\end{cases}
$$

Clearly q^{\prime} is a fractional matching H, and

$$
\Sigma q^{\prime}(e)-\Sigma q(e)=1-\frac{1}{2}>0
$$

This contradicts the optimality of q.

88 Hypergraphs

In each case we obtain a contradiction, which shows that the matching M is maximum, as required.

The following theorem may be used to characterise those graphs G for which $\nu(G)=\tau^{*}(G)$. Let M be a maximum matching of the graph $G=(X, E)$. A cycle μ of G is said to be isolated by M is no edge of M joins μ and $X-\mu$. Let $s(M)$ be the maximum number of pairwise disjoint odd cycles of G isolated by M.

Theorem 5 (Balas [1981]). Every graph G satisfies:

$$
\tau^{*}(G)=\nu(G)+\frac{1}{2} \max _{M} s(M)
$$

Proof: Let q be a canonical fractional matching having a minimal set of edges e with $q(e)=\frac{1}{2}$; let $\mu_{1}, \mu_{2}, \ldots, \mu_{s}$ be the odd cycles generated by these edges. The matching M obtained from q as in the statement of Theorem 4 satisfies

$$
\tau^{*}(G)-\nu(G)=\sum_{e} q(e)-|M|=\frac{s}{2} \leq \frac{1}{2} \max _{M} s(M)
$$

(since M isolates the cycles $\mu_{1}, \mu_{2}, \ldots, \mu_{s}$).
Further, suppose there exists a matching M^{\prime} with $|M|=\left|M^{\prime}\right|$ and $s\left(M^{\prime}\right)>s ;$ then M^{\prime} may be obtained from a canonical fractional matching q^{\prime}, and

$$
\sum_{e} q^{\prime}(e)=\left|M^{\prime}\right|+\frac{1}{2} s\left(M^{\prime}\right)>|M|+\frac{s}{2}=\Sigma q(e) .
$$

This contradicts the optimality of q. Thus $s=\max s(M)$ and the stated equality follows.

To illustrate this result, consider the graph of Figure 5. It has a maximum matching M_{1} which does not isolate the pentagon, but also a maximum matching M_{2} which does. Thus, $\max s(M)=1$, and we may thus find a fractional matching $q(e)$ of value $\nu(G)+\frac{1}{2}=\frac{7}{2}$ (see Figure 5).

Corollary 1. A graph G satisfies $\nu(G)=\tau^{*}(G)$ if and only if no maximum matching isolates an odd cycle.

Figure 5

Indeed, in this case, $\max _{M} s(M)=0$.

Corollary 2 (Lovász [1975]). Every graph G satisfies
(1) $\quad \tau^{*}(G) \leq \frac{3}{2} \nu(G)$

Equality holds in (1) if and only if G is the union of pairwise disjoint triangles.

Proof: It is clear that if G consists of p vertex-disjoint triangles, then $\tau^{*}(G)=\frac{3 p}{2}$ and $\nu(G)=p$, giving equality in (1).

If G is not of this type, let M be a maximum matching of G which maximizes $s(M)$. Each of the $s(M)$ odd cycles isolated by M contains at least one edge of M, so

$$
\tau^{*}(G)=\nu(G)+\frac{1}{2} s(M) \leq \nu(G)+\frac{1}{2} \nu(G)=\frac{3}{2} \nu(G)
$$

Equality in (1) implies that each odd cycle is a triangle and contains exactly one edge of M. These triangles are disjoint since any extra edge would create an alternating path between two unsaturated vertices in distinct triangles, contradicting the maximality of M.

We will now prove a result which gives a characterisation of graphs G with $\tau^{*}(G)=\tau(G)$.

Let M be a maximum matching of G; an odd cycle of length $2 k+1$ containing k edges of M is called a lentil; its base is the vertex which is not adjacent to any of these k edges.

A monocle is the disjoint sum $\mu_{1}+\mu_{2}$ of a lentil μ_{1} and an alternating path μ_{2} of even length joining a vertex unsaturated by M to the base of the lentil μ_{1} (cf. Figure 6).

$v=2$
$\tau=3$

Figure 6. Monocles

If two (not necessarily disjoint) lentils μ_{1} and μ_{2} are joined at the bases by an odd alternating path μ_{3}, their sum $\mu_{1}+\mu_{2}+\mu_{3}$ is called a binocle (cf. Figure 7).

$$
\begin{aligned}
\boldsymbol{v} & =7 \\
\tau & =\mathbf{8}
\end{aligned}
$$

Figure 7. Binocles

Recall that an alternating path (relative to M) is a sequence of distinct edges alternately from M (the "thick" edges) and from $E-M$ (the "thin" edges).

For every maximum matching M, we say that a vertex is thin if may be reached by an odd alternating path from an unsaturated vertex (and not by an even path). We say it is thick if it may be reached by an even alternating path from an unsaturated vertex (and not by an odd path). We say that it is mixed if it may be reached by an even alternating path and by an odd alternating path. We say that it is inaccessible if it cannot be reached by an alternating path from an unsaturated vertex. Thus an unsaturated vertex is thick or mixed; if there are no unsaturated points then all the vertices of the graph are inaccessible.

The following lemmas are, in fact, in a weaker form, general properties of matchings (Gallai [1950], Berge [1967]).

Lemma 1: Let G be a graph without inaccessible points with respect to a maximum matching M. Then there is a mixed point if and only if G has a monocle.

Indeed, the first mixed point reached by an alternating path starting at an unsaturated point is always the base of a monocle.

Lemma 2: If G contains nothing but thick or thin points relative to a maximum matching M, the set T of the thin vertices constitutes a minimum transversal; further $|T|=\nu(G)$.

Indeed, each vertex adjacent to a thick vertex is thin, thus the set T is a transversal; each edge of the matching contains a thick vertex and a thin vertex, and the unsaturated vertices are all thick. Thus $|T|=|M|=\nu(G)$.

Lemma 3: Let C be a connected component of the subgraph of G generated by the inaccessible points relative to a matching M; then no edge of M joins C to $X-C$, and each vertex of $X-C$ adjacent to C is a thin vertex.
(Clear).
Theorem 6 (Sterboul [1978]; Deming [1979]). For a graph G, the following conditions are equivalent:
(1) $\nu(G)=\tau(G)$;
(2) For every maximum matching M, the graph G has no monocle or binocle;
(3) There exists a maximum matching M for which G has no monocle or binocle.
(*) Proof:
(1) implies (2). Suppose that $\nu(G)=\tau(G)$. Let M be a maximum matching for which the graph G has a monocle $\mu_{1}+\mu_{0}$ where μ_{1} is a lentil with base a and $\mu_{0}=\mu[a, b]$ the alternating path joining point a to an unsaturated point b. In the matching $M-\left(M \cap \mu_{0}\right)+\left(\mu_{0}-M\right)$ which is also maximum, the odd cycle μ_{1} is isolated, hence $\max s(M) \geq 1$. Thus, from Theorem $5, \nu(G) \neq \tau^{*}(G)$, which contradicts $\nu(G)=\tau(G)$.

Now let M be a maximum matching for which the graph G has a binocle $\mu_{1}+\mu_{2}+\mu[a, b]$ where $\mu[a, b]$ is the alternating path joining the two bases of the lentiles μ_{1} and μ_{2}.

- If a vertex of the binocle is joined by an alternating path to an unsaturated vertex z, we may obtain, by interchanging the thick edges and the thin edges along an alternating path starting at z, a maximum matching which isolates one of the lentils, which contradicts $\nu(G)=\tau(G)$.
- Otherwise, let T be a minimum transversal of G, and let x be a vertex of $\mu[a, b]$ which belongs to T. In the graph G^{\prime} obtained from G by adjoining a vertex x_{0} and the edge $\left[x_{0}, x\right]$, the matching M is still maximum (since no alternating path joins x_{0} to another isolated vertex), and T is still a minimum transversal. Thus $\nu\left(G^{\prime}\right)=|M|=|T|=\tau\left(G^{\prime}\right)$. By interchanging the thick edges with the thin edges along an alternating path $\left[x_{0}, x\right]+\mu[x, b]$ we create an odd cycle μ_{2} isolated by a maximum matching M^{\prime}; thus $s\left(M^{\prime}\right) \geq 1$ and $\nu\left(G^{\prime}\right) \neq \tau^{*}\left(G^{\prime}\right)$: contradiction.
(2) implies (3). Obvious.
(3) implies (1). Indeed, let G be a connected graph with $\nu(G) \neq \tau(G)$ and let M be a maximum matching for which G contains no monocle or binocle; suppose that G is of minimum order with these conditions: we now deduce a contradiction

Case 1: G has an unsaturated point relative to M.

If the set of inaccessible points is $A \subset X$, we have $|A| \neq|X|$. From lemma $1, G$ contains no mixed points, and hence the subgraph \bar{G} induced by $X-A$ has only thick or thin vertices. The matching \bar{M} given by the restriction of M to \bar{G} is a maximum matching of \bar{G} (since no alternating path joins two distinct unsaturated points). From lemma 2, the set \bar{T} of thin vertices of \bar{G} is a transversal with $|\bar{T}|=|\bar{M}|$; moreover \bar{T} meets each edge joining A and $X-A$.

The subgraph $\overline{\bar{G}}=G_{A}$ admits as a maximum matching the restriction $\overline{\bar{M}}$ of M (since $\overline{\bar{G}}$ contains no unsaturated vertices) and contains no monocle or binocle; thus, by the induction hypothesis it has a transversal $\overline{\bar{T}}$ with $|\overline{\bar{T}}|=|\overline{\bar{M}}|$. The set $\bar{T} \cup \overline{\bar{T}}$ is a transversal of G, and $|\bar{T} \cup \overline{\bar{T}}|=|\bar{M} \cup \overline{\bar{M}}|=|M|$, contradicting the assumption that $\nu(G) \neq \tau(G)$.

Case 2: G has no unsaturated vertices relative to M. Let G^{\prime} be the graph formed by adjoining to G a vertex x_{0} and an edge $\left[x_{0}, x_{1}\right]$ joining x_{0} and a vertex x_{1} in a minimum transversal T of G. Since G^{\prime} has only one unsaturated point, we know, from the alternating path lemma, that M is also a maximum matching of G^{\prime}. Further, T is also a minimum transversal of G^{\prime}. Thus $\nu\left(G^{\prime}\right)=|M|<|T|=\tau\left(G^{\prime}\right)$.

The graph G^{\prime} has mixed points (since otherwise we would see as in case 1 that $\nu\left(G^{\prime}\right)=\tau\left(G^{\prime}\right)$, a contradiction). From lemma 1 we deduce that G contains a monocle. Let μ_{1} be its lentil, and b_{1} its base. We have $b_{1} \neq x_{0}$ (since b_{1} is of degree ≥ 2).

Let $G^{\prime \prime}$ be the graph obtained from the original graph G by adjoining a vertex y_{0} and the edge $\left[y_{0}, b_{1}\right]$. If $G^{\prime \prime}$ contains no mixed points we see as above that $\nu\left(G^{\prime \prime}\right)=\tau\left(G^{\prime \prime}\right)$ which implies $\nu(G)=\tau(G)$: contradiction.

If $G^{\prime \prime}$ contains a mixed point, the first mixed point along an alternating path from y_{0} is the base of a lentil μ_{2}; clearly μ_{2} forms a binocle of G with μ_{1}, which gives a contradiction.

3. Fractional transversal number of a regularisable hypergraph

Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph on X. For an integer $k \geq 0$, multiplying the edge E_{i} by k consists of replacing the edge E_{i} in H by k identical copies of E_{i}. If $k=0$, this operation becomes deletion of the edge E_{i}.

A hypergraph H is regular if all the vertices have the same degree; H is regularisable if a regular hypergraph may be obtained from H by multiplying each edge E_{i} by an integer $k_{i} \geq 1$. Finally, H is quasi-regularisable if a regular hypergraph may be obtained by multiplying each edge E_{i} by an integer $k_{i} \geq 0$; note that this regular hypergraph H^{\prime} cannot contain a vertex of degree 0 , since this is incompatible with the definition of "hypergraph".

Some examples of graphs with these properties are given in Figure 8.

Figure 8
Clearly we have: regular \Rightarrow regularisable \Rightarrow quasi-regularisable.
Theorem 7: For an r-uniform hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on $X,|X|=n$, the following properties are equivalent:
(1) H is quasi-regularisable;
(2) $\tau^{*}(H)=\frac{n}{r}$.

Proof.

(1) implies (2). If the hypergraph H is quasi-regularisable, there exists a regular s-matching $H^{\prime} \subset s H$; by counting the edges of the incidence graph of the edges of H^{\prime} in two different ways, we obtain $n s=r m\left(H^{\prime}\right)$. Thus

$$
\frac{n}{r}=\frac{m\left(H^{\prime}\right)}{s} \leq \tau^{*}(H) \leq \frac{n}{r}
$$

(since $t(x) \equiv \frac{1}{r}$ is a fractional transversal of H).

Thus we have equality throughout, and consequently

$$
\tau^{*}(H)=\frac{n}{r}
$$

(2) implies (1). Let s be the integer ≥ 1 such that

$$
\frac{\nu_{s}(H)}{s}=\max _{k \geq 1} \frac{\nu_{k}(H)}{k}
$$

Let $H^{\prime} \subset s H$ be an s-matching such that $m\left(H^{\prime}\right)=\nu_{s}(H)$. From (2),

$$
\frac{m\left(H^{\prime}\right)}{s}=\frac{\nu_{s}(H)}{s}=\tau^{*}(H)=\frac{n}{r}
$$

Thus $r m\left(H^{\prime}\right)=n \Delta\left(H^{\prime}\right)$, which shows that the hypergraph H^{\prime} is regular, thus H^{\prime} is quasi-regularisable.

Remark: Hence, in Figure 8, G_{3} is quasi-regularisable because the matching [1,2], [3,6], [4,5] is perfect; the graph G_{4} is not, since the function $t(x)=1$ for $x \in\{a, b\}$ and $t(x)=0$ for $x \in X-\{a, b\}$ is a fractional transversal with value $2<\frac{n}{2}=\frac{5}{2}$.

When the hypergraph is a graph we can refine Theorem 7 as follows:

Theorem 8. For a graph G of order n, the following conditions are equivalent:
(1) G is quasi-regularisable;
(2) $\tau^{*}(G)=\frac{n}{2}$;
(3) G admits a partial graph H whose components consist of 2-cliques and odd cycles;
(4) $\left|\Gamma_{G} S\right| \geq|S|$ for every stable set S of G.

Proof.

(1) implies (2).

If the graph G of order n satisfies (1), then there exists a regular multigraph $H \subset k G$ of degree k. By counting the edges of the incidence graph of H in two different ways, we obtain:

$$
k n=2 m(H)
$$

Thus

$$
\frac{n}{2}=\frac{m(H)}{k} \leq \frac{\nu_{k}(G)}{k} \leq \tau^{*}(G) \leq \frac{\tau_{2}(G)}{2} \leq \frac{n}{2}
$$

since $t(x) \equiv 1$ is always a 2 -transversal of G.
Thus we bave equality throughout, and $t(x) \equiv 1$ is an optimal 2-transversal.
(2) implies (3).

Let G be a graph satisfying (2). Then, from Theorem 2

$$
\frac{\nu_{2}(G)}{2}=\tau^{*}(G)=\frac{n}{2}
$$

Thus $\nu_{2}(G)=n$, whence (3) holds.
(3) implies (4).

Indeed, for every stable set S of G,

$$
\left|\Gamma_{G} S\right| \geq\left|\Gamma_{H} S\right| \geq|S| .
$$

(4) implies (1).

Indeed, let G be a graph satisfying (4); let $t(x)$ be a 2 -transversal of G. The set $S=\{x / t(x)=0\}$ is stable, and $\Gamma_{G} S \subset\{x / t(x)=2\}$. Thus

$$
\sum_{x} t(x)=n+\sum_{x}(t(x)-1) \geq n+\left|\Gamma_{G} S\right|-|S| \geq n
$$

Thus the 2-transversal $t^{\prime}(x) \equiv 1$ is optimal, whence, from Theorem 2,

$$
\frac{\nu_{2}(G)}{2}=\frac{\tau_{2}(G)}{2}=\frac{n}{2}
$$

Thus $\nu_{2}(G)=n$, which shows that G is quasi-regularisble.

Theorem 9. (Fulkerson-McAndrew-Hoffman Theorem). Let G be a connected graph of even order such that every pair of disjoint odd cycles are joined by an edge. Then a necessary and sufficient condition for G to have a perfect matching is that every stable set S satisfy $\left|\Gamma_{G} S\right| \geq|S|$.

Proof: The condition is clearly necessary. It is also sufficient since this is condition (4) of Theorem 8, which implies that G admits a partial graph whose components are just isolated edges and odd cycles. The cycle components may be grouped in pairs (since n is even) and each group of two odd cycles joined by an edge is replaceable by a perfect matching. We thus have the result.

For regularisable bipartite graphs we may easily find analogous conditions to those of Theorem 8. The following characterises regularisable graphs by the uniqueness of the optimal 2-transversal. Other characterisations exist, notably due to Pulleyblank [1980], [1981].

Theorem 10 (Berge [1978]). For a connected graph G of order n, the following conditions are equivalent:
(1) G is regularisable and not bipartite;
(2) $\tau^{*}(G)=\frac{n}{2}$ and $t(x) \equiv 1$ is the unique optimal 2-transversal;
(3) $\left|\Gamma_{G} S\right|>|S|$ for every stable set S of G;
(4) $\left|\Gamma_{G} A\right|>|A|$ for every set $A \subset X, A \neq \varnothing, A \neq X$.

Proof.

(1) implies (2). If G satisfies (1), there exists a regular multigraph H obtained from G by multiplication of edges; the 2 -transversal $t(x) \equiv 1$ is optimal for G from condition (2) of Theorem 8 (since regularisability implies quasi-regularisability).

Suppose that there exists another optimal 2-transversal $t^{\prime}(x)$, that satisfy $t^{\prime}(X)=n$; we deduce a contradiction. The set $A_{0}=\left\{x / t^{\prime}(x)=0\right\}$ is stable, and has the same cardinality as $A_{2}=\left\{x / t^{\prime}(x)=2\right\}$ (since $t^{\prime}(X)=n$). Further, $\Gamma_{G} A_{0} \subset A_{2}$. Since H is regular, we have

$$
\Delta(H)\left|A_{0}\right|=\sum_{x \in A_{0}} m_{H}\left(x, A_{2}\right)=\sum_{x \in A_{2}} m_{H}\left(x, A_{0}\right) \leq \Delta(H)\left|A_{2}\right|=\Delta(H)\left|A_{0}\right|
$$

We thus have equality throughout, so every edge with one end in A_{2} has its other end in A_{0}; the subgraph $G_{A_{0} \cup A_{2}}$ is thus equal to G (since G is connected) and this is a bipartite graph with 2 classes of the same cardinality: contradiction.

(2) implies (3).

Let S be a stable set in G; there exists a multigraph $H \subset \mathbf{2 G}$ corresponding to a canonical 2 -matching of the form indicated in Theorem 2. Since $\nu_{2}(G)=n$, no components of G is an isolated point. Thus

$$
\left|\Gamma_{G} S\right| \geq\left|\Gamma_{H} S\right| \geq|S|
$$

We cannot have $\left|\Gamma_{G} S\right|=|S|$ since this would imply the existence of another transversal t^{\prime} defined by

98 Hypergraphs

$$
t^{\prime}(x)= \begin{cases}0 & \text { if } x \in S \\ 2 & \text { if } x \in \Gamma_{G} S \\ 1 & \text { if } x \notin S \cup \Gamma_{G} S ;\end{cases}
$$

t^{\prime} is also optimal (since $t^{\prime}(X)=n$), and this contradicts the uniqueness of the optimal 2-transversal. Thus

$$
\left|\Gamma_{G} S\right|>|S| .
$$

(3) implies (4).

Let A be a set of vertices, $A \neq \varnothing, X$. Let S be the set of isolated vertices in the subgraph G_{A}. If $S=\varnothing$, we have $m_{G}(A, X-A) \neq 0$ (since G is connected); thus $\Gamma_{G} A$ contains A and at least one point of $X-A$; thus $\left|\Gamma_{G} A\right|>|A|$.

If $S \neq \varnothing$, we have $\left|\Gamma_{G} S\right|>|S|$ from (3), so

$$
\left|\Gamma_{G} A\right| \geq\left|\Gamma_{G} S\right|+|A-S|>|S|+|A-S|=|A|
$$

(4) implies (1).

Let H be the bipartite graph obtained by taking two copies X and \bar{X} of the set of vertices of G, and joining $x \in X$ to $\bar{y} \in \bar{X}$ if and only if $[x, y]$ is an edge of G. Every set $A \subset X$ with $A \neq \varnothing, X$ satisfies $\left|\Gamma_{H} A\right|=\left|\Gamma_{G} A\right|>|A|$.

It suffices to show that an edge $[a, \bar{b}]$ of H appears in at least one perfect matching of H (since such a matching defines a 2-matching $G_{a b}$ of G containing the edge $[a, b]$, and $\sum_{a b} G_{a b}$ is a regular multigraph, which shows that G is regularisable).

Indeed, in the subgraph H^{\prime} of H induced by $X \cup \bar{X}-\{a, \bar{b}\}$, every set $A \subset X-\{a\}$ satisfies

$$
\left|\Gamma_{H^{\prime}} A\right|=\left|\Gamma_{H} A-\{\bar{b}\}\right| \geq\left|\Gamma_{H} A\right|-1 \geq|A|
$$

Hence H^{\prime} has a perfect matching (from König's theorem), so H has a perfect matching which contains the edge $[a, b]$.

Theorem 11 (Jaeger, Payan [1978]). Let G be a connected graph not containing a $K_{1,3}$ as an induced subgraph. Then G is regularisable if and only if it has no "hanging" vertex, (that is to say a vertex of degree 1) and is not isomorphic to the graph G_{1} consisting of an even cycle of the form $[0,1,2, \ldots, 2 p-1,0]$ with a non-empty set of chords of the form $[2 i, 2 i+2]$.

Proof: Observe first that the graph G_{1} above is $K_{1,3}{ }^{-}$free. Since the set $S=\{1,3,5, \ldots\}$ satisfies $\left|\Gamma_{G_{1}} S\right|=|S|$ and as G_{1} is non-bipartite, it is clear that G_{1} is nonregularisable from condition (3) of Theorem 10.

Let G be a connected graph without $K_{1,3}$ which is not isomorphic to G_{1}. Suppose further that G has a stable set with $\left|\Gamma_{G} S\right| \leq|S|$. If $x \in S$ the number of edges between x and $\Gamma_{G} S$ is $m_{G}\left(x, \Gamma_{G} S\right) \geq 2$ (since G has no hanging vertices); if $y \in \Gamma_{G} S$ we have $m_{G}(y, S) \leq 2$ (since G has no $K_{1,3}$). Thus

$$
2\left|\Gamma_{G} S\right| \leq 2|S| \leq \sum_{x \in S} m_{G}\left(x, \Gamma_{G} S\right)=\sum_{y \in \Gamma_{G} S} m_{G}(y, S) \leq 2\left|\Gamma_{G} S\right|
$$

We thus have equality throughout, and consequently

$$
|S|=|\Gamma S| .
$$

The equalities show further that for every $x \in S$ and every $y \in \Gamma_{G} S$, $m\left(x, \Gamma_{G} S\right)=m_{G}(y, S)=2$; thus the edges of G between S and $\Gamma_{G} S$ form an even cycle. The only possible additional edges join two vertices of $\Gamma_{G} S$ and are triangular chords of the cycle (otherwise G contains a $K_{1,3}$).

Hence G is isomorphic to G_{1}, which contradicts the hypothesis.
Thus we have shown that $\left|\Gamma_{G} S\right|>|S|$ and, from Theorem 10, the graph G is regularisable and non-bipartite.

4. Greedy transversal number

Let H be a simple hypergraph; for a vertex x we denote by $H(x)$ the set of edges of H which contain x. To obtain a transversal of small cardinality, we may use the greedy algorithm:

1. choose a vertex x_{1} of maximum degree in $H_{1}=H$;
2. choose a vertex x_{2} of maximum degree in $H_{2}=H_{1}-H_{1}\left(x_{1}\right)$;
3. choose a vertex x_{3} of maximum degree in $H_{3}=H_{2}-H_{2}\left(x_{2}\right)$;
4. etc.

We stop when the hypergraph H_{k+1} has all its vertices of degree 0 ; the set $T=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ is then a transversal of H. The maximum cardinality of a transversal obtained by a greedy algorithm is called the greedy transversal number, and is denoted by $\tilde{\tau}(H)$.

100 Hypergraphs

The following theorem, in a slightly improved form, is a result found independently by Stein [1974] and by Lovasz [1975].

Theorem 12. For a hypergraph H of maximum degree Δ,

$$
\tau(H) \leq \tilde{\tau}(H) \leq\left(1+\frac{1}{2}+\cdots+\frac{1}{\Delta}\right) \max _{H^{\prime} \subseteq H} \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \leq(1+\log \Delta) \tau^{*}(H)
$$

Proof: Let T be a transversal of H with $|T|=\tilde{\tau}(H)$ which has been obtained by the greedy algorithm; let t_{λ} be the number of steps taken to choose a vertex of degree λ. If H has maximum degree Δ, we have

$$
\tilde{\tau}(H)=|T|=t_{1}+t_{2}+\cdots+t_{\lambda+1}+\cdots+t_{\Delta} .
$$

For $\lambda<\Delta$, put $t_{\Delta}+t_{\Delta-1}+\cdots+t_{\lambda+1}=k$. The $(k+1)$-th step consists of finding a vertex x_{k+1} of maximum degree in the partial hypergraph H_{k+1} and we observe that $\Delta\left(H_{k+1}\right) \leq \lambda$. By counting the number of remaining edges that all the following steps will remove, we obtain:

$$
\lambda t_{\lambda}+(\lambda-1) t_{\lambda-1}+\cdots+2 t_{2}+t_{1}=m\left(H_{k+1}\right) \leq \lambda \frac{m\left(H_{k+1}\right)}{\Delta\left(H_{k+1}\right)} \leq \lambda \max _{H^{\prime} \subseteq H} \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)}
$$

We may rewrite this as:

$$
\left(\frac{1}{\lambda}-\frac{1}{\lambda+1}\right)\left(t_{1}+2 t_{2}+\cdots+\lambda t_{\lambda}\right) \leq \frac{1}{\lambda+1} \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)}
$$

These inequalities are satisfied for $\lambda=1,2, \ldots, \Delta-1$ and we obtain a system of inequalities:

$$
\begin{gathered}
\left(1-\frac{1}{2}\right) t_{1} \leq \frac{1}{2} \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \\
\left(\frac{1}{2}-\frac{1}{3}\right)\left(t_{1}+2 t_{2}\right) \leq \frac{1}{3} \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \\
\left(\frac{1}{3}-\frac{1}{4}\right)\left(t_{1}+2 t_{2}+3 t_{3}\right) \leq \frac{1}{4} \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\left(\frac{1}{\Delta-1}-\frac{1}{\Delta}\right)\left(t_{1}+2 t_{2}+\cdots+(\Delta-1) t_{\Delta-1}\right) \leq \frac{1}{\Delta} \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \\
\frac{1}{\Delta}\left(t_{1}+t_{2}+\cdots+\Delta t_{\Delta}\right)=\frac{m(H)}{\Delta(H)} \leq \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)}
\end{gathered}
$$

Summing the respective sides of these inequalities, we obtain on the left $\sum_{\lambda=1}^{\Delta} t_{\lambda}$, and on
the right,

$$
\left(1+\frac{1}{2}+\cdots+\frac{1}{\Delta}\right) \max \frac{m\left(H^{\prime}\right)}{\Delta\left(H^{\prime}\right)} \leq(1+\log \Delta) \tau^{*}(H),
$$

whence, finally,

$$
\tilde{\tau}(H)=\sum_{\lambda=1}^{\Delta} t_{\lambda} \leq(1+\log \Delta) \tau^{*}(H)
$$

Application: Fractional chromatic index of a graph.
Consider a multigraph G without loops. The chromatic index $q(G)$ is the least number of colours necessary to colour the edges of G such that two edges of the same colour are never adjacent. The fractional chromatic index is defined to be

$$
q^{*}(G)=\min _{k \geq 1} \frac{q(k G)}{k}
$$

Clearly $q^{*}(G) \geq \Delta(G)$.
For the Petersen graph P_{10} we see that $q\left(2 P_{10}\right)=6$ (cf. Figure 9), so $q^{*}\left(P_{10}\right)=\frac{q\left(2 P_{10}\right)}{2}=3=\Delta\left(P_{10}\right)$. For the odd cycle C_{5} we have $q\left(2 C_{5}\right)=5$, so $q^{*}\left(C_{5}\right)=\frac{5}{2}$ (cf. Figure 10); more generally, $q^{*}\left(C_{2 p+1}\right)=2+\frac{1}{p}>\Delta(G)$.

Figure 9

C_{5}
Figure 10

To obtain upper and lower bounds for $q^{*}(G)$, consider a hypergraph $H=\left(\bar{E}_{1}, \bar{E}_{2}, \ldots, \bar{E}_{m}\right)$ whose vertices are the maximal matchings (with respect to inclusion) M_{1}, M_{2}, \ldots of G, and where $\bar{E}_{;}$is the set of matchings M containing the edge E_{i} of G.

Thus $E_{i} \cap E_{j}=\varnothing$ if and only if $\bar{E}_{i} \cap \bar{E}_{j} \neq \varnothing$. A minimum transversal T of H defines an optimal colouring of the edges of G, each point of T defining a matching of G in which we colour the edges with the same colour. A minimum k-transversal $t(M)$ of H defines an optimal colouring of $k G$ with $\Sigma t\left(M_{i}\right)$ colours, each matching M_{i} corresponding to a set of $t\left(M_{i}\right)$ distinct colours. Thus

$$
\begin{aligned}
m(H) & =m(G) \\
\tau(H) & =q(G) \\
\tau_{k}(H) & =q(k G) \\
\tau^{*}(H) & =q^{*}(G) \\
\Delta(H) & =\nu(G)
\end{aligned}
$$

If we further denote by $\Delta_{0}(G)$ the maximum number of pairwise intersecting edges of G (constituting either a "star" or a "multiple triangle") we also have

$$
\nu(H)=\Delta_{0}(G)
$$

Theorems 1 and 12 yield:

$$
\Delta_{0}(G) \leq \max _{G^{\prime} \subseteq G} \frac{m\left(G^{\prime}\right)}{\nu\left(G^{\prime}\right)} \leq q^{*}(G) \leq q(G) \leq(1+\log \nu(G)) q^{*}(G)
$$

These inequalities may be made more precise by studying the family A of subsets A of X with $|A| \geq 3$ and $|A|$ odd. Indeed, for every $A \in A$ we have

$$
q^{*}(G) \geq \max _{G^{\prime} \subseteq G} \frac{m\left(G^{\prime}\right)}{\nu\left(G^{\prime}\right)} \geq \frac{m\left(G_{A}\right)}{\nu\left(G_{A}\right)} \geq \frac{m\left(G_{A}\right)}{\frac{1}{2}(|A|-1)}
$$

Moreover,

$$
q^{*}(G) \geq \Delta_{0}(G) \geq \Delta(G)
$$

We thus have
(1) $q^{*}(G) \geq \max \left\{\Delta(G) ; \max _{A \in A} \frac{2 m\left(G_{A}\right)}{|A|-1}\right\}$

It can be shown (Seymour [1878]) that we have equality in (1) for every multigraph G.

5. Ryser's Conjecture

We now complete our study of the relationship between the coefficients $\tau^{*}(H)$, $\nu(H)$ and $\tau(H)$. In the case $r=2$, Corollary 3 of Theorem 5 can be reformulated as follows:

Theorem 13: Let G be an r-uniform hypergraph with $r=2$. Then

$$
\text { (0) } \quad \tau^{*}(G) \leq \frac{3}{2} \nu(G)=\frac{r^{2}-r+1}{r} \nu(G)
$$

Further we have equality in (0) if and only if G is the union of pairwise disjoint triangles.

In the case $r>2$ we have an analogous result:

Theorem 14 (Furedi [1981]). Let H be an r-uniform hypergraph, $r \geq 3$. Then

$$
\text { (1) } \quad \tau^{*}(H) \leq \frac{r^{2}-r+1}{r} \nu(H)
$$

Equality in (1) is attained if and only if H is the union of pairwise disjoint projective planes of rank r. Further, if H does not contain $p+1$ pairwise disjoint projective planes of rank r then

$$
\text { (2) } \quad \tau^{*}(H) \leq(r-1) \nu(H)+\frac{p}{r}
$$

Observe first that if H is the union of k projective planes P_{r} of rank r, we have $\nu(H)=k$; from Theorem 7, $\tau^{*}\left(P_{r}\right)=\frac{n\left(P_{r}\right)}{r}=\frac{r^{2}-r+1}{r}$, so

$$
\tau^{*}(H)=\frac{r^{2}-r+1}{r} k=\frac{r^{2}-r+1}{r} \nu(H)
$$

Observe also that for $r=2$, the statement equivalent to (2) is not valid, since $\tau^{*}\left(C_{5}\right)=2.5 \neq(r-1) \nu\left(C_{5}\right)$.

Corollary 1. Let H be an intersecting r-uniform hypergraph. Then
(4) $\Delta(H) \geq \frac{r}{r^{2}-r+1} m(H)$.

Equality holds in (4) if and only if H is the graph K_{3} or a projective plane of rank $r \geq 3$.

Proof: Since $\nu(H)=1$ we have, from theorems 13 and 14,

$$
\frac{m(H)}{\Delta(H)} \leq \tau^{*}(H) \leq \frac{r^{2}-r+1}{r}
$$

If H is a K_{3} or a projective plane of rank $r \geq 3$ we have, from Theorem 7,

$$
\tau^{*}(H)=\frac{n}{r}=\frac{m(H)}{\Delta(H)}
$$

whence

$$
\frac{m(H)}{\Delta(H)}=\frac{r^{2}-r+1}{r} .
$$

In every other case, the inequality in (4) is strict (from Theorems 13 and 14).

Corollary 2. If H is a regular r-uniform hypergraph of order n then
(5) $\nu(H) \geq \frac{n}{r^{2}-r+1}$.

Equality holds in (5) if and only if H is the union of $\nu(H)$ disjoint projective planes of rank r (if $r \geq 3$) or $\nu(H)$ disjoint triangles (if $r=2$).

Proof. From Theorem 7, we have

$$
\tau^{*}(H)=\frac{n}{r}
$$

and the result follows directly from theorems 13 and 14. Corollary 2 was conjectured by Bollobás-Erdös, proved in the case $r=2$ by Bollobás-Eldridge [1976].

Corollary 3. Let H be an r-uniform hypergraph, $r \geq 3$, which contains no projective plane of rank r as a partial subhypergraph. Then

$$
\tau^{*}(H) \leq(r-1) \nu(H)
$$

This inequality is satisfied in particular for those values of r such that no projective plane of rank r exists (e.g. $r=7$).

Corollary 4. Let H be an r-uniform hypergraph whose vertex set is the disjoint union of sets $X^{1}, X^{2}, \ldots, X^{r}$, and whose edges E satisfy $\left|E \cap X^{i}\right|=1$ for all i (" r partite hypergraph''). Then

$$
\tau^{*}(H) \leq(r-1) \nu(H)
$$

Proof. For $r=2, H$ is a bipartite graph, which implies

$$
\tau^{*}(H)=\tau(H)=\nu(H)=(r-1) \nu(H)
$$

For $r \geq 3$ we have $H \subset K_{n_{1}, n_{2} \ldots, n_{r}}^{r}$; it is easy to check that the complete r-partite hypergraph contains no projective plane of rank r, thus the same is true of H, and corollary 3 gives

$$
\tau^{*}(H) \leq(r-1) \nu(H)
$$

Observe that for a bipartite graph G, König's theorem implies the stronger inequality

$$
\tau(G) \leq(r-1) \nu(G)
$$

This observation prompted Ryser [1970] to conjecture the following:

Ryser's Conjecture. Every r-partite hypergraph H satisfies

$$
\tau(H) \leq(r-1) \nu(H)
$$

Remark: Theorems 13 and 14 were used by Frankl and Füredi [1983] to give an upper bound for $\frac{m(H)}{\Delta(H)}$ as a function of r, and hence to generalise a theorem of Chvátal and Hansen [1976] (case $r=2$) and a theorem of Bollobás [1977] (case $r=3$).

6. Transversal Number of Product Hypergraphs

Given a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on a set X and a hypergraph $H^{\prime}=\left(F_{1}, F_{2}, \ldots, F_{m^{\prime}}\right)$ on a set Y, define their product to be the hypergraph $H \times H^{\prime}$ whose vertices are the elements of the cartesian product $X \times Y$, and whose edges are the sets $E_{i} \times F_{j}$ with $1 \leq i \leq m, 1 \leq j \leq m^{\prime}$. The order of $H \times H^{\prime}$ is $n\left(H \times H^{\prime}\right)=n(H) n\left(H^{\prime}\right)$, the rank is $r\left(H \times H^{\prime}\right)=r(H) r\left(H^{\prime}\right)$.

Numerous combinatorial problems arise concerning the coefficients ν, τ or χ of product hypergraphs.

Example 1: Polarised partitions (Erdös, Rado [1956]). Consider the set of points (x, y) in the plane with integer coordinates $1 \leq x \leq p, 1 \leq y \leq q$. What is the largest
integer $P(p, q, r, s)$ such that in every colouring of these points with $P(p, q, r, s)$ colours there exist $r s$ points lying in r columns and s rows, each having the same colour? If K_{p}^{r} denotes the complete r-uniform hypergraph on p points, $P(p, q, r, s)$ is just $\chi\left(K_{p}^{r} \times K_{q}^{s}\right)-1$ where $\chi(H)$ is the chromatic number of H (cf. chapter 4). For example, $\chi\left(K_{4}^{2} \times K_{6}^{2}\right)=2$, and a 2 -colouring of the hypergraph with colours 0 and 1 is given in the following figure:

$$
4\left\{\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right.
$$

There is no 2×2 submatrix whose entries are all equal.
Thus $P(6,4,2,2)=\chi\left(K_{4}^{2} \times K_{6}^{2}\right)-1=2-1=1$.
The numbers $\chi\left(K_{p}^{\tau} \times K_{q}^{s}\right)$ have been studied notably by Erdös and Rado [1856], Chvátal [1969], Reiman [1958] and Sterboul [1972] [1983].

Example 2: Zarankiewicz numbers [1951]. In 1951, Zarankiewicz posed the following problem: what is the smallest integer z such that every 0,1 matrix with q rows and p columns, with z entries equal to 1 , necessarily contains a submatrix with s rows and r columns each of whose entries is 1 ? This number $Z(p, q, r, s)$, called the Zarankiewicz number is the subject of an abundant literature (cf. Guy [1969], Sterboul [1983]). If $\alpha(H)$ is the stability number of a hypergraph H, i.e. the largest number of vertices which contain no edge of H (cf . chapter 4), we have

$$
Z(p, q, r, s)=\alpha\left(K_{p}^{r} \times K_{q}^{s}\right)+1=p q+1-\tau\left(K_{p}^{r} \times K_{q}^{s}\right)
$$

Example 3. (Hales [1973]): What is the least number of points in the rectangle of points (x, y) having integer coordinates $1 \leq x \leq p, 1 \leq y \leq q$, such that each unit square contains at least one of these points? If P_{n} denotes the graph whose vertices are the integers $1,2, \ldots, n$, with x, y adjacent if and only if $|x-y|=1$, then the answer is

$$
\tau\left(P_{p} \times P_{q}\right)=\left[\frac{p}{2}\right]\left[\frac{q}{2}\right] .
$$

Theorem 15. For two hypergraphs $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ and $H^{\prime}=\left(F_{1}, F_{2}, \ldots, F_{m^{\prime}}\right)$ on X and Y respectively we have

$$
\begin{aligned}
& \nu(H) \nu\left(H^{\prime}\right) \leq \nu\left(H \times H^{\prime}\right) \leq \tau^{*}(H) \nu\left(H^{\prime}\right) \leq \tau^{*}(H) \tau^{*}\left(H^{\prime}\right) \\
& =\tau^{*}\left(H \times H^{\prime}\right) \leq \tau^{*}(H) \tau\left(H^{\prime}\right) \leq \tau\left(H \times H^{\prime}\right) \leq \tau(H) \tau\left(H^{\prime}\right) .
\end{aligned}
$$

Proof:

1. If $\left\{E_{i} / i \in I\right\}$ and $\left\{F_{j} / j \in J\right\}$ are two maximum matchings of H and H^{\prime} respectively, then, for $(i, j),\left(i^{\prime}, j^{\prime}\right) \in I \times J,(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$, we have

$$
\left(E_{i} \times F_{j}\right) \cap\left(E_{i^{\prime}} \times F_{j^{\prime}}\right)=\varnothing
$$

Thus $\left\{E_{i} \times F_{j}, i \in I, j \in J\right\}$ is a matching of $H \times H^{\prime}$, whence

$$
\nu(H) \nu\left(H^{\prime}\right)=|I||J| \leq \nu\left(H \times H^{\prime}\right)
$$

2. If $\left\{E_{i} \times F_{j} /(i, j) \in K\right\}$ is a maximum matching of $H \times H^{\prime}$, the function

$$
z\left(E_{i}\right)=\frac{1}{\nu\left(H^{\prime}\right)}|\{j /(i, j) \in K\}|
$$

constitutes a fractional matching of H, since

$$
\sum_{E \in H(x)} z(E)=\frac{1}{\nu\left(H^{\prime}\right)}\left|\left\{E_{i} \times F_{j} / E_{i} \in H(x) ;(i, j) \in K\right\}\right| \leq \frac{\nu\left(H^{\prime}\right)}{\nu\left(H^{\prime}\right)}=1
$$

Hence

$$
\nu\left(H \times H^{\prime}\right)=|K|=\sum_{i} z\left(E_{i}\right) \nu\left(H^{\prime}\right) \leq \tau^{*}(H) \nu\left(H^{\prime}\right)
$$

3. We have $\tau^{*}(H) \nu\left(H^{\prime}\right) \leq \tau^{*}(H) \tau^{*}\left(H^{\prime}\right)$ from Theorem 1.
4. Let $q(E)$ and $q^{\prime}(F)$ be fractional matchings for H and H^{\prime} respectively. The function $z(E \times F)=q(E) q^{\prime}(F)$ is a fractional matching of $H \times H^{\prime}$, since

$$
\sum_{\substack{E \in H(x) \\ F \in H^{\prime}(y)}} z(E \times F)=\sum_{E \in H(x)} q(E) \sum_{F \in H^{\prime \prime}(y)} q^{\prime}(F) \leq 1 .
$$

Thus $\tau^{*}\left(H \times H^{\prime}\right) \geq \sum_{i, j} z\left(E_{i} \times F_{j}\right)=\sum_{i} q\left(E_{i}\right) \sum_{j} q^{\prime}\left(F_{j}\right)=\tau^{*}(H) \tau^{*}\left(H^{\prime}\right)$.
We now show the reverse inequality. Let $t(x)$ and $t^{\prime}(y)$ be optimal fractional transversals for H and H^{\prime} respectively. The function $p(x, y)=t(x) t^{\prime}(y)$ is a fractional transversal of $H \times H^{\prime}$, since

$$
\sum_{(x, y) \in E_{\mathrm{i}} \times F_{j}} p(x, y)=\sum_{x \in E_{i}} t(x) \sum_{y \in F_{j}} t^{\prime}(y) \geq 1
$$

Thus

$$
\begin{aligned}
\tau^{*}\left(H \times H^{\prime}\right) \leq \sum_{x, y} p(x, y) & =\sum_{x} t(x) \sum_{y} t^{\prime}(y) \\
& =\tau^{*}(H) \tau^{*}\left(H^{\prime}\right)
\end{aligned}
$$

Thus $\tau^{*}\left(H \times H^{\prime}\right)=\tau^{*}(H) \tau^{*}\left(H^{\prime}\right)$.
5. We have $\tau^{*}\left(H \times H^{\prime}\right)=\tau^{*}(H) \tau^{*}\left(H^{\prime}\right) \leq \tau^{*}(H) \tau\left(H^{\prime}\right)$ from Theorem 1.
6. As for 2 , we may show that

$$
\tau^{*}(H) \tau\left(H^{\prime}\right) \leq \tau\left(H \times H^{\prime}\right)
$$

7. As for 1 , we may show that

$$
\tau\left(H \times H^{\prime}\right) \leq \tau(H) \tau\left(H^{\prime}\right) .
$$

Corollary (McEliece, Posner [1971]). Every hypergraph H satisfies

$$
\tau^{*}(H)=\lim _{k \rightarrow \infty} k \sqrt{\tau\left(H^{k}\right)}
$$

where $H^{k}=H \times H \times \cdots \times H$ is the product of k terms equal to H.

Proof. From Theorem 12 we may write

$$
\begin{aligned}
\tau^{*}(H)^{k}=\tau^{*}\left(H^{k}\right) & \leq \tau\left(H^{k}\right) \leq\left[1+\log \Delta\left(H^{k}\right)\right] \tau^{*}\left(H^{k}\right) \\
& \leq[1+k \log \Delta(H)] \tau^{*}(H)^{k}
\end{aligned}
$$

It is easy to see that $(1+k \log \Delta(H))^{1 / k} \rightarrow 1$ as $k \rightarrow \infty$, giving the desired result.

The following results, sharpening the statement of Theorem 15 are due to Berge and Simonovits [1972].

Theorem 16. Every hypergraph H satisfies

$$
\tau^{*}(H)=\min _{H^{\prime}} \frac{\tau\left(H \times H^{\prime}\right)}{\tau\left(H^{\prime}\right)}
$$

Proof. From Theorem 15, we have

$$
\tau^{*}(H) \leq \min _{H^{\prime}} \frac{\tau\left(H \times H^{\prime}\right)}{\tau\left(H^{\prime}\right)}
$$

We shall show the reverse inequality. There exists an integer k such that $\tau^{*}(H)=\frac{\tau_{k}(H)}{k}$. Let $t(x)$ be an optimal k-transversal for H; consider a set Y of cardinality $p=\tau_{k}(H)$, and a partition $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ of Y with $\left|Y_{i}\right|=t\left(x_{i}\right)$ for each i.

The complete $(p-k+1)$-uniform hypergraph $H^{\prime}=K_{p}^{p-k+1}$ on Y satisfies $\tau\left(H^{\prime}\right)=k$. Consider the set

$$
\bar{T}=\bigcup_{i=1}^{n}\left(\left\{x_{i}\right\} \times Y_{i}\right)
$$

For each edge E of H,

$$
|(E \times Y) \cap \bar{T}|=\sum_{x \in E} t(x) \geq k
$$

Further, since each edge F of H^{\prime} is of cardinality $p-k+1$, the set $E \times F$ meets \bar{T}, by the pigeonhole principle; thus $\tau\left(H \times H^{\prime}\right) \leq|\bar{T}|=|Y|=\tau_{k}(H)$. Hence

$$
\frac{\tau\left(H \times H^{\prime}\right)}{\tau\left(H^{\prime}\right)} \leq \frac{\tau_{k}(H)}{k}=\tau^{*}(H)
$$

Theorem 17. Every hypergraph H with the Helly property satisfies

$$
\tau^{*}(H)=\max _{H^{\prime}} \frac{\nu\left(H \times H^{\prime}\right)}{\nu\left(H^{\prime}\right)}
$$

Proof. From Theorem 15 we have

$$
\tau^{*}(H) \geq \max \frac{\nu\left(H \times H^{\prime}\right)}{\nu\left(H^{\prime}\right)}
$$

We shall show the reverse inequality. There exists an integer s such that

$$
\tau^{*}(H)=\frac{\nu_{s}(H)}{s}
$$

Let $H_{0}=\left(E_{k} / k \in K\right)$ be a maximum s-matching of H; thus $|K|=\nu_{s}(H)$ and $\Delta\left(H_{0}\right)=s$.

Let Y be the set of maximum matchings of the hypergraph H_{0}; for $k \in K$ let F_{k} be the set of maximal matchings of H_{0} which contain E_{k}. The hypergraph $H^{\prime}=\left\{F_{k} / k \in K\right\}$ on Y satisfies $\nu\left(H^{\prime}\right) \leq \Delta\left(H_{0}\right)=s$, since H has the Helly property. The hypergraph $H \times H^{\prime}$ admits $\left\{E_{k} \times F_{k} / k \in K\right\}$ as a matching, since $\left(E_{k} \times F_{k}\right) \cap\left(E_{k^{\prime}} \times F_{k^{\prime}}\right) \neq \varnothing$ implies both $E_{k} \cap E_{k^{\prime}} \neq \varnothing$ and $F_{k} \cap F_{k^{\prime}} \neq \varnothing$, which is a contradiction. Thus

$$
\nu\left(H \times H^{\prime}\right) \geq|K|=\nu_{s}(H)=s \tau^{*}(H) .
$$

Hence

$$
\frac{\nu\left(H \times H^{\prime}\right)}{\nu\left(H^{\prime}\right)} \geq \frac{s \tau^{*}(H)}{s}=\tau^{*}(H)
$$

> Q.E.D.

We may relate the product of hypergraphs to the numbers $P(p, q, 2,2)=\chi\left(K_{p} \times K_{q}\right)-1$ defined in example 1, and to the Ramsey number $R(p, q)$ (the least integer m such that every 2 -colouring of the edges of K_{m} contains either a p-clique of the first colour or a q-clique of the second). It is known that $R(p, q) \leq\binom{ p+q-2}{p-1}$, but, with the exception of a few particular cases, the exact value of $R(p, q)$ is not known. Recall that the chromatic number $\chi(H)$ is the least number of colours necessary to colour the vertices of H such that no edge is monochromatic (except for loops).

Theorem 18. We have

$$
\max _{\substack{x(H) \leq p \\ x\left(H^{\prime}\right) \leq q}} \chi\left(H \times H^{\prime}\right)=\chi\left(K_{p} \times K_{q}\right)
$$

the maximum being taken over hypergraphs H, H^{\prime} without loops.

Proof. Let $H=\left(E_{i}\right)$ be a hypergraph without loops on X with $\chi(H) \leq p$, and let $H^{\prime}=\left(F_{j}\right)$ be a hypergraph without loops on Y with $\chi\left(H^{\prime}\right) \leq q$. On H we have a p-colouring $g(x) \in\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right\}$ and on H^{\prime} we have a q-colouring $g^{\prime}(y) \in\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{q}\right\}$. We shall show that we may obtain from these a colouring of $H \times H^{\prime}$ with $\chi\left(K_{p} \times K_{q}\right)$ colours. Let K_{p} be a complete graph on $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right\}$ and K_{q} a complete graph on $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{q}\right\}$; colour the vertices of $K_{p} \times K_{q}$ with an optimal colouring $F(\alpha, \beta) \in\left\{1,2, \ldots, \chi\left(K_{p} \times K_{q}\right)\right\}$. Thus four vertices $\alpha_{j} \beta_{j}, \alpha_{j} \beta_{k}, \alpha_{k} \beta_{j}, \alpha_{k} \beta_{k}$ are never all with the same colour. Let $\Phi(x, y)=F\left(g(x), g^{\prime}(y)\right)$. Since there exist $x_{1}, x_{2} \in E_{i}$ and $y_{1}, y_{2} \in F_{j}$ such that $g\left(x_{1}\right) \neq g\left(x_{2}\right), g^{\prime}\left(y_{1}\right) \neq g^{\prime}\left(y_{2}\right)$ (since $\left|E_{i}\right|>1,\left|F_{j}\right|>1$), the set $E_{i} \times F_{j}$ is not monochromatic in Φ. Hence Φ is a colouring of $H \times H^{\prime}$ in $\chi\left(K_{p} \times K_{q}\right)$ colours, whence $\chi\left(H \times H^{\prime}\right) \leq \chi\left(K_{p} \times K_{q}\right)$. Since this inequality is an equality when $H=K_{p}, H^{\prime}=K_{q}$ we have the theorem.

Theorem 19 (Erdös, McEliece, Taylor [1971], anticipated by Hedrlin [1966]). We have

$$
\max _{\substack{\nu(H) \leq p \\ \nu\left(H^{\prime}\right) \leq q}} \nu\left(H \times H^{\prime}\right)=R(p+1, q+1)-1
$$

where the $R(p, q)$ are the Ramsey numbers.

Proof. 1. We shall show first that $\nu(H) \leq p, \quad \nu\left(H^{\prime}\right) \leq q \quad$ implies $\nu\left(H \times H^{\prime}\right) \leq R(p+1, q+1)-1$. Suppose that this inequality fails for $H=\left(E_{i}\right)$ and $H^{\prime}=\left(F_{j}\right)$. Put:

$$
m=\nu\left(H \times H^{\prime}\right) \geq R(p+1, q+1)
$$

Let $\left\{E_{i} \times F_{j} /(i, j) \in M\right\}$ be a maximum matching of $H \times H^{\prime}$, with $|M|=m$. Consider the complete graph K_{m} on M : colour the edge $\left[(i, j),\left(i^{\prime}, j^{\prime}\right)\right]$ red if $E_{i} \cap E_{i^{\prime}}=\varnothing$ and blue if $E_{i} \cap E_{i^{\prime}} \neq \varnothing$ (and then $F_{j} \cap F_{j^{\prime}}=\varnothing$). Since $|M|=m \geq R(p+1, q+1)$ this colouring of the edges of K_{m} contains either a red ($p+1$)-clique (and then $\nu(H)>p$) or a blue ($q+1$)-clique (and then $\nu\left(H^{\prime}\right)>q$); in each case we have a contradiction.
2. Consider the complete graph K_{m} on $M=\{1,2, \ldots, m\}$ where $m=R(p+1, q+1)-\mathbf{1}$. From the definition of Ramsey numbers, there exists a 2-colouring of the edges of K_{m} forming two partial graphs G, G^{\prime} with $\omega(G) \leq q$ and $\omega\left(G^{\prime}\right) \leq p$.

The dual hypergraph $H=G^{*}$ of the graph G has edges of the form: $E_{i}=$ \{edges of G incident to vertex i of G; thus

$$
\nu(H)=\omega(\bar{G})=\omega\left(G^{\prime}\right) \leq p
$$

Similarly $H^{\prime}=\left(G^{\prime}\right)^{*}$ has edges of the form: $F_{j}=$ \{edges of G^{\prime} incident to vertex j of $\left.G^{\prime}\right\}$; thus $\nu\left(H^{\prime}\right) \leq q$. From part 1 of the proof, this implies

$$
\nu\left(H \times H^{\prime}\right) \leq R(p+1, q+1)-1 .
$$

For two distinct indices $i, j \in M$ the sets $E_{i} \times F_{i}$ and $E_{j} \times F_{j}$ are disjoint, so the product hypergraph $H \times H^{\prime}$ admits $\left\{E_{i} \times F_{i} / i \in M\right\}$ as a matching, whence

$$
\nu\left(H \times H^{\prime}\right) \geq|M|=R(p+1, q+1)-1
$$

Thus $\nu\left(H \times H^{\prime}\right)=R(p+1, q+1)-1$, and the statement of the theorem follows.

Application: Shannon capacity of a graph.
Define the normal product of two simple graphs $G=(X, E), G^{\prime}=(Y, F)$ to be the graph $G \times G^{\prime}$ on $X \times Y$ where two vertices (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are adjacent if and only if

$$
\begin{aligned}
& \quad x=x^{\prime} \text { and }\left[x, y^{\prime}\right] \in F, \\
& \text { or }\left[x, x^{\prime}\right] \in E \text { and } y=y^{\prime}, \\
& \text { or }\left[x, x^{\prime}\right] \in E \text { and }\left[y, y^{\prime}\right] \in F
\end{aligned}
$$

112 Hypergraphs

Shannon was interested in the study of the stability number of the normal product of graphs. Indeed, if G is the graph of confusion at reception for a set of signals X and G^{\prime} the graph of confusion for a set of signals Y, then $\bar{\alpha}\left(G \times G^{\prime}\right)$ represents the greatest number of words $x y$ with $x \in X, y \in Y$ which cannot be confused at reception. We may also consider words of k signals (taken from X) which form a code; the largest possible number of distinguishable words is then $\bar{\alpha}\left(G^{k}\right)$, where $G^{k}=G \times G \times \cdots \times G$ is the normal product of k terms equal to G.

Shannon proposed the term capacity for the number

$$
\max _{k} k \sqrt{\bar{o}\left(G^{k}\right)}=c(G) .
$$

It is immediate that for all k

$$
\bar{\alpha}(G) \leq^{k} \sqrt{\bar{\alpha}\left(G^{k}\right)} \leq c(G) \leq^{k} \sqrt{\theta\left(G^{k}\right)} \leq \theta(G) .
$$

The number $c(G)$ is difficult to calculate (Lovasz proved in 1879 that $c\left(C_{5}\right)=\sqrt{5}$).
Let $H(G)$ be the hypergraph formed by the maximal cliques of G, and let $\bar{H}(G)$, or more simply \bar{H}, be the dual of $H(G)$. Then

$$
\begin{aligned}
n(G) & =m(\bar{H}) \\
\omega(G) & =\Delta(\bar{H}) \\
\bar{\alpha}(G) & =\nu(\bar{H}) \\
\theta(G) & =\tau(\bar{H})
\end{aligned}
$$

The minimum value of a q-covering of G by cliques is

$$
\theta_{q}(G)=\tau_{q}(\bar{H})
$$

Also

$$
\begin{aligned}
& \bar{\alpha}\left(G^{k}\right)=\nu\left[\bar{H}\left(G^{k}\right)\right]=\nu\left(\bar{H}^{k}\right) \\
& \theta\left(G^{k}\right)=\tau\left(\bar{H}\left(G^{k}\right)\right]=\tau\left(\bar{H}^{k}\right)
\end{aligned}
$$

Clearly, ${ }^{k} \sqrt{\bar{\alpha}\left(G^{k}\right)} \rightarrow c(G)$. The corollary to Theorem 15 shows that we also have

$$
\sqrt[k]{\theta\left(G^{k}\right)} \rightarrow \tau^{*}(\bar{H}) .
$$

Exercises on Chapter 3

Exercise 1 (§1)

Show that $\frac{\tau_{k}(H)}{k} \rightarrow \tau^{*}(H)$.
Hint: use the theorem of Fekete that states that if a series $\left(u_{k}\right)$ is subadditive, i.e. $u_{k+h} \leq u_{k}+u_{h}$, then $\frac{u_{k}}{k} \rightarrow \inf \frac{u_{k}}{k}$.

Exercise 2 (§1)
Show similarly that $\frac{\nu_{k}(H)}{k} \rightarrow \tau^{*}(H)$.

Exercise 3 (§1)

Show that if $\frac{\tau_{k}(H)}{k}=\tau(H)$ for some integer k, then every integer $p \leq k$ satisfies $\frac{\tau_{p}(H)}{p}=\tau(H)$.

Exercise 4 (\$1)

Show that if $\frac{\tau_{k}(H)}{k}=\tau^{*}(H)$ for an integer k, then $\frac{\tau_{k s}(H)}{k s}=\tau^{*}(H)$ for every integer s.

Exercise 5 (§3)

Let X be a finite set of points on a line, and let H be an interval hypergraph on \boldsymbol{X}. Show that H is regularisable if and only if there do not exist two distinct points $x, y \in X$ such that $H(x) \subset H(y)$ and $H(x) \neq H(y)$.

Exercise 6 (§3)

Let H be an r-uniform hypergraph such that the distinct $I_{x}=\bigcap_{E \in H(x)} E$ form a partition of X, and every edge meeting I_{x} contains I_{x}. Show that if $H-H(x)$ is quasiregularisable for each x, then H is regularisable.

114 Hypergraphs

(Berge [1978]; Pulleyblank [1977] in the case of a graph).

Exercise 7 (§3)

Let H be an r-uniform hypergraph without vertices of degree 1 , and such that each edge meets at least r other edges of H. Show that the graph $L(H)$ is regularisable.
(Berge [1978]).

Exercise 8 (§3)

Let G be a connected nonbipartite regularisable graph. Show that every graph which admits G as a partial graph is also regularisable.

Hint: use condition (3) of Theorem 10.

Exercise 9 (§6)

Let H be an r-uniform hypergraph of order n, with m edges, regularisable, linear, and containing no projective plane of order r as a partial subhypergraph. Show that

$$
\nu(H) \geq \frac{m}{n-1} .
$$

In this case we have a better bound than that of Seymour (Theorem 8, Chapter 2).

Exercise 10

Aharoni, Erdös and Linial [1987] have proved that every hypergraph H satisfies

$$
\nu(H) \geq \frac{\left[\tau^{*}(H)\right]^{2}}{m(H)}
$$

Check that this interesting inequality holds for some of the hypergraphs described in the examples of Chapter 2, $\S 4$ which do not satisfy the König property.

Chapter 4

Colourings

1. Chromatic Number

Let $H=\left(E_{1}, E_{2}, \ldots, E_{n}\right)$ be a hypergraph and let k be an integer ≥ 2. A k-colouring (of the vertices) is a partition ($S_{1}, S_{2}, \ldots, S_{k}$) of the set of vertices into k classes such that every edge which is not a loop meets at least two classes of the partition; that is to say

$$
E \in H,|E|>1 \Rightarrow E \rrbracket S_{i} \quad(i=1,2, \ldots, k)
$$

A vertex in S_{i} will be said to be a "vertex of colour i ", and S_{i} ("the colour set i ") may possibly be empty; the only "monochromatic" edges are therefore the loops. For a hypergraph H its chromatic number $\chi(H)$ is the smallest integer k for which H admits a k-colouring.

Example: If H is the hypergraph whose vertices are the different waste products in a chemical production factory, and in which the edges are the dangerous combinations of these waste products, the chromatic number of H is the smallest number of waste disposal sites that the factory needs in order to avoid any hazardous situation.

We note that if the hypergraph H is a graph, the chromatic number of H coincides exactly with the usual chromatic number.

For a hypergraph H on X, a set $S \subset X$ is said to be stable if it does not contain any edge E with $|E|>1$. The stability number $\alpha(H)$ of H is the maximum cardinality of a stable set of H.

Example: The projective plane on seven points is a hypergraph P_{7} with $\alpha\left(P_{7}\right)=4$, as can be verified immediately from Figure 2 of Chapter 2. We see also that $\chi\left(P_{7}\right)=3$.

Proposition 1. Every hypergraph H of order n satisfies $\chi(H) \propto(H) \geq n$.

Proof. Let us consider a k-colouring ($S_{1}, S_{2}, \ldots, S_{k}$) of H in $k=\chi(H)$ colours; we have

116 Hypergraphs

$$
n=\sum_{i=1}^{k}\left|S_{i}\right| \leq k \propto(H)=\chi(H) \propto(H)
$$

This gives the stated inequality.

Proposition 2. Every hypergraph H of order n satisfies $\chi(H)+\alpha(H) \leq n+1$.

Proof. Let S be a maximum stable set of H. We can colour all the vertices of S with a first colour, and use $n-\alpha(H)$ other colours to colour, each with a different colour, the vertices of $X-S$. From this

$$
\chi(H) \leq(n-\alpha(H))+1
$$

This gives the stated inequality.
We call a β-star of a vertex x a family $H^{\beta}(x) \subset H(x)$ such that

$$
\begin{equation*}
E \in H^{\rho}(x) \Rightarrow|E| \geq 2 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
E, E^{\prime} \in H^{\beta}(x) \Rightarrow E \cap E^{\prime}=\{x\} \tag{ii}
\end{equation*}
$$

We call the β-degree of a vertex x the largest number of edges of a β-star of x. We denote by $d_{H}^{\beta}(x)$ the β-degree of x, by $\Delta^{\beta}(H)=\max _{x \in X} d_{H}^{\beta}(x)$ the maximum β-degree, and by $\delta^{\beta}(H)$ the minimum β-degree. H / A denotes as usual the family of edges of H contained in A; then we can obtain upper bounds for the chromatic number with the following assertion:

Theorem 1. Every hypergraph H on X satisfies

$$
\chi(H) \leq \max _{A \subset X} \delta^{\beta}(H / A)+1
$$

Proof. Let $p=\max \delta^{\beta}(H / A)$. We shall seek to colour the vertices of H successively in increasing order of their indices using only $p+1$ colours. Let us index the vertices in the order $x_{n}, x_{n-1}, \ldots, x_{1}$ by the following rule:
(i) $\quad x_{n}$ is a vertex of minimum β-degree in H;
(ii) for $i<n, x_{i}$ is a vertex whose β-degree in $H / X-\left\{x_{i+1}, x_{i+2}, \ldots, x_{n}\right\}$ is $\leq p$.

Suppose that we have coloured $x_{1}, x_{2}, \ldots, x_{i-1}$ with the colours $1,2, \ldots, p+1$ without any edge of H being completely coloured and monochromatic. The star $H\left(x_{i}\right)$ does not contain $p+1$ edges containing only coloured vertices (except for x_{i}), monochromatic, and bearing respectively the colours $1,2, \ldots$ and $p+1$; for such a set of edges would constitute a β-star with $p+1$ edges, which contradicts the rule for choosing x_{i}. Thus there exists a colour $j \leq p+1$ which we can attach to x_{i} without any edge becoming completely coloured and monochromatic. Thus, step by step, we colour all the vertices with $p+1$ colours.

Corollary 1 (Lovász [1968]). For every hypergraph H of maximum β-degree Δ^{β}, we have $\chi(H) \leq \Delta^{\beta}(H)+1$. Moreover, for every rank r, this bound is the best possible, since $\chi\left(K_{n}^{r}\right)=\Delta^{\beta}\left(K_{n}^{\gamma}\right)+1$.

Indeed, let $q=\Delta^{\beta}(H)+1$. The set of vertices x with $d_{H}^{\beta}(x) \geq q$ being empty, Theorem 1 gives: $\chi(H) \leq q$. Moreover, we have

$$
\chi\left(K_{n}^{r}\right)=\left[\frac{n}{r-1}\right]^{*} \geq \frac{n}{r-1} \geq \frac{(r-1) \Delta^{\beta}\left(K_{n}^{r}\right)+1}{r-1}=\Delta^{\beta}\left(K_{n}^{r}\right)+\frac{1}{r-1}
$$

Thus we have $\chi\left(K_{n}^{r}\right)=\Delta^{\beta}\left(K_{n}^{r}\right)+1$.
Corollary 2. For every hypergraph H of order n

$$
\alpha(H) \geq \frac{n}{\Delta^{\beta}(H)+1}
$$

For Proposition 1 shows that

$$
\alpha(H) \geq \frac{n}{\chi(H)} \geq \frac{n}{\Delta^{\beta}(H)+1}
$$

Corollary 3. For every hypergraph H of order n without loops

$$
\tau(H) \leq \frac{n \Delta^{\beta}(H)}{\Delta^{\beta}(H)+1}
$$

For the complement of a stable set being a transversal, we have

$$
\tau(H)=n-\alpha(H) \leq \frac{n \Delta^{\beta}(H)}{\Delta^{\beta}(H)+1}
$$

From this the stated inequality follows.

These corollaries enable us to solve easily a large number of combinatorial problems.

Application 1. Given a simple graph G on X of maximum degree h, what is the smallest number of colours necessary to colour the vertices such that no cycle is monochromatic? (Motzkin [1988]).

Let us consider a hypergraph H on X whose edges are the elementary cycles of G. The answer is then, from Corollary 1 ,

$$
\chi(H) \leq \Delta^{\beta}(H)+1 \leq\left[\frac{h}{2}\right]+1
$$

Application 2. Given a simple graph G on X of maximum degree h, what is the smallest number of colours necessary to colour the vertices such that every subgraph G_{i} induced by a colour i has maximum degree $<t$? (Gerencser [1965]).

This number $\gamma_{t}(G)$ generalizes the usual chromatic number (the case $t=1$); if H is the hypergraph on X whose edges are the subgraphs of maximum degree t, then Corollary 1 gives:

$$
\gamma_{t}(G)=\chi(H) \leq \Delta^{\beta}(H)+1 \leq\left[\frac{h}{t}\right]+1
$$

Application 3. Given a simple graph G on X, what is the smallest number of colours necessary to colour the vertices such that no elementary path of length k is monochromatic? (Chartrand, Geller, Hedetniemi [1968]). This number $\bar{\gamma}_{k}(G)$ generalizes the usual chromatic number (the case $k=1$); it is also the chromatic number of a hypergraph H defined in an obvious manner, giving immediately an upper bound.

Application 4. Given a simple graph G on X what is the smallest number of colours necessary to colour the vertices of G such that no clique of size k is monochromatic? (Sachs, Schaüble [1967]).

This number $\overline{\bar{\gamma}}_{k}(G)$ generalizes the usual chromatic number (the case $k=2$); it is also the chromatic number of a hypergraph H defined in an obvious manner, which leads immediately to an upper bound.

Application 5. Symmetric Ramsey Numbers.
We consider the complete graph K_{n}, and propose to associate with each of its edges one of the colours $1,2, \ldots, q$ in such a way that no clique of p elements of K_{n} has all its edges of the same colour. The smallest integer n for which this association is
impossible is called the (ssmmetric) Ramsey Number and is denoted by $R(p, p, \ldots, p)$, or R_{p}^{q}. In other words, if $n<R_{p}^{q}$, there exists an association of colours $1,2, \ldots, q$ with the edges of K_{n} such that no K_{p} has all its edges of the same colour.

We can apply Theorem 1 to this problem if we define a hypergraph on the set of edges of K_{n}, denoted K_{n} / K_{p}, whose edges are all the sets of edges of K_{n} which induce a K_{p}. Indeed $n \leq R_{p}^{q}-1$ is equivalent to saying that the hypergraph K_{n} / K_{p} is q-colourable.

Let us consider for example the case $p=3$. Then $n<R_{3}^{q}$ is equivalent to saying that K_{n} can be decomposed into q graphs without triangles. We know that K_{5} can be decomposed into two graphs without triangles, in fact two pentagons. We know also that K_{16} can be decomposed into three graphs without triangles; one manner of doing this is due to Greenwood and Gleason [1955], the other to Kalbfleisch and Stanton [1868]. Finally, we know also that K_{64} can be decomposed into four graphs without triangles (cf. Graham [1965], Chung [1973]). Thus

$$
\begin{equation*}
R_{3}^{2} \geq 6 ; \quad R_{3}^{3} \geq 17 ; \quad R_{3}^{4} \geq 65 \tag{1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
R_{3}^{q} \leq 1+q!\sum_{k=0}^{q} \frac{1}{k!} \tag{2}
\end{equation*}
$$

Indeed, let K be a complete graph of order $R_{3}^{q}-1$ which is decomposed into q graphs without triangles $G_{1}, G_{2}, \ldots, G_{q}$, let a be a vertex of K, and let A_{i} be the set of vertices of K adjacent to a in G_{i}. As the subgraph $K_{A_{i}}$ does not contain any edge of G_{i} (since G_{i} is without triangles), it is decomposible into $q-1$ graphs without triangles, whence thus

$$
\left|A_{i}\right| \leq R_{3}^{q-1}-1
$$

We deduce from this that

$$
R_{3}^{q}-1=1+d_{k}(a)=1+\sum_{i=1}^{q}\left|A_{i}\right| \leq 1+\left(R_{3}^{q-1}-1\right) q
$$

This recurrence formula gives immediately (2).
Together (1) and (2) give:

$$
R_{3}^{2}=6 ; R_{3}^{3}=17 ; 65 \leq R_{3}^{4} \leq 66
$$

Theorem 2 (Lepp Gardner [1973]). Let H be a linear hypergraph without loops. Then $\chi(H) \leq \Delta(H)$, except for the two following cases:
(i) $\Delta(H)=2$, and a connected component of H is a graph consisting of an odd cycle;
(ii) $\Delta(H)>2$ and a connected component of H is the complete graph of order $\Delta(H)+1$.

In these two cases we have $\chi(H)=\Delta(H)+1$.
If H is linear, we have $\Delta^{\beta}(H)=\Delta(H)$, and Theorem 1 gives: $\chi(H) \leq \Delta(H)+1$.
It follows from a theorem of Lepp Gardner [1977] that this inequality is strict when H is linear and does not satisfy (i) or (ii).

This result is an extension of Brooks's Theorem (see Graphs, Theorem 6, Chapter 15).

2. Particular Kinds of Colourings

Besides the concept of colouring defined in the preceding paragraph - often called "weak" colouring - there exist other concepts which generalize to hypergraphs that of the colouring of a graph.

Strong colourings. For a hypergraph H on X a strong k-colouring (of the vertices) is a k-partition ($S_{1}, S_{2}, \ldots, S_{k}$) of X such that no colour appears twice in the same edge; that is to say such that for every edge E

$$
\left|E \cap S_{i}\right| \leq 1 \quad(i=1,2, \ldots, k)
$$

The strong chromatic number of a hypergraph H, denoted by $\gamma(H)$, is the smallest integer k for which H admits a strong k-colouring. We note that every strong colouring is certainly a colouring, and consequently $\gamma(H) \geq \chi(H)$. However, $\gamma(H)$ is nothing more than the chromatic number of the graph $[H]_{2}$ (2 -section of H); for this reason we shall not study the strong chromatic number for its own sake.

Equitable colourings. For a hypergraph H on X, an equitable k-colouring (of the vertices) is a k-partition ($S_{1}, S_{2}, \ldots, S_{k}$) of X such that in every edge E all the colours appear the same number of times (or to within 1 , if k does not divide $|E|$); that is to say:

$$
\left[\frac{|E|}{k}\right] \leq\left|E \cap S_{i}\right| \leq\left[\frac{|E|}{k}\right]^{*} \quad(i=1,2, \ldots, k)
$$

We note that an equitable k-colouring is certainly a k-colouring. Furthermore every strong k-colouring is an equitable k-colouring. The equitable colourings of a hypergraph will be studied more particularly for unimodular hypergraphs ($\$ 2$, Chapter 5).

Good colourings. For a hypergraph H on X a good k-colouring is a k-partition $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ of X such that every edge E contains the largest possible number of different colours (taking account of the value of k), namely

$$
\min \{|E|, k\} .
$$

We note that a good colouring is certainly a colouring. Moreover, for $k=2$, a good k-colouring is simply a bicolouring; for $k \leq \min |E|$, it is a partition of X into k transversal sets; for $k \geq \max |E|$, it is a strong colouring. Finally, for every k, an equitable k-colouring is a good colouring.

Good colourings will be studied particularly for balanced hypergraphs (§ 3, Chapter 5).

I-regular colourings. For a hypergraph H on X, let us associate with every edge E_{j} two integers a_{j} and b_{j} with $0 \leq a_{j} \leq b_{j}$, and let $I=\left\{\left[a_{j}, b_{j}\right] / j=1,2, \ldots, m\right\}$. An I-regular k-colouring of H is a k-partition ($S_{1}, S_{2}, \ldots, S_{k}$) of X such that for every edge E_{j}

$$
a_{j} \leq\left|E_{j} \cap S_{i}\right| \leq b_{j} \quad(i=1,2, \ldots, k)
$$

We note that an I-regular colouring is also a colouring. Moreover we note:
(1) Every colouring is an I-regular colouring with $a_{j}=0, b_{j}=\max \left\{1,\left|E_{j}\right|-1\right\}$.
(2) Every strong colouring is an I-regular colouring with $a_{j}=0, b_{j}=1$.
(3) Every equitable colouring is an I-regular colouring with $a_{j}=\left[\frac{\left|E_{j}\right|}{k}\right]$, $b_{j}=\left[\frac{\left|E_{j}\right|}{h}\right]^{*}$.
I-regular colourings were introduced by de Werra [1979] who studied the sequences $s_{1} \geq s_{2} \geq \cdots \geq s_{k}$ for which there exists an I-regular k-colouring ($S_{1}, S_{2}, \ldots, S_{k}$) with $s_{1}=\left|S_{1}\right|, s_{2}=\left|S_{2}\right|$, etc. Some interesting theorems on certain I-regular k-colourings of the edges of a simple graph were obtained by Hilton and Jones [1978].

By way of an exercise one can verify that if $r(H)=2$, all these definitions give exactly the usual colouring of a graph. We can verify also that if H is an interval hypergraph whose vertices are the points $x_{1}, x_{2}, \ldots, x_{n}$ (in this order) on a line, we obtain an equitable k-colouring of H by using successively the colours $1,2, \ldots, k, 1,2, \ldots, k, 1,2, \ldots$ to colour the points from left to right; thus we see that an interval hypergraph has a (weak) chromatic number equal to 2 and a strong chromatic number equal to the rank $r(H)$.

3. Uniform Colourings

For a hypergraph H of order n, a k-colouring ($S_{1}, S_{2}, \ldots, S_{k}$) is said to be uniform if the number of vertices of the same colour is always the same (to within one), that is to say if we have

$$
\left[\frac{n}{k}\right] \leq\left|S_{i}\right| \leq\left[\frac{n}{k}\right]^{*} \quad(i=1,2, \ldots, k)
$$

The problem of the existence of a uniform k-colouring arises in numerous scheduling problems.

Example 1. Organizing a colloquium. The organizers of a scientific colloquium have at hand q half-days to organize n sessions $x_{1}, x_{2}, \ldots, x_{n}$, each lasting a half-day. Certain people have to be present at all the sessions of a set $E_{1} \subset\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$; others at all those of a set $E_{2} \subset\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, thus defining a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Can one organize the n sessions respecting these constraints with only p conference rooms? It is obviously necessary that $p q \geq n$, that is

$$
p \geq\left[\frac{n}{q}\right]^{*}
$$

This condition is necessary and sufficient if the hypergraph H admits a uniform strong q-colouring ($S_{1}, S_{2}, \ldots, S_{q}$). Indeed in this case the set of sessions taking place during the half-day i may be defined by a set S_{i} which satisfies:

$$
\begin{equation*}
\left|S_{i} \cap E_{j}\right| \leq 1 \quad(j=1,2, \ldots, m) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left|S_{i}\right| \leq\left\{\frac{n}{q}\right]^{*} \leq p \tag{2}
\end{equation*}
$$

All the constraints are therefore satisfied.
For the existence of a uniform strong k-colouring we have a weil-known theorem of Hajnal and Szemerédi (cf. Graphs, Chapter 13, §2), as follows: a graph $[H]_{2}$ of maximum degree h admits a uniform colouring for every $k \geq h+1$. Therefore H admits a uniform strong k-colouring for every $k \geq h+1$.
(For a simpler proof, see Szemeredi [1975]).
Example 2. Organizing an air show. In the course of an air show an aeroplane takes off every ten minutes and two planes may not be displayed in flight simultaneously. There are m possible buyers who want to be present at these exhibitions at different times, and it is known in advance at what interval of time E_{j} the buyer j will be present. This defines a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ over the set of flight times. Moreover each of the k exhibitors wishes to show his craft in flight to all the buyers and to get the same total exhibition time. It is obviously necessary that $k \leq \min _{j}\left|E_{j}\right|$. This condition is also sufficient if the hypergraph H admits a uniform good k-colouring ($S_{1}, S_{2}, \ldots, S_{k}$). Indeed the set of times allocated to the i th exhibitor being defined by the set S_{i}, all the constraints will be satisfied, for we have

$$
\begin{aligned}
S_{i} \cap E_{j} \neq \varnothing & (i, j) \\
-1 \leq\left|S_{i}\right|-\left|S_{j}\right| \leq 1 & (i, j)
\end{aligned}
$$

We note that the hypergraph H is here an interval hypergraph, and that for every k an interval hypergraph admits a good uniform k-colouring: it is enough to allot successively to the vertices the colours $1,2, \ldots, k, 1,2, \ldots$ going from left to right along the time axis.

Example 3. Organizing a ping-pong tournament. A set of n players $x_{1}, x_{2}, \ldots, x_{n}$ take part in a tournament where all the matches planned between the players are defined by the m edges of a graph G on $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. The duration of a match must not exceed one hour; the tournament has to be finished at the end of p hours, and there are available q ping-pong tables. In order for these constraints to be realized, it is necessary that the maximum degree of G does not exceed p and that $p q \geq m$, that is

$$
\begin{equation*}
p \geq \Delta(G) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
q \geq\left[\frac{m}{p}\right]^{*} \tag{2}
\end{equation*}
$$

Conditions (1) and (2) are necessary and sufficient if the edges of G have a uniform p-colouring (a p-colouring of the edges of a graph G being by definition a strong p-colouring of the vertices of the dual hypergraph G^{*}).

Clearly, if $\left(E_{1}, E_{2}, \ldots, E_{p}\right)$ is a uniform p-colouring of the edges of G, the matching E_{i} defines the matches to be played during the i th hour, since

$$
\left|E_{i}\right| \leq\left[\frac{m}{p}\right]^{*} \leq q .
$$

We note that McDiarmid [1972] showed that the edges of a graph G admit a uniform k-colouring for every $k \geq \Delta(G)+1$.

Theorem 3. Let H be a hypergraph which has a good k-colouring. Suppose that for every good k-colouring $\left(S_{i} / i \in I\right)$ and every pair of classes $\left(S_{1}, S_{2}\right)$ with $\left|S_{2}\right| \geq\left|S_{1}\right|+2$, the subhypergraph $H_{S_{1} \cup S_{2}}$ admits a bicolouring $\left(S_{1}^{\prime} S_{2}^{\prime}\right)$ with

$$
\begin{equation*}
\left|S_{1}\right|+1 \leq\left|S_{1}^{\prime}\right| \leq\left|S_{2}^{\prime}\right| \leq\left|S_{2}\right|-1 \tag{1}
\end{equation*}
$$

Then H admits a good k-colouring which is uniform.
Proof. Let $d=\max _{i, j}\left(\left|S_{i}\right|-\left|S_{j}\right|\right)$ be the "deficiency" of a good colouring ($S_{1}, S_{2}, \ldots, S_{k}$) of H. We shall proceed step by step to transform this k-colouring so that it becomes uniform. If $d \leq 1$, the colouring is uniform. If $d \geq 2$, consider two classes, for example S_{1} and S_{2}, with

$$
\begin{aligned}
& \left|S_{1}\right|=\min \left|S_{i}\right| \\
& \left|S_{2}\right|=\max \left|S_{i}\right| .
\end{aligned}
$$

As $\left|S_{2}\right| \geq\left|S_{1}\right|+2$ there exists a bicolouring $\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$ of $H_{S_{1} \cup S_{2}}$ satisfying the inequalities (1). It is easy to verify that ($S_{1}^{\prime}, S_{2}^{\prime}, S_{3}, S_{4}, \ldots, S_{k}$) is again a good k-colouring of H. Moreover, by virtue of (1), we have

$$
\begin{array}{ll}
\left.\left|S_{2}^{\prime}\right|-\left|S_{1}^{\prime}\right| \leq\left(\left|S_{2}\right|-1\right)-\left(\mid S_{1}\right)+1\right)=d-2 & \\
\left|S_{1}^{\prime}\right|-\left|S_{2}^{\prime}\right| \leq 0 \leq d-2 & (i \neq 1,2) \\
\left|S_{2}^{\prime}\right|-\left|S_{i}\right| \leq\left|S_{2}\right|-\left|S_{i}\right|-1 \leq d-1 & (i \neq 1,2) \\
\left|S_{1}^{\prime}\right|-\left|S_{2}^{\prime}\right| \leq\left|S_{1}\right|-\left|S_{i}\right|-1 \leq d-1 & (i \neq 1,2) \\
\left|S_{i}\right|-\left|S_{2}^{\prime}\right| \leq\left|S_{i}\right|-\left|S_{1}\right|-1 \leq d-1 & (i \neq 1,2) \\
\left|S_{i}\right|-\left|S_{1}^{\prime}\right| \leq\left|S_{i}\right|-\left|S_{1}\right|-1 \leq d-1 &
\end{array}
$$

We have therefore decreased the number of pairs $\left(S_{p}, S_{q}\right)$ with $\left|S_{p}\right|-\left|S_{q}\right| \geq d$. By repeating this transformation we decrease the deficiency down to $d \leq 1$; the good colouring finally obtained is thus uniform. This is what was to be proved.

Corollary 1 (McDiarmid [1872]). Let G be a multigraph with chromatic index $q(G)$. For $k \geq q(G)$ the edges of G admit a uniform strong k-colouring.

Indeed every strong k-colouring of the edges with $k \geq q(G) \geq \Delta(G)$ is a good k-colouring. Furthermore the edges having one of the colours i or j make up either even cycles or open paths; if the colour i appears more often than colour j there exists an open path having at each end an edge of colour i; by interchanging the colours on this path we obtain a colouring satisfying (1) which enables us to apply Theorem 3.

Corollary 2 (de Werra [1979]). Let G be a multigraph which has a good k-colouring of the edges. Then the edges of G admit a uniform good k-colouring.

For if not, the edges of G admit a good k-colouring ($E_{1}, E_{2}, \ldots, E_{k}$) with, for example, $\left|E_{2}\right| \geq\left|E_{1}\right|+2$. The partial graph $G^{1,2}$ generated by the edges of colour 1 or 2 admits a (weak) bicolouring of the edges; thus $G^{1,2}$ has no connected component which is an odd cycle without chords. We show that from this we can find a bicolouring of the edges of $G^{1,2}$ which is uniform. We may suppose $G^{1,2}$ to be connected.

If all the vertices are of even degree, $G^{1,2}$ admits an Eulerian cycle, in which we can colour the edges alternately with the two colours. If the Eulerian cycle is odd we take as starting point a vertex of $G^{1,2}$ having degree greater than two (which is always possible since $G^{1,2}$ is not an odd cycle without chords). Thus the edges of $G^{1,2}$ admit a uniform bicolouring.

If there exist vertices of odd degree, G has $2 p$ vertices of odd degree and there exists a partition of the edges into p paths joining the odd vertices in twos. An alternating colouring in two colours of the edges of each of these paths gives a uniform good 2 -colouring. Thus we obtain a new colouring satisfying (1), and we can therefore apply Theorem 3.

Note that Corollary 2 is more general than Corollary 1, and that the values of k which guarantee a good k-colouring of G have been obtained by Fournier [1973]. (See also de Werra [1977]).

Given a hypergraph H, we call a "positional game on H " the situation where two players, say A and B, play in turn at colouring a vertex of H, with the colour red for A and the colour blue for B. A vertex already coloured cannot be recoloured; the winner is the one who first colours an edge of H completely with his colour. If neither of the players obtains a monochromatic edge then the game is a draw.

Example 1. Tic-Tac-Toe in p dimensions. This is played on the set of cells of a hypercube of p dimensions of sides equal to r, considered as a hypergraph on r^{p} vertices (the cells of the hypercube) in which the edges are all the sets of r cells that are in line. This game has been studied by Hales and Jewett [1963], who showed that if r is odd and $\geq 3^{p}-1$ or r is even and $\geq 2^{p+1}-2$, then player B can force a draw.

One can also play by trying to colour three points in a line with the same colour on any configuration at all, for example the projective plane with seven points.

Example 2. Ramsey games. Two players A and B play alternately colouring respectively in red and blue an edge of the complete graph K_{n} on n vertices; the first player to colour with his colour all the edges of a k-clique has won, and his opponent has lost. The hypergraph H_{n} which must be considered has $\binom{n}{2}$ vertices and is $\binom{k}{2}$-uniform. A celebrated theory of Ramsey states that there exists an integer $R(k, k)$ such that for every $n \geq R(k, k)$, the hypergraph H_{n} has no bicolouring (so that, in consequence, the first player has a winning strategy); if $n(k)$ denotes the smallest order for which the first player wins, we have $n(k) \leq R(k, k)$.

Fundamental Proposition. In a positional game on a hypergraph H which admits no uniform bicolouring, the first player A has a strategy which assures him a win.

Proof. If H does not have a uniform bicolouring, there necessarily exists a
monochromatic edge when all the vertices have been coloured. Thus it is not possible to have a drawn game. This implies, by the theorem of Zermelo-von Neumann, that either player A or player B has a winning strategy.

We argue by contradiction, and suppose that it is the second player B who has a winning strategy σ. Thus, with the following sequence of moves:

$$
x_{1}, y_{1}=\sigma\left(x_{1}\right), x_{2}, \quad y_{2}=\sigma\left(x_{1}, x_{2}\right), x_{3}, \quad y_{3}=\sigma\left(x_{1}, x_{2}, x_{3}\right), \text { etc. }
$$

the first monochromatic edge will be blue, B 's colour. However the first player A can play according to the following rule: x_{0} being an arbitrary vertex, A 's first choice will be $x_{1}=\sigma\left(x_{0}\right) ; A$'s second choice will be $x_{2}=\sigma\left(x_{0}, y_{1}\right)$; etc. (If at any step, $y_{i}=x_{0}$, that is to say player B chooses the arbitrary vertex x_{0}, the player A will play in the same manner with $x_{i+1}=\sigma\left(x_{0}, y_{1}, y_{2}, \ldots, y_{i}^{\prime}\right)$, where y_{i}^{\prime} is a new arbitrary vertex not already coloured). In this manner A is assured of obtaining a win, and the first monochromatic edge will be red: a contradiction.

Theorem 4. Let H be a hypergraph such that

$$
\begin{equation*}
\sum_{E \in H} 2^{-|E|}+\max _{x} \sum_{E \in H(x)} 2^{-|E|}<1 \tag{1}
\end{equation*}
$$

Then H admits a uniform bicolouring. Furthermore in the positional game on H the second player B has a strategy ensuring a draw.

Proof. For a start, consider a hypergraph H satisfying (1), and let player A, who is trying to obtain a win, choose a vertex x_{1}. After this choice, player B must consider the hypergraph $H_{1}=H_{X-\left\{x_{3}\right\}}$ to choose a vertex y_{1}. After this choice, player A must consider the partial hypergraph $H_{1}^{\prime}=H_{1}-H_{1}\left(y_{1}\right)$ to choose a vertex x_{2}, etc. This defines a sequence of hypergraphs $H, H_{1}, H_{1}^{\prime}, H_{2}, H_{2}^{\prime}, \ldots$. It is then a matter of showing that B will never leave a hypergraph H_{i-1}^{\prime} with a loop, or, equivalently, that A will never obtain a family of sets H_{i} having as "edge" the empty set. For simplicity let us set

$$
v(H)=\sum_{E \in H} 2^{-|E|}
$$

Then the hypergraph $H_{1}=H_{X-\left\{x_{1}\right\}}$ satisfies

128 Hypergraphs

$$
v\left(H_{1}\right)=\sum_{E \in H\left(x_{1}\right)} 2^{-(|E|-1)}+\sum_{E \in H-H\left(x_{1}\right)} 2^{-|E|}
$$

Thus, from (1),

$$
\begin{equation*}
v\left(H_{1}\right)=v(H)+v\left[H\left(x_{1}\right)\right]<1 \tag{2}
\end{equation*}
$$

Let y_{1} be the reply of player B; then the new hypergraph $H_{1}^{\prime}=H_{1}-H_{1}\left(y_{1}\right)$ to be considered satisfies

$$
\begin{equation*}
v\left(H_{1}^{\prime}\right)=v\left(H_{1}\right)-v\left(H_{1}\left(y_{1}\right)\right) \tag{3}
\end{equation*}
$$

If B chooses a vertex y_{1} which maximizes $v\left(H_{1}(y)\right)$ then, whatever the choice x_{2} of his opponent,

$$
\begin{equation*}
v\left[H_{1}\left(x_{2}\right)\right] \leq v\left[H_{1}\left(y_{1}\right)\right] . \tag{4}
\end{equation*}
$$

After the choice x_{2} of A, the new hypergraph $H_{2}=\left[H_{1}^{\prime}\right]_{X-\left\{x_{2}\right\}}$ satisfies

$$
\begin{aligned}
& v\left(H_{2}\right)=v\left(H_{1}^{\prime}\right)+v\left[H_{1}^{\prime}\left(x_{2}\right)\right] \leq v_{1}\left(H_{1}^{\prime}\right)+v\left[H_{1}\left(x_{2}\right)\right] \\
& =v\left[H_{1}\right]-v\left[H_{1}\left(y_{1}\right)\right]+v\left[H_{1}\left(x_{2}\right)\right] \leq v\left(H_{1}\right)<1
\end{aligned}
$$

by virtue of (2), (3) and (4).
If B plays in this manner on every occasion, we always have $v\left(H_{i}\right) \leq v\left(H_{1}\right)<1$. The family H_{i} cannot have the empty set as an edge, since that would imply

$$
v\left(H_{i}\right) \geq \frac{1}{2^{0}}=1
$$

Thus B can force a draw, and consequently, from the fundamental proposition, H admits a uniform bicolouring.

Corollary (Erdös, Selfridge [1873]). Let $H=\left(E_{i} / i \in I\right)$ be a hypergraph without loops, of anti-rank $s=\min _{i}\left|E_{i}\right|$, and such that the number of edges m and the maximum degree Δ satisfy $m+\Delta<2^{s}$. Then H admits a uniform bicolouring. Furthermore, in a positional game on H, the second player B has a strategy for forcing a draw.

Indeed, in this case we have

$$
\sum_{E \in H} 2^{-|E|}+\max _{x} \sum_{E \in H(x)} 2^{-|E|} \leq m .2^{-s}+\Delta .2^{-s}<1
$$

Theorem 5. Let H be a hypergraph without loops, of order n such that

$$
\sum_{E \in H}\binom{n-|E|}{[n / 2]}<\binom{n-1}{[n / 2]}
$$

Then H admits a uniform bicolouring.

Proof. Let $p=[n / 2]$, and let τ_{p} be the family of transversals of H having cardinality p. Consider the hypergraph

$$
K_{n}^{p}-\tau_{p}=\{F / F \subset X,|F|=p, F \cap E=\varnothing \text { for some } E \in H\}
$$

We have

$$
m\left(K_{n}^{p}\right)-m\left(\boldsymbol{T}_{p}\right)=m\left(K_{n}^{p}-\boldsymbol{T}_{p}\right) \leq \sum_{E \in H}\binom{n-|E|}{p}<\binom{n-1}{p}
$$

therefore

$$
m\left(\mathcal{T}_{p}\right)>\binom{n}{p}-\binom{n-1}{p}=\binom{n-1}{p-1} .
$$

From the theorem of Erdös, Chao-Ko, Rado (Theorem 5, Chapter 1), this implies that T_{p} is not an intersecting family, and therefore contains two disjoint sets A and B. If n is even, (A, B) is a bicolouring of H which is uniform. If n is odd, we obtain such a bicolouring by adjoining to A the unique vertex of $X-(A \cup B)$.

Generalization (Hansen, Loréa [1978]). Let H be a hypergraph of order $n \geq k$, and let $p=\left[\frac{n}{k}\right], q=n-p k$. If

$$
k \sum_{E \in H}\binom{n-|E|}{n-p}+q \sum_{E \in H} \frac{|E|}{p+1-|E|}<\binom{n}{p}
$$

then H admits a uniform k-colouring.

4. Extremal problems related to the chromatic number

Numerous works (mostly Hungarian) have as their object the study of the smallest number of edges (or the largest number of edges) which an r-uniform hypergraph of order n can have if some given property holds; these are often referred to collectively as "extremal problems". In most papers these results are obtained by "probabilistic methods" (cf. Erdös, Spencer [1974]); here we shall obtain the principal results as simple corollaries of theorems in chapter 3.

First let us consider the largest number of edges in an r-uniform hypergraph of order $\leq n$ which is k-colourable, that we denote by

$$
M_{k}(n, r)=\max _{\substack{x(H) \leq k \\ n(H) \leq n}} m(H)
$$

Let us consider also the smallest number of edges in an r-uniform hypergraph of order $\leq n$ which is not k-colourable, that we denote by

$$
m_{k}(n, r)=\min _{\substack{x(H) \geq k \\ n(H) \leq n}} m(H)
$$

Denote by $M_{k}^{0}(n, r)$ the largest value of m for which there exists an r-uniform hypergraph H with $n(H) \leq n, m(H)=m$, and such that by adding a set of $n-n(H)$ isolated points we can find a uniform k-colouring; denote by $m_{k}^{0}(n, r)$ the smallest number of edges in an r-uniform hypergraph of order $\leq n$ which has no uniform k-colouring (if we complete its set of vertices by adding isolated vertices up to a total of n). We then have

$$
\begin{aligned}
1 \leq m_{k}(n, r) & \leq M_{k}(n, r) \leq\binom{ n}{r} \\
1 \leq m_{k}^{0}(n, r) & \leq M_{k}^{0}(n, r) \leq\binom{ n}{r} \\
m_{k}^{0}(n, r) & \leq m_{k}(n, r) \\
M_{k}^{0}(n, r) & \geq M_{k}(n, r) .
\end{aligned}
$$

It is easy to calculate $M_{k}(n, r)$ and $M_{k}^{0}(n, r)$, which are given by the following result:

Theorem 6 (Sterboul [1974]). Let $H_{n, k}^{r}$ be an r-uniform hypergraph of order n on X defined by a uniform k-partition $\left(Y_{1}, Y_{2}, \ldots, Y_{k}\right)$ of X and by

$$
H_{n, k}^{\tau}=\left(E / E \subset X ;|E|=r, E \not \subset Y_{1}, E \nsubseteq Y_{2}, \ldots, E \not \subset Y_{k}\right)
$$

Then we have

$$
M_{k}(n, r)=M_{k}^{0}(n, r)=m\left(H_{n, k}^{r}\right)
$$

Moreover, every r-uniform k-colourable hypergraph of order n with $M_{k}(n, r)$ edges is isomorphic to $H_{n, k}^{r}$.

Proof. Clearly every r-uniform hypergraph of order n having a uniform k-colouring contains $H_{n, k}^{r}$ as a partial hypergraph. Furthermore, if H is an r-uniform hypergraph of order n with $\chi(H) \leq k$, consider a k-colouring $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ of H; let $\left|S_{i}\right|=n_{i}$. We have

$$
m(H) \leq\binom{ n}{r}-\sum_{i=1}^{k}\binom{n_{i}}{r} \leq\binom{ n}{r}-\min _{\Sigma n_{i}=n} \sum_{i=1}^{k}\binom{n_{i}}{r}
$$

It is easy to see that the minimum of $\sum_{i=1}^{k}\binom{n_{i}}{r}$ for $n_{1}+n_{2}+\cdots+n_{k}=n$ is obtained if and only if we have

$$
\left[\frac{n}{k}\right] \leq n_{i} \leq\left[\frac{n}{k}\right]^{*} \quad(i=1,2, \ldots, k)
$$

Indeed, we verify that $n_{1} \geq n_{2}+2$ implies

$$
\binom{n_{1}}{r}+\binom{n_{2}}{r}>\binom{n_{1}-1}{r}+\binom{n_{2}+1}{r} .
$$

This algebraic lemma shows that

$$
m(H) \leq m\left(H_{n, k}^{r}\right)
$$

This shows also that equality holds only if the k-colouring ($S_{1}, S_{2}, \ldots, S_{k}$) is uniform. The result follows.

It is more difficult to calculate $m_{k}(n, r)$. We have $m_{2}(n, 2)=3$ for $n \geq 3$ (since the triangle K_{3} is not bicolourable); $m_{2}(5,3) \leq 10$ (since K_{5}^{3} is not bicolourable); $m_{2}(n, 3)=7$ for $n \geq 7$ (since P_{7} is not bicolourable). In the case of graphs we easily find that $m_{k}(n, 2)=\binom{k+1}{2}$ for $n \geq k+1$, and the only extremal graph is K_{k+1} (cf. Graphs, Theorem 4, Chapter 15).

Theorem 7 (Erdös [1963]). For $r \geq 2, k \geq 2, n \geq k r$, we have

$$
m_{k}(n, r) \geq k^{r-1}
$$

Proof.

1. Let X be a set of cardinality n, and let $\pi=\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ be an ordered k-partition of X, that is to say, a sequence of k disjoint subsets whose union is X, (some of which could be empty). Consider the hypergraph $H_{0}=\left(E_{\pi} / \pi\right)$ whose vertices are the r-tuples of X, an edge E_{π} being the set of r-tuples completely contained in a single class of the partition π.

Every set of edges of an r-uniform hypergraph on X with no k-colouring defines a transversal of H_{0}, and vice versa; hence

$$
m_{k}(n, r)=\tau\left(H_{0}\right)
$$

We have $m\left(H_{0}\right)=k^{n}$, for we can identify an ordered k-partition with a sequence of n integers taken from $\{1,2, \ldots, k\}$. Moreover, we have $\Delta\left(H_{0}\right)=k^{n-r} \times k$.

From Theorem 1, chapter 3, we have then

$$
m_{k}(n, r)=\tau\left(H_{0}\right) \geq \frac{m\left(H_{0}\right)}{\Delta\left(H_{0}\right)}=k^{r-1}
$$

Q.E.D.

Remark. By some more or less complicated algebraic manipulations, we can improve the lower bound in Theorem 7, using the inequality $\tau\left(H_{0}\right) \geq \tau^{*}\left(H_{0}\right)$.

For $k=2$ the best lower bound for $m_{k}(n, r)$ has been obtained by Beck [1877], [1978]: for every $\epsilon>0$ and every $n \geq n(\epsilon)$ we have $m_{2}(n, r) \geq 2^{r} r^{\frac{1}{3}-\epsilon}$. The inequality $m_{2}(n, r) \leq 2^{r} r^{2}$, due to Erdös [1964] and Schmidt [1964], has also been improved by Seymour [1974], giving, for example, $m_{2}(n, 4) \leq 23, m_{2}(n, 5) \leq 51$.

Generalisation (Hansen, Loréa [1978]). Let H be a hypergraph of order n such that

$$
\sum_{E \in H} \frac{k^{-|E|}\left(k^{2}-k+1\right)}{|E|} \cdot \sum_{E \in H} k^{-|E|}<1
$$

Then $\chi(H) \leq k$.
(The proof is analogous to that of Theorem 5).
Corollary 1 (Johnson [1976]). For $r \geq 2, k \geq 2, n \geq k r$ we have

$$
m_{k}(n, r) \geq \frac{r k^{r}}{r+k(k-1)}
$$

Corollary 2 (Schmidt [1964], Herzog, Schönheim [1972]). For $k \geq 2, n \geq 2 r$, we have

$$
m_{2}(n, r) \geq \frac{r .2^{r}}{r+2}
$$

For $k=2$ we have upper bounds due to Erdös [1964], Chvátal [1971], Beck [1977], Erdös and Spencer [1974]. Some bounds with the maximum degree (in place of the number of edges) are due to Erdös and Lovász [1975].

We propose now to find some bounds for $m_{k}^{0}(n, r)$.

Theorem 8. Let $r \geq 2, k \geq 2, n \geq k r$. In a uniform k-partition of X with $|X|=n$, let q_{1} be the number of classes of size $\left[\frac{n}{k}\right]$, and let q_{2} be the number of size $\left[\frac{n}{k}\right]^{*}$. We have

$$
m_{k}^{0}(n, r) \geq\binom{ n}{r}\left[q_{1}\binom{n / k]}{r}+g_{2}\left(\begin{array}{c}
{[n / k]^{*}}
\end{array}\right)\right]^{-1}
$$

Proof. Define (as in the proof of Theorem 7) a hypergraph $H_{0}=\left(E_{\pi}\right)$ whose vertices are all the r-tuples of X; for every uniform k-partition π, E_{π} denotes the set of r-tuples contained in a single class of the partition. Clearly H_{0} is regular, and it is also uniform of rank

$$
r\left(H_{0}\right)=q_{1}\binom{[n / k]}{r}+q_{2}\binom{[n / k]^{*}}{r} .
$$

Thus, using Theorem 1 of Chapter 3, we obtain

Remark. The value of $m_{k}^{0}(n, r)$ is precisely known when $r=2$. We give first some examples of graphs of order n having no uniform k-colouring.

If $n \leq k$, every graph of order n has a uniform k-colouring.

134 Hypergraphs

If $n>k$, consider the graph $G_{1}(n, k)$ formed by the union of a clique K_{k+1} (with $k+1$ vertices) and a stable set S_{n-k-1} (with $n-k-1$ vertices). This graph is certainly of order n, and having no k-colouring, it has no uniform k-colouring.

If $k<n \leq 2 k$, consider the graph $G_{2}(n, k)$ formed by the union of a clique $K_{2 k-n+1}$ and a stable set $S_{2 n-2 k-1}$, together with all the edges joining one to the other. This graph certainly has n vertices, and it will be left as an exercise to the reader to verify that it has no uniform k-colouring.

If $n \geq 2 k$, consider the graph $G_{3}(n, k)$ formed from the union of a set A of cardinality 1 , a set B of cardinality $n-\left[\frac{n}{k}\right]+1$, a set C of cardinality $\left[\frac{n}{k}\right]-2$, and all the edges joining the singleton of A to the elements of B. This graph is certainly of order n, and the task of verifying that it has no uniform k-colouring is left to the reader, by way of an exercise.

Thus, for every $n>k$, the minimum number of edges in a graph of order n with no uniform k-colouring satisfies

$$
\begin{equation*}
m_{k}^{0}(n, 2) \leq \min _{i} m\left[G_{i}(n, k)\right] \tag{1}
\end{equation*}
$$

Indeed, Berge and Sterboul [1977] showed that equality holds in (1). Further, they determined the structure of all graphs of order n with no uniform k-colouring having $m_{k}^{0}(n, 2)$ edges.

The same extremal problems can be formulated for the stability number.

Proposition. Let n, p, r be integers such that $n \geq p \geq r \geq 2$. The maximum number of edges in an r-uniform hypergraph of order n having a stable set of cardinality p is

$$
\max _{\alpha(H) \geq p} m(H)=\binom{n}{r}-\binom{p}{r}
$$

Indeed, the only extremal hypergraph is an r-uniform hypergraph H_{0} on X with $|X|=n$, defined by considering a set $S \subset X$ with $|S|=p$, and setting:

$$
H_{0}=(E / E \subset X,|E|=r, E \cap(X-S) \neq \varnothing)
$$

Clearly, we have

$$
m\left(H_{0}\right)=\binom{n}{r}-\binom{p}{r}
$$

as was to be proved.

For $n \geq p \geq r \geq 2$, the Turan number $T(n, p, r)$ is the smallest number of edges in an r-uniform hypergraph of order n such that every set of vertices of cardinality p contains at least one edge. That is to say,

$$
T(n, p, r)=\min _{\alpha(H)<p} m(H) .
$$

Example 1 (Turan [1941]). Consider a set X with $|X|=n$, and a uniform ($p-1$)partition ($S_{1}, S_{2}, \ldots, S_{p-1}$) of X. The graph $G_{n, p-1}$ obtained by joining two elements (vertices) of X if and only if they belong to the same S_{i} satisfies $\alpha\left(G_{n, p-1}\right)<p$. Turan showed that it is the only graph with this property having the minimum number of edges. Thus

$$
T(n, p, 2)=m\left(G_{n, p-1}\right)
$$

(cf. Graphs, Theorem 5, Chapter 13).

Example 2. Consider the 3 -uniform hypergraph on $X=\{1,2, \ldots, 9\}$ whose edges are: 123, 456, 788, 147, 258, 369, 159, 267, 348, 168, 249, 357 (the "affine plane of rank 3 "). It can be shown that this is the only extremal 3 -uniform hypergraph with $\alpha<5$. Thus $T(8,5,3)=12$.

Few values of $T(n, p, r)$ are known, but it is known that when $n \rightarrow \infty$ the function $T(n, p, r)\binom{n}{r}^{-1}$ tends to a limit $t(p, r)$ (Katona, Nemetz, Simonovits [1964]). For $p>r \geq 3$ no values of $t(p, r)$ are known, but it is known that $t(p, r) \geq\binom{ p-1}{r-1}^{-1}$ (de Caen [1983]). The best upper bound for $t(r+1, r)$ is due to Frankl and Rödl [1985].

Theorem 9. For $n \geq p \geq r \geq 2$ we have

$$
\begin{align*}
& T(n, p, r) \geq\binom{ n}{r}\binom{p}{r}^{-1} . \tag{1}\\
& T(n, p, r) \leq\left[1+\log \binom{n-r}{p-r}\right]\binom{n}{r}\binom{p}{r}^{-1} . \tag{2}
\end{align*}
$$

Proof. Let X be a set with $|X|=n$.
Let H_{0} be the hypergraph whose vertices are the r-tuples of X, and for $S \subset X$ with $|S|=p$, the edge E_{S} denotes the set of r-tuples of X contained in S. Then $T(n, p, r)=\tau\left(H_{0}\right)$. Furthermore

$$
n\left(H_{0}\right)=\binom{n}{r}, \quad r\left(H_{0}\right)=\binom{p}{r}, \quad m\left(H_{0}\right)=\binom{n}{p}, \quad \Delta\left(H_{0}\right)=\binom{n-r}{p-r}
$$

From Theorem 1 of Chapter 3, we have

$$
T(n, p, r)=\tau\left(H_{0}\right) \geq \frac{m\left(H_{0}\right)}{\Delta\left(H_{0}\right)}=\frac{n\left(H_{0}\right)}{r\left(H_{0}\right)}=\binom{n}{r}\binom{p}{r}^{-1},
$$

from which (1) follows.
Theorem 12 of Chapter 3 gives

$$
\begin{aligned}
T(n, p, r)=\tau\left(H_{0}\right) & \leq\left[1+\log \Delta\left(H_{0}\right)\right] \tau^{*}\left(H_{0}\right) \\
& =\left[1+\log \binom{n-r}{p-r}\right]\binom{n}{r}\binom{p}{r}^{-1}
\end{aligned}
$$

from which (2) follows.
Remark. The inequality (1) was originally found (by different methods) by Katona, Nemetz, Simonovits [1964]. By generalizing a theorem of Moon and Moser, de Caen [1983] has been able to improve (1) to

$$
\begin{equation*}
T(n, p, r) \geq \frac{n-p+1}{r}\binom{n}{r-1}\binom{p-1}{r-1}^{-1} . \tag{3}
\end{equation*}
$$

(For a more complete account of Turan numbers the reader should refer to Brouwer, Voorhoeve [1978]).

Note that (2) improves a bound due to Schönheim [1964].
Corollary. Let H be an r-uniform hypergraph of order n with m edges; then $\alpha(H) \geq n m^{-1 / r}$.

Indeed, if for an integer p we have $m \leq\left(n p^{-1}\right)^{r}$, then $m<\binom{n}{r}\binom{p}{r}^{-1}$, and from (1), $m<T(n, p, r)$. In other words $p \leq n m^{-1 / r}$ implies $\alpha(H) \geq p$, whence

$$
\alpha(H) \geq n m^{-1 / \tau} .
$$

5. Good edge-colourings of a complete hypergraph

Let k be an integer ≥ 2. A weak k-colouring of the edges of a hypergraph H is the colouring defined by a weak k-colouring of the dual hypergraph H^{*}. It is thus a partition $H=H_{1}+H_{2}+\ldots+H_{k}$ (edge-disjoint sum) such that for every vertex x with $d_{H}(x)>1$, the star $H(x)$ has at least two edges of different colours. A good k-colouring of the edges of H is a weak k-colouring of the edges of H such that if $d_{H}(x) \geq k$, the star $H(x)$ contains at least one edge of each of the colours, and if $d_{H}(x) \leq k$, the edges of the star $H(x)$ all have different colours. A strong k-colouring of the edges of H is a partition $H=H_{1}+H_{2}+\ldots+H_{k}$ such that the edges of the star $H(x)$ all have different colours. The chromatic index of H is the smallest value of k for which a strong k-colouring of the edges exists; it is thus the strong chromatic number $\gamma\left(H^{*}\right)$.

In this section we shall determine for what values of k the r-partite complete hypergraph and the r-complete hypergraph have a good k-colouring of the edges.

Theorem 10 (Meyer [1875]). For every $k \geq 2$, the edges of the complete r-partite hypergraph admit a good k-colouring.
(*) Proof. Let $H=K_{n_{1}, n_{2} \ldots, n_{r}}^{\tau}$, with $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{r}$, and let $X^{i}=\left\{0,1, \ldots, n_{i}-1\right\}$ denote the i-th class.

We have seen (Theorem 9, Chapter 1) that for $p=\prod_{i \neq 1} n_{i}=\Delta(H)$, we obtain a strong p-colouring of the edges by allocating to the edge $\bar{x}=x^{1} x^{2} \cdots x^{r}$ the $(r-1)$ tuple ($\alpha_{2}, \alpha_{3}, \ldots, \alpha_{4}$), where

$$
\alpha_{i}=\left[x^{i}+x^{1}\right]_{n_{i}}
$$

Thus there exists a good k-colouring for every $k \geq p$; for if $k>p$ it suffices to complete the p-colouring above with $k-p$ empty classes.

We can also verify that for $n_{q} \leq s \leq n_{q+1}$ and for $p=s \quad \Pi n_{i}$, we obtain a $\underset{\substack{i \neq q \\ i \neq q+1}}{ }$
good p-colouring by allocating to the edge \bar{x} the ($r-1$)-tuple ($\alpha_{2}, \alpha_{3}, \ldots, \alpha_{4}$), where

$$
\begin{aligned}
\alpha_{i} & =\left[x^{i-1}+x^{i}\right]_{n_{i}-1} \text { if } 2 \leq i \leq q \\
& =\left[x^{q}+x^{q+1}\right]_{B} \text { if } i=q+1 \\
& =\left[x^{i-1}+x^{i}\right]_{n_{i}} \text { if } q+1<i \leq r
\end{aligned}
$$

For $k \leq \prod_{i \neq r} n_{i}=\min d_{H}(x)$, we obtain a good k-colouring ($S_{1}, S_{2}, \ldots, S_{k-1}, \bigcup_{i=k}^{p} S_{i}$) from the p-colouring ($S_{1}, S_{2}, \ldots, S_{p}$) defined by the formula above with $q+1=r$ and $s=n_{r-1}$. For all the other values of k we find a ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$) by analogous formulae (we refer the reader to Mayer [1975]).

We note also (without proof):
Generalization (Baranyai [1978]). For every $k \geq 2$ the edges of the complete r-partite hypergraph admit an equitable, k-colouring which is uniform.

The existence of good k-colourings of the edges of the hypergraph K_{n}^{r} has been proved by Baranyai by induction on the order n. In order that the inductive method can be used, it is necessary to aim for a stronger statement than we are going to prove. First we say that a hypergraph H on X is almost-regular if we have

$$
\left|d_{H}(x)-d_{H}(y)\right| \leq 1 \quad(x, y \in X)
$$

Lemma 1. Let H be a hypergraph on X. If, for a vertex $a \in X$, the subhypergraph H^{\prime} induced by $X-\{a\}$ is almost-regular, and if

$$
\left[\frac{1}{n} \sum_{E \in H}|E|\right] \leq d_{H}(a) \leq\left[\frac{1}{n} \sum_{E \in H}|E|\right]^{*}
$$

then H is almost-regular.
$\left(^{*}\right)$ Set $\alpha=\sum_{E \in H}|E|$, so $\left[\frac{\alpha}{n}\right] \leq d_{H}(a) \leq\left[\frac{\alpha}{n}\right]^{*}$. For $x \neq a$ we can show that

$$
\left[\frac{\alpha-d_{H}(a)}{n-1}\right] \leq d_{H}(x)=d_{H}(x) \leq\left[\frac{\alpha-d_{H}(a)}{n-1}\right]^{*}
$$

If we note that

$$
\left[\frac{\alpha}{n}\right]=\left[\frac{\alpha-\left[\frac{\alpha}{n}\right]^{*}}{n-1}\right], \quad\left[\frac{\alpha}{n}\right]^{*}=\left[\frac{\alpha-\left[\frac{\alpha}{n}\right]}{n-1}\right]^{*}
$$

we deduce that

$$
\left[\frac{\alpha}{n}\right] \leq d_{H}(x) \leq\left[\frac{\alpha}{n}\right]^{*} \quad(x \neq a)
$$

This shows that H is almost-regular.

Lemma 2. Let ϵ_{j}^{i}, for $i=1,2, \ldots, s, j=1,2, \ldots, t$, be real numbers ≥ 0. There exist integers $e_{j}^{i} \geq 0$ such that

$$
\begin{equation*}
\left[\epsilon_{j}^{i}\right] \leq e_{j}^{i} \leq\left[\epsilon_{j}^{i}\right]^{*} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left[\sum_{i} \epsilon_{j}^{i}\right] \leq \sum_{i} e_{j}^{i} \leq\left[\sum_{i} \epsilon_{j}^{i}\right]^{*} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\left[\sum_{j} \epsilon_{j}^{i}\right] \leq \sum_{j} e_{j}^{i} \leq\left[\sum_{j} \epsilon_{j}^{i}\right]^{*} \tag{iii}
\end{equation*}
$$

(*) Proof. Consider a transport network R whose vertices consist of a source a, a sink z, and two sets S and T. The arcs of R, each with an upper and lower capacity, are of three kinds.

1) $\operatorname{arcs}(a, i), i \in S$, able to bear a flow ψ with

$$
\left[\sum_{j} \epsilon_{j}^{i}\right] \leq \psi(a, i) \leq\left[\sum_{j} \epsilon_{j}^{i}\right]^{*}
$$

2) $\quad \operatorname{arcs}(i, j), i \in S, j \in T$, able to bear a flow ψ with

$$
\left[\epsilon_{j}^{i}\right] \leq \psi(i, j) \leq\left[\epsilon_{j}^{i}\right]^{*}
$$

3) $\operatorname{arcs}(j, z), j \in T$, able to bear a flow ψ with

140 Hypergraphs

$$
\left[\sum_{j} \epsilon_{j}^{i}\right] \leq \psi(j, z) \leq\left[\sum_{i} \epsilon_{j}^{i}\right]^{*}
$$

The necessary and sufficient conditions for the existence of a flow in a network with integer capacities are the same for a flow with real values and for a flow with integer values (cf. Graphs, Chapter 5, §2). Since the network R admits a real-valued flow $\bar{\psi}$ with $\bar{\psi}(i, j)=\epsilon_{j}^{i}$, it will admit an integer-valued flow ψ. The integers $\psi(i, j)=e_{j}^{i}$ satisfy the conditions (i), (ii) and (iii).

Baranyai's Lemma. Let n, r_{i} and m_{j}^{i}, for $i \in I, j \in J$, be integers satisfying

$$
\begin{equation*}
0 \leq r_{i} \leq n \quad(i \in I) \tag{I}
\end{equation*}
$$

(II) $\quad m_{j}^{i} \geq 0 \quad(i \in I, j \in J)$;
(III)

$$
\sum_{j \in J} m_{j}^{i}=\binom{n}{r_{i}} \quad(i \in I)
$$

Then there exists a set X with $|X|=n$ and families $H_{j}^{i}=\left(E_{j}^{i}(\lambda)\right)$ of subsets of X satisfying

$$
\begin{equation*}
m\left(H_{j}^{i}\right)=m_{j}^{i} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
H^{i}=\sum_{j \in J} H_{j}^{i} \text { is the complete hypergraph } K_{n}^{\tau_{i}} ; \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
H_{j}=\sum_{i \in I} H_{j}^{i} \text { is almost-regular, or, equivalently, } \tag{3}
\end{equation*}
$$

$$
\left[\frac{1}{n} \sum_{E \in H_{j}}|E|\right] \leq d_{H_{j}}(x) \leq\left[\frac{1}{n} \sum_{E \in H_{j}}|E|\right]^{*} \quad(x \in X)
$$

(*) Proof. We shall suppose that the assertion is verified for every integer $<n$, and prove it to be true for n. Consider, for n, the following tableau of integers satisfying (I), (II) and (III).

We can eliminate from this matrix every row i_{0} with $r_{i_{0}}=0$ (since $\sum_{j} m_{j}^{i_{0}}=0$ from (III), and $H^{i_{0}}=\varnothing$). Similarly we can eliminate every row i_{1} with $r_{i_{1}}=n$ (since $H^{i_{1}}=(X)$, from (III), and its suppression will make no change in the conclusion).

Supposing this to have been done, consider, with $n-1$, the new tableau:

where the e_{j}^{i} are integers satisfying properties (i), (ii) and (iii) of lemma 2 with $\epsilon_{j}^{i}=\frac{1}{n} r_{i} m_{j}^{i}$. Then the coefficients in the new tableau satisfy

$$
0 \leq r_{i}-1 \leq n-1
$$

($\mathbf{I}^{\prime \prime}$)

$$
0 \leq r_{i} \leq n-1
$$

(II') $\quad e_{j}^{i} \geq 0$
(II') $\quad m_{j}^{i}-e_{j}^{i} \geq 0$

In order to obtain ($\mathrm{II}^{\prime \prime}$), observe that

$$
m_{j}^{i}-e_{j}^{i} \geq \frac{r_{i} m_{j}^{i}}{n}-e_{j}^{i}
$$

The first term being an integer we deduce, by using (i) of Lemma 2, that

$$
m_{j}^{i}-e_{j}^{i} \geq\left[\frac{r_{i} m_{j}^{i}}{n}\right]^{*}-e_{j}^{i} \geq 0
$$

We also have, from (iii) and (III),

$$
\sum_{j} e_{j}^{i} \geq\left[\sum_{j} \frac{r_{i} m_{j}^{i}}{n}\right]=\left[\binom{n}{r_{i}} \frac{r_{i}}{n}\right]=\binom{n-1}{r_{i}-1}
$$

For the same reason we have the inverse inequality, thus
(III')

$$
\sum_{j} e_{j}^{i}=\binom{n-1}{r_{i}-1}
$$

Finally
(III')

$$
\sum_{j}\left[m_{j}^{i}-e_{j}^{i}\right]=\binom{n}{r_{i}}-\binom{n-1}{r_{i}-1}=\binom{n-1}{r_{i}}
$$

By virtue of the induction hypothesis, there exists a set \bar{X} with $|\bar{X}|=n-1$, and families $\bar{H}_{j}^{\mathrm{i}}=\left(\bar{E}_{j}^{\mathrm{i}}(\lambda)\right)$ and $\overline{\vec{H}}_{j}^{i}=\left(\overline{\bar{E}}_{j}^{\mathrm{i}}(\lambda)\right)$ of subsets of \bar{X} satisfying

$$
m\left(\bar{H}_{j}^{i}\right)=e_{j}^{i}
$$

(1") $\quad m\left(\overrightarrow{\vec{H}}_{j}\right)=m_{j}^{i}-e_{j}^{i}$
(2')

$$
\sum_{j} \bar{H}_{j}^{i}=K_{n-1}^{\tau_{i}-1}
$$

(3^{\prime})

$$
\sum_{j} \overrightarrow{\bar{H}}_{j}=K_{n-1}^{r_{i}-1}
$$

$$
\begin{equation*}
\sum_{i} \bar{H}_{j}^{i}+\sum_{i} \overline{\vec{H}}_{j}^{i} \text { is almost-regular. } \tag{4}
\end{equation*}
$$

Consider an additional point a. Set $X=\bar{X} \cup\{a\}$ and

$$
\begin{aligned}
E_{j}^{i}(\lambda) & =\bar{E}_{j}^{i}(\lambda) \cup\{a\} \text { for } 1 \leq \lambda \leq e_{j}^{i} \\
& =\overline{\vec{E}}_{j}(\lambda) \quad \text { for } \quad e_{j}^{i}+1 \leq \lambda \leq m_{j}^{i} .
\end{aligned}
$$

It is clear that the hypergraphs $H_{j}^{i}=\left(E_{j}^{i}(\lambda) / 1 \leq \lambda \leq m_{j}^{i}\right)$ satisfy

$$
\sum_{j \in J} H_{j}^{i}=K_{n}^{r_{i}}
$$

Furthermore

$$
\sum_{i, \lambda} \frac{\left|E_{j}^{i}(\lambda)\right|}{n}=\sum_{i} \frac{r_{i} m_{j}^{i}}{n} .
$$

Thus, for $x \neq a$,

$$
\left[\frac{1}{n} \sum_{i, \lambda}\left|E_{j}^{i}(\lambda)\right|\right] \leq d_{H_{j}}(x) \leq\left[\frac{1}{n} \sum_{i, \lambda}\left|E_{j}^{i}(\lambda)\right|\right]^{*} .
$$

From Lemma 1, we see then that $H_{j}=\sum_{i} H_{j}^{i}$ is amost-regular, which completes the proof.

Theorem 11 (Baranyai [1975]). Let n, r be integers, $n \geq r \geq 2$, and let $m_{1}, m_{2}, \ldots, m_{t}$ be integers with $m_{1}+m_{2}+\cdots+m_{t}=\binom{n}{r}$. Then K_{n}^{r} is the edgedisjoint sum of t hypergraphs H_{j}, each satisfying

$$
\begin{equation*}
m\left(H_{j}\right)=m_{j} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{r m_{j}}{n}\right] \leq d_{H_{j}}(x) \leq\left[\frac{r m_{j}}{n}\right]^{*} \quad(x \in X) \tag{2}
\end{equation*}
$$

This is the statement of Baranyai's lemma for $|I|=1$.

Corollary 1 (Baranyai). K_{n}^{r} is the edge-disjoint sum of partial h-regular hypergraphs H_{j} if and only if r divides $h n$ and $\frac{h n}{r}$ divides $\binom{n}{r}$. In this case, the H_{j} make up a uniform colouring of the edges of K_{n}^{\top}.

Proof. If there exists a decomposition of K_{n}^{τ} as the sum of h-regular hypergraphs H_{j}, we have $r m\left(H_{j}\right)=h n$ (by counting, in two different ways, the edges of the vertexedge incidence graph). Thus r divides $h n$, and $\frac{h n}{r}=m\left(H_{j}\right)$ divides $m\left(K_{n}^{r}\right)=\binom{n}{r}$.

Conversely, if these conditions are satisfied, apply Theorem 11 with $m_{j}=\frac{h n}{r}$ and $t=\binom{n}{r} \frac{r}{h n}$. There exists a decomposition of K_{n}^{r} into t hypergraphs H_{j} such that

$$
h=\left[\frac{r m_{j}}{n}\right] \leq d_{H_{j}}(x) \leq\left[\frac{r m_{j}}{n}\right]^{*}=h
$$

Thus the hypergraphs H_{j} are h-regular.

Corollary 2. The complete graph K_{n} is the sum of h-regular graphs if and only if $h n$ is even, and $\frac{h n}{2}$ divides $\binom{n}{2}$.

Corollary 3 (Baranyai). The hypergraph K_{n}^{r} has the coloured edge property if and only if r divides n. In this case, there exists an optimal colouring of the edges which is uniform.

Proof. We note that $\frac{n}{r}$ divides $\binom{n}{r}$, the quotient being $\binom{n-1}{r-1}$. We therefore apply Corollary 1 with $h=1$.

Corollary 4 (Baranyai). The chromatic index of K_{n}^{r} is

$$
q\left(K_{n}^{r}\right)=\left[\binom{n}{r}\left(\frac{n}{r}\right]^{-1}\right]^{*}
$$

Proof. Let $K_{n}^{r}=H_{1}+H_{2}+\ldots+H_{q}$ be a decomposition of the edges of K_{n}^{r} into $q=q\left(K_{n}^{r}\right)$ matchings. We have

$$
\binom{n}{r}=m\left(K_{n}^{r}\right)=\left|H_{1}\right|+\left|H_{2}\right|+\ldots+\left|H_{q}\right| \leq q\left[\frac{n}{r}\right]
$$

Thus

$$
q\left(K_{n}^{r}\right) \geq\left[\binom{n}{r}\left[\frac{n}{r}\right]^{-1}\right]^{*}
$$

On the other hand, if we denote by t the second term of this inequality, we can apply Theorem 11 with

$$
\begin{aligned}
m_{1} & =m_{2}=\cdots=m_{t-1}=\left[\frac{n}{r}\right] \\
m_{t} & =\binom{n}{r}-(t-1)\left[\frac{n}{r}\right] \leq\left[\frac{n}{r}\right]
\end{aligned}
$$

Thus there exists a decomposition $K_{n}^{r}=H_{1}+H_{2}+\cdots+H_{t}$ such that, for every $x \in X$,

$$
0 \leq d_{H_{i}}(x) \leq\left[\frac{r}{n}\left[\frac{n}{r}\right]\right]^{*} \leq 1
$$

This is then a strong colouring of the edges of K_{n}^{r} in t colours, whence $q\left(K_{n}^{r}\right) \leq t$, which completes the proof.

Corollary 5. Let $K_{n}^{r}=H_{1}+H_{2}+\ldots+H_{p}$ be a decomposition of the edges of K_{n}^{r} into p hypergraphs on X ("coverings"). If $p\left(K_{n}^{r}\right)$ denotes the smallest integer p for which such a decomposition exists, then

$$
p\left(K_{n}^{r}\right)=\left[\left(\frac{n}{r}\right)\left[\frac{n}{r}\right]^{*-1}\right]
$$

The proof is the same as that above.
Corollary 6. There exists a good k-colouring of the edges of K_{n}^{r} if and only if either $k \leq\left[\binom{n}{r}\left[\frac{n}{r}\right]^{*-1}\right]$ or $k \geq\left[\binom{n}{r}\left[\frac{n}{r}\right]^{-1}\right]^{*}$.

Proof. Using Corollaries 4 and 5 we can write

$$
\begin{aligned}
& \left.p\left(K_{n}^{r}\right)=\left[\binom{n}{r} / \frac{n}{r}\right]^{*-1}\right] \leq \frac{\binom{n}{r}}{\left[\frac{n}{r}\right]^{*}} \leq \Delta\left(K_{n}^{r}\right)=\binom{n}{r} \frac{r}{n} \\
& \leq \frac{\binom{n}{r}}{\frac{n}{r}} \leq\left[\binom{n}{r} /\left[\frac{n}{r}\right]^{-1}\right]^{*}=q\left(K_{n}^{r}\right)
\end{aligned}
$$

If $k<q\left(K_{n}^{r}\right)$ there is no strong k-colouring, and if $k \geq p\left(K_{n}^{r}\right)$ there exists no decomposition into k coverings. Hence there are no good k-colourings.

On the other hand, if $k \geq q\left(K_{n}^{r}\right)$ there exists an obvious good k-colouring, obtained from a colouring in $q\left(K_{n}^{r}\right)$ colours by adding empty classes. If $k \leq p\left(K_{n}^{r}\right)$, there exists a decomposition into k coverings, obtained from a decomposition into $p\left(K_{n}^{r}\right)$ coverings by redistributing the $p\left(K_{n}^{r}\right)-k$ last classes.

6. An application to an extremal problem

The above results enable us to give a partial answer to the following problem: what is the largest number of edges in an r-uniform hypergraph of order $\leq n$ which does not have $k+1$ pairwise disjoint edges. This number will be denoted by

$$
M_{k}^{\prime}(n, r)=\max _{\nu(H) \leq k} m(H)
$$

For the case of graphs this problem has already been solved by Erdös and Gallai [1959] (cf. Graphs, Theorem 2, Chapter 7).

Theorem 12. Let n, r, k be integers with $n \geq r \geq 2, n \geq k r$. If we let

$$
q=\left[\binom{n}{r} /\left(\frac{n}{r}\right]^{-1}\right]^{*}
$$

we have:

$$
M_{k}^{\prime}(n, r) \leq(q-1) k+\min \left\{k,\binom{n}{r}-(q-1)\left[\frac{n}{r}\right]\right\} .
$$

Proof. Let H be an r-uniform hypergraph on $X,|X|=n$, having no matching with $k+1$ edges, and with the largest number of edges possible. As in Corollary 4 of Theorem 11, consider the decomposition of the r-complete hypergraph K_{n}^{r} on X as the sum of q matchings H_{j} with

$$
\begin{aligned}
& m\left(H_{j}\right)=\left[\frac{n}{r}\right] \quad(j=1,2, \ldots, q-1) \\
& m\left(H_{q}\right)=\binom{n}{r}-(q-1)\left[\frac{n}{r}\right] .
\end{aligned}
$$

The hypergraph H admits at most k edges in H_{j} for $j \leq q-1$, and at most $\min \left\{k,\binom{n}{r}-(q-1)\left[\frac{n}{r}\right]\right\}$ edges in H_{q}. Thus $m(H)=M_{k}^{\prime}(n, r)$ is bounded by the expression given above in the statement of the theorem, as was to be proved.

Remark. If $k=1$ and $r<\frac{n}{2}$, we have $M_{1}^{\prime}(n, r)=\binom{n-1}{r-1}$ from the theorem of Erdös, Chao-Ko and Rado, and the only extremal hypergraph is the star $K_{n}^{r}\left(x_{0}\right)$.

If $n \leq k r+(r-1)$, we have $M_{k}^{\prime}(n, r)=\binom{n}{r}$; the only extremal hypergraph is K_{n}^{τ}.
If $n \geq k r+r$, consider a set X with $|X|=n$, a set $Y \subset X$ with $|Y|=k$, and let

$$
\mathcal{E}_{n, k}^{r}=(E / E \subset X,|E|=r, E \cap Y \neq \varnothing)
$$

The hypergraph $\varepsilon_{n, k}^{r}$ cannot have $k+1$ disjoint edges (for each of these edges would have to meet a distinct point of Y). Erdös [1965] proved that for $n>c_{r} k$, where c_{r} is a constant depending only on $r, \mathcal{E}_{n, k}^{r}$ is an extremal hypergraph; that is to say

$$
M_{k}^{\prime}(n, r)=m\left(\mathcal{E}_{n, k}^{r}\right)=\binom{n}{r}-\binom{n-k}{r}
$$

Furthermore, Erdös conjectured that for every $n \geq k r+r$, one of the hypergraphs $K_{k r+r-1}^{\tau}$ or $\mathcal{E}_{n, k}^{r}$ is extremal, and consequently

$$
M_{k}^{\prime}(n, r)=\max \left\{\binom{k r+r-1}{r},\binom{n}{r}-\binom{n-k}{r}\right\} .
$$

When n is sufficiently large, is $\boldsymbol{\varepsilon}_{n, k}^{r}$ the only extremal hypergraph? Bollobás, Daykin and Erdös [1980] showed that every r-uniform hypergraph H satisfying

$$
\begin{aligned}
& n(H)>2 r^{3} k \\
& m(H)>m\left(\varepsilon_{n, k}^{r}\right)-\binom{n-k-r}{r-1}+1 \\
& \nu(H) \leq k
\end{aligned}
$$

is contained in an $\boldsymbol{\varepsilon}_{n, k}^{\dagger}$.

7. Kneser's problem

The study of the chromatic index of a hypergraph is comparable to the dual problem: What is the smallest number of intersecting families whose union is the set of edges of the hypergraph H ? This new coefficient, denoted $\tau_{0}(H)$, and sometimes called the Kneser number, has properties similar to those of the transversal number $\tau(H)$. We have $\tau_{0}(H) \leq \tau(H)$, for one can always cover the set of edges of H with $\tau(H)$ stars. If H satisfies the Helly property, we clearly have $\tau_{0}(H)=\tau(H)$.

The study of $\tau_{0}(H)$ is inseparable from that of $\Delta_{0}(H)$ (the maximum cardinality of an intersecting family) and $\rho_{k}(H)$ (the minimum number of intersecting families which, collectively, cover each edge of H at least k times). The coefficient

$$
\tau_{0}^{*}(H)=\min _{k \geq 1} \frac{\rho_{k}(H)}{k}
$$

is sometimes called the fractional Kneser number.
Theorem 13. For every hypergraph H,

$$
\nu(H) \leq \max _{H^{\prime} \subset H} \frac{m\left(H^{\prime}\right)}{\Delta_{0}\left(H^{\prime}\right)} \leq \tau_{0}^{*}(H)=\min _{k \geq 1} \frac{\rho_{k}(H)}{k} \leq \max _{k \geq 1} \frac{\rho_{k}(H)}{k}=\tau_{0}(H) \leq \tau(H)
$$

Proof. To the hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on X let us make correspond a hypergraph $\bar{H}=\left(\bar{E}_{1}, \bar{E}_{2}, \ldots, \bar{E}_{m}\right)$ on the set of intersecting families of H, where \bar{E}_{i} is the set of intersecting families which contain E_{i}. We then have $E_{i} \cap E_{j}=\varnothing$ if and only if $\bar{E}_{i} \cap \bar{E}_{j}=\varnothing$. Moreover,

$$
\begin{aligned}
\nu(\bar{H}) & =\nu(H) \\
\Delta(\bar{H}) & =\Delta_{0}(H) \\
\tau_{k}(\bar{H}) & =\rho_{k}(H) \\
\tau(\bar{H}) & =\tau_{0}(H) \\
\tau^{*}(\bar{H}) & =\tau_{0}^{*}(H)
\end{aligned}
$$

Applying Theorem 1 of Chapter 3 to the hypergraph \bar{H}, we obtain the stated inequalities.

Example 1. Let P_{7} be the projective plane on 7 points. We have

$$
\begin{aligned}
\Delta_{0}\left(P_{7}\right) & =7 \\
\tau_{0}\left(P_{7}\right) & =1
\end{aligned}
$$

We have also $\tau_{0}^{*}\left(P_{7}\right)=1$, since Theorem 13 gives

$$
1=\nu\left(P_{7}\right) \leq \tau_{0}^{*}\left(P_{7}\right) \leq \tau_{0}\left(P_{7}\right)=1 .
$$

Example 2. Let K_{n}^{r} be the r-complete hypergraph with $r \leq \frac{n}{2}$. From the theorem of Erdös, Chao-Ko and Rado,

$$
\Delta_{0}\left(K_{n}^{r}\right)=\binom{n-1}{r-1}
$$

We have also $\tau_{0}^{*}\left(K_{n}^{r}\right)=\frac{n}{r}$, since Theorem 13 gives

$$
\frac{m\left(K_{n}^{r}\right)}{\Delta_{0}\left(K_{n}^{r}\right)}=\frac{\binom{n}{r}}{\binom{n-1}{r-1}}=\frac{n}{r} \leq \tau_{0}^{*}\left(K_{n}^{r}\right) \leq \frac{\rho_{r}\left(K_{n}^{r}\right)}{r} \leq \frac{n}{r}
$$

We note that $\rho_{r}\left(K_{n}^{r}\right) \leq n$, being given that the n stars of K_{n}^{r} collectively cover every edge exactly r times.

The problem of determining $\tau_{0}\left(K_{n}^{r}\right)$ which was put by Kneser in 1955, was not solved until 23 years later, by Lovász, using algebraic topological methods. We shall give here a simpler proof due to Baranyai [1978].

Proposition. Let H be an r-uniform hypergraph of order $n \geq 2 r$. Then $\tau_{0}(H) \leq n-2 r+2$.

Consider a set of vertices $Y \subset X$ with $|Y|=2 r-1$. The family H / Y of edges of H contained in Y is an intersecting family. This, together with the stars of the form $H(x)$ with $x \in X-Y$, cover all the edges of H. Hence $\tau_{0}(H) \leq 1+(n-2 r+1)=n-2 r+2$.

Theorem 14 (Lovász [1978]). Let n, r be integers with $2 \leq r \leq \frac{n}{2}$. We have

$$
\tau_{0}\left(K_{n}^{r}\right)=n-2 r+2
$$

Proof. From the preceding proposition, it is enough to prove that

$$
\tau_{0}\left(K_{n}^{r}\right) \geq n-2 r+2
$$

Let $d=n-2 r$. We argue by contradiction and suppose that we can decompose K_{n}^{r} into $d+1=n-2 r+1$ intersecting families $H_{1}, H_{2}, \ldots, H_{d+1}$. From a theorem of Gale [1956], for every $k \geq 1$ we can place $d+2 k$ points on the sphere $S^{d}=\left\{\mathbf{x}, \mathbf{x} \in \mathbb{R}^{d+1},\|\mathbf{x}\|=1\right\}$ in space of $d+1$ dimensions, in such a way that every open hemisphere contains at least k of these points. Hence we can place the $n=d+2 r$ vertices of K_{n}^{r} on S^{d} in such a way that every hemisphere contains at least r vertices (and hence at least one edge of K_{n}^{r}).

Denote by P_{i} the set of points \mathbf{x} of the sphere S^{d} such that the (open) hemisphere centred on \mathbf{x} contains an edge of the family H_{i}. Since for every point of S^{d}, the hemisphere centred on this point contains an $E \in K_{n}^{r}$ (hence an E belonging to an H_{i}) we have $S^{d}=P_{1} \cup P_{2} \cup \cdots \cup P_{d+1}$.

We now use Borsuk's "antipodal points theorem" [1933] which says that if a sphere $S^{d} \subset \boldsymbol{R}^{d+1}$ is the union of $d+1$ open sets, then one of these sets contains two antipodal points. Let set $P_{i_{0}}$ contain two antipodal points \mathbf{x} and \mathbf{y}. The hemisphere of S^{d} centred on \mathbf{x} contains an edge E belonging to $H_{i_{0}}$, and the hemisphere centred on \mathbf{y} contains an edge F belonging to $H_{i_{0}}$. Consequently, $E \cap F=\varnothing$. This contradicts the fact that $H_{i_{0}}$ is an intersecting family.

Exercises on Chapter 4

Exercise 1 (§1)

Determine the chromatic number and the stability number of K_{n}^{r} and of $K_{n_{1}, n_{2} \ldots, \boldsymbol{n}_{r}}^{\dagger}$.

Exercise 2 (§1)

Let H be a hypergraph on X. Show that if $\alpha(H / A) \geq \frac{|A|}{2}$ for every $A \subset X$, then X can be covered by $\alpha(H)$ edges or singleton vertices. (Lehel [1982]).

Exercise 3 (§1)

Let H be a hypergraph, and let $m_{1}, m_{2}, \ldots, m_{k}$ be positive integers. Show that H is the union of k hypergraphs H_{i} with no edges in common and with $\chi\left(H_{i}\right) \leq m_{i}$ if and only if $\chi(H) \leq m_{1} m_{2} \cdots m_{k}$. (Miller, Müller [1981]).

Exercise 4 (\$1)

Show that if a hypergraph H of rank $r \geq 3$ satisfies $\left|E \cap E^{\prime}\right| \leq r-2$ $\left(E, E^{\prime} \in H ; E \neq E^{\prime}\right)$, then $\alpha(H)=\alpha$ satisfies $n-\alpha \leq\binom{\alpha}{r-1}$.

Exercise 5 (§1)

On a chess board of $n \times n$ squares we define the "Queen's move hypergraph" H_{n}^{Q} as the hypergraph whose vertices are the squares, and for which an edge E_{x} is the set of squares which a queen placed on square x dominates (including x itself). We define similarly the "King's move hypergraph" H_{n}^{K}, etc.

Show that $\chi\left(H_{n}^{Q}\right)=\chi\left(H_{n}^{R}\right)=\chi\left(H_{n}^{B}\right)=\chi\left(H_{n}^{K}\right)=2 .(R=$ rook; $B=$ bishop $)$.

Exercise 6 (\$1)

Consider the 3 -uniform hypergraph whose vertices are the integers $1,2, \ldots, n$ and whose edges are the triples $\{x, y, z\}$ with $x+y=z$. Show that the stability number of this hypergraph is $\left[\frac{n}{2}\right]+1$. (Sedlaček [1970]).

Exercise 7 (§1)

Consider the infinite hypergraph whose vertices are the positive integers, and whose edges are the families of integers forming an arithmetic progression. Show that this hypergraph satisfies the Helly property, and that its chromatic number cannot be 2.

Exercise 8 (§2)

If we associate one of the colours $1,2, \ldots, k$ with each vertex of a hypergraph H, we regard an edge as "strongly coloured" if all its elements have different colours. The cochromatic number of H, denoted $\bar{\gamma}(H)$, is the smallest integer k such that for every k-partition ($S_{1}, S_{2}, \ldots, S_{k}$) (with no empty classes) there exists a strongly coloured edge.

Show that $\bar{\gamma}\left(K_{n}^{r}\right)=r$.
If H is r-uniform of order n, show that

$$
\bar{\gamma}(H) \leq n-r+1 .
$$

Calculate $\bar{\gamma}\left(K_{n_{1}, n_{2} \ldots, n_{r}}^{\tau}\right)$.

152 Hypergraphs

If G is a graph with p connected components, then $\bar{\gamma}(G)=p+1$. Let G be a graph of order n, and H a hypergraph on the edges of G in which the edges are the cycles of G. Show that $\bar{\gamma}(H)=n$.

Exercise 9 (\$2)

Show that between the cochromatic number $\bar{\gamma}(H)$ and the stability number $\alpha(H)$ the following relation holds:

$$
\bar{\gamma}(H) \leq \alpha(H)+1
$$

Show further that for $n \geq p \geq r \geq 2$ there exists an r-uniform hypergraph of order n with $\alpha(H)=p-1, \bar{\gamma}(H)=p$. (Sterboul [1975]).

Exercise 10 (§2)

If G is a graph, show that the "product" (cf. Chapter 3, §6) $G \times K_{n}$ satisfies

$$
\bar{\gamma}\left(G \times K_{n}\right)=n(G)+\alpha(G)(n-1)+1
$$

(Sterboul [1975]).

Exercise 11 (§3)

Show that the vertices of a tree of maximum degree Δ can be uniformly k-coloured for every $k \geq\left[\frac{\Delta}{2}\right]+1$.

Show further that there is a tree with no uniform k-colouring if $k=\left[\frac{\Delta}{2}\right]$.

Exercise 12 (§4)

Show that

$$
m_{k}(n, r) \leq\binom{ k r-k+1}{r}
$$

(Herzog, Schönheim [1972]).

Exercise 13 (§4)

Show that if $p=\frac{n}{k}$ is an integer $\geq r$, then

$$
m_{k}^{0}(n, r) \geq\binom{ n-1}{r-1}\binom{p-1}{r-1}^{-1}
$$

Exercise 14 (§4)

Show that for $n \geq k r$

$$
m_{k}^{0}(n, r) \leq T(n-1, p-1, r-1)
$$

where $p=[n / k]$.
For this, consider an extremal ($r-1$)-uniform hypergraph H_{1} of order $n-1$ with no stable set of cardinality $p-1$. Consider the r-uniform hypergraph H_{0} of order n obtained by adding to every edge the same additional vertex x_{0}, and show that H_{1} has no uniform k-colouring. (Berge, Sterboul [1977]).

Exercise 15 (§4)

Let H be an r-uniform hypergraph of order n and stability number α. Show that the maximum number of edges containing a set $T \subset X$ with $|T|=r-1$ is an integer z satisfying

$$
\alpha+\binom{\alpha}{r-1} z \geq n
$$

Deduce from this that the number m of edges in such a hypergraph satisfies

$$
\alpha+\binom{\alpha}{r-1} r m\binom{n}{r-1}^{-1} \geq n
$$

(de Caen [1983]).
Hint: Use the inequality (3) that follows Theorem 9.

Exercise 16 (§4)

Let H be an r-uniform hypergraph of order $n=k r$ which has no uniform k-colouring and which has the minimum number of vertices for this condition. Show that H is a star of K_{n}^{r}. (Berge, Sterboul [1977]).

Exercise 17 (§5)

Show that there exists an equitable k-colouring of the edges of K_{n}^{r} if and only if

$$
\left[\left[\binom{n}{r} \frac{r}{k n}\right] \frac{n}{r}\right]^{*} \leq\binom{ n}{r} k^{-1} \leq\left[\left[\frac{r}{k n}\left(\frac{n}{r}\right)\right]^{*} \frac{n}{r}\right]
$$

Exercise 18 (§7)

Given integers n, k, t with $n>k>t>0$ and $n+t>2 k$, consider the graph $G(n, k, t)$ on the set of k-tuples taken from a set of n elements, where two k-tuples A and B are joined if and only if $|A \cap B|<t$. Then $\tau_{0}\left(K_{n}^{r}\right)$ is the chromatic number of $G(n, r, 1)$. Frankl has conjectured that the chromatic number of $G(n, k, t)$ is $T(n, k, t)$ for n sufficiently large, and has proved it for $t=2$. (Frankl [1985]).

Exercise 19 (§7) Show that

$$
\tau_{0}(H) \leq \max _{i} m\left(H / X-E_{i}\right)=1
$$

and that equality is possible only if the connected component of the complement of the graph $L(H)$ having maximum degree is either a clique or an odd cycle without chords.
(Use Brooks's Theorem, Graphs, Chapter 15).

Exercise 20 (§7)

Show directly that $\tau_{0}\left(K_{n}\right)=n-2 r+2$ for $n \geq 3$.

Chapter 5

Hypergraphs Generalising Bipartite Graphs

1. Hypergraphs without odd cycles

Let H be a hypergraph on X, and let $k \geq 2$ be an integer. A cycle of length k is a sequence ($x_{1}, E_{1}, x_{2}, E_{2}, x_{3}, \ldots, x_{k}, E_{k}, x_{1}$) with:

$$
\begin{equation*}
E_{1}, E_{2}, \ldots, E_{k} \text { distinct edges of } H ; \tag{1}
\end{equation*}
$$

$x_{1}, x_{2}, \ldots, x_{k}$ distinct vertices of H;
$x_{i}, x_{i+1} \in E_{i}(i=1,2, \ldots, k-1) ;$
$x_{k}, x_{1} \in E_{k}$.
Observe that the sequence (x_{1}, E_{1}, x_{1}) is not considered to be a cycle. A cycle of length k odd (respectively even) is called an odd cycle (respectively even).

Graphs without odd cycles possess such remarkable properties as:

- the Helly property,
- the König property,
- the dual König property,
- the coloured edge property,
- the two-colourability of the vertices.

Is it still true for hypergraphs?

Example: Consider a $0-1$ matrix A with p rows and q columns. Let H be the hypergraph whose vertices are the entries of the matrix having value 1 , and whose edges are those 1's lying in a single row or a single column. Clearly H is the dual of a bipartite graph G (whose vertices are the rows and columns of the matrix A). Thus H contains no odd cycles, and it is easy to show the existence of a 2 -colouring of the vertices of H.

For a stronger statement, call a B-cycle a cycle ($x_{1}, E_{1}, x_{2}, E_{2}, \ldots, E_{k}, x_{1}$) with the following properties:
(1) k is odd;
q columns

$$
\left.A=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1^{+} & 0 & 1^{+} & 0 & 1^{-} \\
0 & 1^{+} & 0 & 1^{-} & 0 & 0 & 1^{+} & 0 \\
1^{+} & 0 & 0 & 0 & 1^{+} & 1^{+} & 1^{-} & 1^{+} \\
1^{-} & 0 & 0 & 1^{+} & 1^{+} & 0 & 1^{+} & 0 \\
1^{+} & 0 & 0 & 1^{+} & 1^{-} & 1^{-} & 1^{+} & 0
\end{array}\right)\right) p \text { rows }
$$

Figure 1. Example of a 2-colouring of H with + , -

$$
\begin{equation*}
H^{\prime}=\left(E_{1}, E_{2}, \ldots, E_{k}\right) \text { has maximum degree } \Delta\left(H^{\prime}\right)=2 \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \left|E_{i} \cap E_{i+1}\right|=1 \quad(i=1,2, \ldots, k-1) ; \tag{3}\\
& \left|E_{k} \cap E_{1}\right| \geq 1 \tag{4}
\end{align*}
$$

Example. The projective plane P_{7} and the complete hypergraph $K_{2 r-1}^{\tau}$, which are not 2-colourable, contain B-cycles of length 3.

Theorem 1 (Fournier, Las Vergnas [1972], [1984]). Every non 2-colourable hypergraph contains a B-cycle.

Proof. Let H be a non 2-colourable hypergraph; by removing the maximum number of edges without altering this property, we may suppose that $\chi(H)>2$ and $\chi(H-E)=2$ for each $E \in H$. Suppose that H contains no B-cycle. Let $E_{0} \in H$: since $H-E_{0}$ is 2-colourable, let (A, B) be a 2 -colouring of $H-E_{0}$. Since $\chi(H)>2$, the edge E_{0} is monochromatic, and we may assume $E_{0} \subset A$.

Now define one by one the bipartitions $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \ldots$ in such a way that the families H_{1}, H_{2}, \ldots formed by the monochromatic edges in the different partitions are pairwise disjoint. Since H has only finitely many edges this will imply that for some integer k the family H_{k} is empty; that is to say, that $\left(A_{k}, B_{k}\right)$ is a 2-colouring of H : this will contradict $\chi(H)>2$ and will complete the proof.

Consider a vertex $z \in E_{0}$, denote by $T_{0}=\{z\}$ the singleton z, and set

$$
\left\{\begin{array}{l}
A_{1}=A-T_{0} \\
B_{1}=B \cup T_{0}
\end{array}\right.
$$

We have thus defined a new partition $\left(A_{1}, B_{1}\right)$, and the family H_{1} of monochromatic edges in this partition satisfies
$\left(\Pi_{1}\right) \quad H_{1}$ is disjoint from $\left\{E_{0}\right\}$,
(Π_{1}^{\prime}) every edge of H_{1} is contained in B_{1} and meets T_{0},
$\left(\Pi_{1}^{\prime \prime}\right) \quad$ there exists a set $T_{1} \in \operatorname{Tr} H_{1}$ contained in $B \cap B_{1}$ and disjoint from E_{0} ($\operatorname{Tr} H$ denotes the transversal hypergraph of H, cf. Ch. $2 \S 1$).

More generally, suppose that we have defined a bipartition $\left(A_{i-1}, B_{i-1}\right)$ and the associated family H_{i-1} of monochromatic edges. Let $T_{i-1} \in \operatorname{Tr} H_{i-1}$ be contained in $A \cap A_{i-1}$ (if i is odd) or in $B \cap B_{i-1}$ (if i is even). For $i \geq 1$ odd, set

$$
\left\{\begin{array}{l}
A_{i}=A_{i-1}-T_{i-1} \\
B_{i}=B_{i-1} \cup T_{i-1}
\end{array}\right.
$$

For $i \geq 2$ even, set

$$
\left\{\begin{array}{l}
A_{i}=A_{i-1} \cup T_{i-1} \\
B_{i}=B_{i-1}-T_{i}-1
\end{array}\right.
$$

We shall now show by induction on i that the family H_{i} of monochromatic edges with respect to the bipartition $\left(A_{i}, B_{i}\right)$ satisfies the following three properties:
$\left(\Pi_{i}\right) \quad H_{i}$ is disjoint from the families $H_{0}=\left\{E_{0}\right\}, H_{1}, H_{2}, \ldots, H_{i-1} ;$
(Π_{i}^{\prime}) every edge of H_{i} is contained in A_{i} (for i even) or in B_{i} (for i odd), and meets T_{i-1};
($\Pi_{i}^{\prime \prime}$) there exists a set $T_{i} \in \operatorname{Tr} H_{i}$ contained in $A \cap A_{i}$ (for i even) or $B \cap B_{i}$ (for i odd), and which meets none of the sets $E_{0}-T_{0}, T_{0}, T_{1}, T_{2}, \ldots, T_{i-1}$.

Let $k>1$ be an integer; assume first that k is odd. Suppose that we have shown $\Pi_{i}, \Pi_{i}^{\prime}, \Pi_{i}^{\prime \prime}$ for each $i \leq k-1$.

1) Proof that Π_{k} holds.

From $\Pi_{1}^{\prime \prime}, \Pi_{2}^{\prime \prime}, \ldots, \Pi_{k-1}^{\prime \prime}$ the sets $E_{0}-T_{0}, T_{0}, \ldots, T_{k-1}$ are pairwise disjoint (and each set has changed colour completely in a single step in the procedure). Hence $T_{i} \subset B_{k}$ for i even $\leq k-1$, or $T_{i} \subset A_{k}$ for i odd $\leq k-1$. For $i \leq k-1$ every edge of H_{i} meets $T_{i}\left(\right.$ since $\left.T_{i} \in \operatorname{Tr} H_{i}\right)$ and T_{i-1} (from Π_{i}^{\prime}) and cannot be monochromatic with (A_{k}, B_{k}) since $T_{0} \subset B_{k}$ and $E-T_{0} \subset A_{k}$. Thus the family H_{k} of monochromatic edges has no edge in common with $\left\{E_{0}\right\}, H_{1}, H_{2}, \ldots, H_{k-1}$.
2) Proof that Π_{k}^{\prime} holds.

Every edge of H_{k} is 2-coloured in $\left(A_{k-1}, B_{k-1}\right)$ from Π_{k}, and is monochromatic with (A_{k}, B_{k}); thus it must meet T_{k-1}, which is the set of vertices which change colour in the k-th step, and is contained in B_{k}.
3) Proof that $\Pi_{k}^{\prime \prime}$ holds.

Since k is odd, the edges of H_{k} are contained in B_{k} (from Π_{k}^{\prime}): thus there exists a $T_{k} \in \operatorname{Tr} H_{k}$ contained in B_{k}. Further no edge of H_{k} is contained in $T_{0} \cup T_{2} \cup \cdots \cup T_{k-1}$ since such an edge would be monochromatic with (A, B), which contradicts Π_{k}. Thus we may assume T_{k} is contained in $B_{k}-\left(T_{0} \cup T_{2} \cup \cdots \cup T_{k-1}\right)=B_{k} \cap B$. From $\quad \Pi_{1}^{\prime \prime}, \Pi_{2}^{\prime \prime}, \ldots, \Pi_{k-1}^{\prime \prime} \quad$ the sets $T_{0}, T_{2}, T_{4}, \ldots, T_{k-1}$ are contained in A; thus they do not meet T_{k}. By the definition of the transformation, the sets $E_{0}-T_{0}, T_{1}, T_{3}, \ldots, T_{k-2}$ are contained in A_{k}, and so they do not meet T_{k}.
4) If we now suppose k is even, nothing changes in the above argument except for one point: the edges of H_{k} are contained in A_{k} and $T_{k} \subset A \cap A_{k}$. Consequently T_{k} does not meet $T_{0}, T_{2}, \ldots, T_{k-2}$ (which are contained in B_{k}) or $T_{1}, T_{3}, \ldots, T_{k-1}$ (which are contained in B), but it remains to show that T_{k} does not meet $E_{0}-T_{0}$.

More precisely, we shall show that every edge of H_{k} is disjoint from $E_{0}-T_{0}$. Otherwise, there exists an $E_{k} \in H_{k}$ which meets $E_{0}-T_{0}$: let $x_{0} \in E_{k} \cap\left(E_{0}-T_{0}\right)$. From Π_{k}^{\prime} there exists a vertex $x_{k} \in T_{k-1} \cap E_{k}$, and by the minimality of the transversal T_{k-1}, there exists an edge $E_{k-1} \in H_{k-1}$ such that $E_{k-1} \cap T_{k-1}=\left\{x_{k}\right\}$; since $E_{k} \subset A_{k}$ and $E_{k-1} \subset B_{k} \cup T_{k-1}$ we have also $E_{k-1} \cap E_{k}=\left\{x_{k}\right\}$. Repeating this procedure with E_{k-1}, etc., we obtain a sequence term by term

$$
E_{0}-T_{0}, x_{0}, E_{k}, x_{k}, E_{k-1}, x_{k-1}, \ldots, E_{1}, x_{1}=z
$$

with, for $i=1,2, \ldots, k$, the relations

$$
\begin{equation*}
E_{i} \in H_{i}, x_{i} \in T_{i-1}, E_{i} \cap E_{i-1}=\left\{x_{i}\right\} . \tag{1}
\end{equation*}
$$

Then the sequence $\left(x_{0}, E_{0}, x_{1}, E_{1}, x_{2}, \ldots, x_{k}, E_{k}, x_{0}\right)$ defines a cycle and satisfies $\left|E_{i} \cap E_{i-1}\right|=1$ for each $i \geq 1$; further its length $k+1$ is odd.

So, by virtue of the hypothesis, there exists a vertex y of degree >2 in the hypergraph $H^{\prime}=\left(E_{0}, E_{1}, \ldots, E_{k}\right)$; suppose for example:

$$
\begin{aligned}
& y \in E_{p} \cap E_{q} \cap E_{r} \\
& 0 \leq p<q<r \leq k \\
& r-p \text { minimum } .
\end{aligned}
$$

We shall show first that $y \neq x_{p+1}, x_{p+2}, \ldots, x_{r}$. Indeed, if for example r is even, then $E_{r} \subset A_{r}$ from Π_{r}^{\prime}, so the vertex y is different from $x_{1}, x_{3}, \ldots, x_{r-1}$ (which are in B_{r}, from (1) and $\Pi_{1}^{\prime \prime}, \Pi_{2}^{\prime \prime}, \ldots, \Pi_{r-1}^{\prime \prime}$). If $y=x_{s}$ for s even, $p+1 \leq s<r$, then the cycle $\left(x_{s}, E_{s}, x_{s+1}, \ldots, x_{r}, E_{r}, x_{s}\right)$ is an odd cycle of maximum degree 2 (by the minimality of $r-p$), so it is a B-cycle, contradicting the hypothesis. If $y=x_{r}$, then $r=q+1$ from (1) and the minimality of $r-p$. Hence q is odd. Moreover, p is odd (since if p were even, $T_{p} \subset A_{p}$, and does not contain x_{r} which is in B_{p}). Hence the cycle $\left(x_{r}, E_{p}, x_{p+1}, E_{p+1}, \ldots, x_{q}, E_{q}, x_{r}\right)$ is odd of maximum degree 2 ; so it is a B-cycle, which contradicts the hypothesis.

Observe that the indices p, q have different parities: otherwise the cycle ($y, E_{p}, x_{p+1}, E_{p+1}, \ldots, x_{q}, E_{q}, y$) is odd of maximum degree 2 , so it is a B-cycle, contradicting the hypothesis. Similarly, the indices q and r have different parities. Suppose for example p even, q odd, r even. Then $E_{p} \subset A_{p}, E_{q} \subset B_{q}, E_{r} \subset A_{r}$. Since $E_{q} \cap B \subset B_{q}$ we have $E_{p} \cap E_{q} \subset A$. For the same reason, $E_{q} \cap E_{r} \subset B$, which implies that $E_{p} \cap E_{q} \cap E_{r}=\varnothing$ and the contradiction follows.

Corollary 1. In a non 2-colourable hypergraph of rank ≤ 3, there exists a B-cycle such that every pair of two non-consecutive edges are disjoint.

Let H be a hypergraph with $\chi(H) \geq 3, r(H) \leq 3$. We may suppose that we have removed from H as many edges as possible without it becoming 2 -colourable. Now, from Theorem 1, there exists a B-cycle ($x_{1}, E_{1}, x_{2}, \ldots, E_{k}, x_{1}$) which we may suppose of
minimum length k. If $E_{1} \cap E_{j} \neq \varnothing$ for an integer $j, 3 \leq j \leq k-1$, then there exists a vertex $y \in E_{1} \cap E_{j}$. Since the degree of the B-cycle is 2, the vertex y is distinct from $x_{1}, x_{2}, \ldots, x_{k}$; and since H has rank ≤ 3, we have $E_{1}=\left\{y, x_{1}, x_{2}\right\}$ and $E_{j}=\left\{y, x_{j}, x_{j+1}\right\}$. One of the two cycles ($y, E_{1}, x_{2}, \ldots, E_{j}, y$) and ($x_{1}, E_{1}, y, E_{j}, x_{j+1}, \ldots, E_{k}, x_{1}$) is odd. Since $E_{1} \cap E_{j}=\{y\}$, this cycle is a B-cycle, which contradicts the minimality of k.

Corollary 2. In a non 2-colourable hypergraph, there is an odd cycle of maximum degree 2 such that every pair of two non-consecutive edges are disjoint.
(Same proof, replacing each occurrence of " B-cycle" by "odd cycle of maximum degree 2").

Following these results, we might expect that hypergraphs without odd cycles of maximum degree 2 would have those properties apparent in bipartite graphs; however, they may satisfy the Helly property as in Figure 2, or not, as in Figure 3.

Hypergraph without odd cycles of maximum degree 2 (with the Helly property)

Hypergraph without odd cycles of maximum degree 2 (without the Helly property)

Figure 3.

From these results, we obtain the following characterization of the hypergraphs which contain no odd cycle:

Theorem 2. A hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ has no odd cycles if and only if every hypergraph $H^{\prime}=\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{m}^{\prime}\right)$ with $E_{i}^{\prime} \subset E_{i}$ for each i is 2-colourable.

Proof. If H contains no odd cycles, Theorem 1 shows that $\chi(H) \leq 2$. The hypergraph H^{\prime} is also without odd cycles, so $\chi\left(H^{\prime}\right) \leq 2$.

If H contains an odd cycle ($x_{1}, E_{1}, x_{2}, E_{2}, \ldots, E_{k}, x_{1}$), then there exists a hypergraph H^{\prime} of the form indicated which has edges $\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right], \ldots,\left[x_{k}, x_{1}\right]$, whence $\chi\left(H^{\prime}\right)>3$. Contradiction.

The class of hypergraphs without odd cyeles has been studied from the point of view of matrices by Commoner [1973]; Yannakakis [1985] has given a polynomial algorithm to test whether a given hypergraph is in this class.

Theorem 3. A hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ is cycle-free if and only if for every non-empty subset J of $\{1,2, \ldots, m\}$, we have

$$
\begin{equation*}
\left|\bigcup_{j \in J} E_{j}\right|>\sum_{j \in J}\left(\left|E_{j}\right|-1\right) . \tag{1}
\end{equation*}
$$

Proof.

1. If H contains a cycle $\left(a_{1}, E_{1}, a_{2}, E_{2}, \ldots, E_{k}, a_{1}\right)$ we obtain, setting $K=\{1,2, \ldots, k\}$

$$
\left|\bigcup_{j \in K} E_{j}\right|=\left|\bigcup_{j \in K}\left(E_{j}-\left\{a_{j}\right\}\right)\right| \leq \sum_{j \in K}\left|E_{j}-\left\{a_{j}\right\}\right|=\sum_{j \in K}\left(\left|E_{j}\right|-1\right)
$$

Thus condition (1) fails.
2. If H contains no cycles, the partial hypergraph $H^{\prime}=\left(E_{j} / j \in J\right)$ also contains no cycles. Set $\bigcup_{j \in J} E_{j}=\left\{x_{i} / i \in I\right\}$ and form the bipartite graph G on $I \cup J$, where $i \in I$ and $j \in J$ are adjacent if and only if $x_{i} \in E_{j}$.
Since G contains no cycles, we have $m(G)<n(G)$ (cf. Graphs, Ch. 2); thus

$$
\sum_{j \in J}\left|E_{j}\right|=m(G)<n(G)=\left|\bigcup_{j \in J} E_{j}\right|+|J|
$$

whence (1) holds.

Remark. If H is k-uniform, a necessary and sufficient condition for H to have no cycles is that for every non-empty subset J of $\{1,2, \ldots, m\}$,

$$
\left|\bigcup_{j \in J} E_{j}\right|>(k-1)|J| .
$$

We may generalise this result in the following way:

Generalisation (Las Vergnas, [1970]). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph and let $k \geq 2$ be an integer; a necessary and sufficient condition for the existence of a k-uniform hypergraph H^{\prime} without cycles, $H^{\prime}=\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{m}^{\prime}\right)$ with $E_{i}^{\prime} \subset E_{i}$ for every i, is that

$$
\left|\bigcup_{j \in J} E_{j}\right|>(k-1)|J| \quad(J \neq \varnothing)
$$

Between the class of hypergraphs without cycles and the class of hypergraphs without B-cycles, there are many classes, each having interesting characteristics and concrete combinatorial applications. In this chapter we shall study the classes of hypergraphs shown in Figure 4.

2. Unimodular Hypergraphs

A matrix $A=\left(\left(a_{j}^{i}\right)\right)$ is said to be totally unimodular if every square submatrix of A has determinant equal to $0,+1$ or -1 . A hypergraph is said to be unimodular if its incidence matrix is totally unimodular.

It is immediate from this definition that the dual, the subhypergraphs and the partial hypergraphs of a unimodular hypergraph are unimodular.

A combinatorial property of unimodular hypergraphs is revealed in the concept of an "equitable colouring".

Theorem 4. A hypergraph H on X is unimodular if and only if for every $S \subset X$ the subhypergraph H_{S} has an equitable 2-colouring: that is to say a bipartition (S_{1}, S_{2}) of S such that each edge E of H_{S} satisfies

$$
\left[\frac{|E|}{2}\right] \leq\left|E \cap S_{i}\right| \leq\left[\frac{|E|}{2}\right]^{*} \quad(i=1,2)
$$

Proof. If an $n \times m$ matrix $A=\left(\left(a_{j}^{i}\right)\right)$ is totally unimodular, it is clear that $a_{j}^{i}=0,+1$ or -1 (since the value of each entry is a determinant of order 1 from 1); further Ghouila-Houri [1962] showed that A is totally unimodular if and only if every nonempty set $I \subset\{1,2, \ldots, n\}$ may be partitioned into two disjoint sets I_{1} and I_{2} in such a

Figure 4. Implication scheme for the principal classes of hypergraphs generalizing trees and bipartite graphs.
way that

$$
\left|\sum_{i \in I_{1}} a_{j}^{i}-\sum_{i \in I_{2}} a_{j}^{i}\right| \leq 1 \quad(j \leq m)
$$

If A is the incidence matrix of a hypergraph we obtain the required 2 -colouring with $S_{1}=\left\{x_{i} / i \in I_{1}\right\}, S_{2}=\left\{x_{i} / i \in I_{2}\right\}$.

Example 1. Bipartite multigraph.
Let G be a bipartite multigraph; clearly every subgraph of G is a bipartite multigraph, and hence is 2-colourable. Thus G is a unimodular hypergraph.

Example 2. Interval hypergraph.
Let H be defined by a set of points on a line and a family of intervals. Clearly for $A \subset X$ the subhypergraph H_{A} is an interval hypergraph, for which we obtain an equitable 2 -colouring by successively colouring the points from left to right red and blue alternately. Thus H is unimodular.

Example 3. Hypergraph of paths in an oriented tree.
Let T be a tree on a set X with a (unique) orientation on each edge. Let H be a hypergraph on X such that each edge is an oriented path of T. Clearly a 2 -colouring of T defines an equitable 2 -colouring of H (cf. Figure 5). Every subhypergraph of H also has an equitable 2 -colouring: if we remove a vertex a from H, consider the tree T^{μ} of Figure 6 for which every 2 -colouring induces an equitable 2-colouring of $H_{X-\{a\}}$.
Example 4. Hypergraph on the arcs of a tree.
Let T_{0} be a tree on a set X, with a unique orientation on each edge, which defines a set U of arcs. Let H_{0} be a hypergraph on U such that each edge is a set of arcs forming a path of T_{0}. Clearly we may colour the ares of T_{0} in 2 colours, + and - , in such a way that every pair of consecutive arcs contain both colours (ef. Figure 7); this defines an equitable 2-colouring of H_{0}. Every subhypergraph also has an equitable 2-colouring: if we remove an arc u of U, consider the tree T_{0}^{\prime} of Figure 8 for which a 2-colouring induces an equitable 2 -colouring of $H_{U-\{u\}}$.
Theorem 5. Every hypergraph without odd cycles is unimodular.

Proof. Since no subhypergraph of a hypergraph without odd cycles contains an odd cycle, it suffices to show that a hypergraph H without odd cycles may be equitably 2-coloured.

Figure 5

Figure 7

Figure 8

For $i \leq m$, put $r_{i}=\left|E_{i}\right|$ and define a map $y_{i}:\left\{1,2, \ldots, r_{i}\right\} \rightarrow X$ so that $E_{i}=\left\{y_{i}(1), y_{i}(2), \ldots, y_{i}\left(r_{i}\right)\right\}$
Consider the set \mathcal{F}_{i} of the following pairs:

$$
\begin{aligned}
& y_{i}(1) y_{i}(2), \\
& y_{i}(3) y_{i}(4)
\end{aligned}
$$

$$
y_{i}\left(2\left[r_{i} / 2\right]-1\right) y_{i}\left(2\left[r_{i} / 2\right]\right) .
$$

The union of the \mathcal{F}_{i} 's is a graph G and we may suppose that the y_{i} 's (and hence the \mathcal{F}_{i} 's) have been chosen so that the minimum length of an odd cycle of G is as small as possible. If G has odd cycles, consider an odd cycle of G of minimum length, say $\mu=\left[a_{1}, a_{2}, \ldots, a_{1}\right]$. The cycle μ is elementary. We shall show that μ does not contain two edges from the same set $\boldsymbol{F}_{\boldsymbol{i}}$.

Indeed, if for example $\left[a_{s}, a_{s+1}\right] \in \boldsymbol{F}_{i}$ and $\left[a_{t}, a_{t+1}\right] \in \boldsymbol{F}_{i}$, by replacing these two edges in \mathcal{F}_{i} by the edges $\left[a_{s}, a_{t+1}\right]$ and $\left[a_{t}, a_{s+1}\right]$, the graph G^{\prime} so obtained has an odd cycle which is shorter than μ, (as one of the two sequences $\left[a_{1}, a_{2}, \ldots, a_{s}, a_{t+1}, \ldots, a_{1}\right]$ and $\left[a_{s+1}, a_{s+2}, \ldots, a_{t}, a_{s+1}\right]$ is odd) which contradicts the definition of G. Further, if the cycle μ has its edges in different classes \boldsymbol{F}_{i} then it defines an odd cycle of H, which contradicts our hypothesis that H has no odd cycles. Thus such a cycle μ cannot exist.

Since the graph G has no odd cycles, there exists a 2 -colouring (S_{1}, S_{2}) of its vertices: this constitutes also an equitable 2 -colouring for H.

Theorem 8 (de Werra [1971]). A unimodular hypergraph H has an equitable k-colouring for every $k \geq 2$.

Proof. For $k=2$ the statement follows from Theorem 4. For $k>2$ consider a partition ($S_{1}, S_{2}, \ldots, S_{k}$) of the vertices of H into k classes. For $i, j \leq k$ and for $E \in H$ put

$$
\begin{aligned}
& \epsilon_{i j}(E)=\left|S_{i} \cap E\right|-\left|S_{j} \cap E\right| \\
& \epsilon(E)=\max _{i, j} \epsilon_{i j}(E) .
\end{aligned}
$$

Clearly $\epsilon(E) \geq 0$. If $\epsilon(E) \leq 1$ for every $E \in H$, the partition is an equitable k-colouring of the hypergraph H, and vice versa. Suppose therefore that there is an edge E_{0} with $\epsilon\left(E_{0}\right) \geq 2$ and let p, q be indices for which $\epsilon_{p q}\left(E_{0}\right)=\epsilon\left(E_{0}\right)$. Then

$$
\left|S_{q} \cap E_{0}\right| \leq\left|S_{i} \cap E_{0}\right| \leq\left|S_{p} \cap E_{0}\right| \quad(i \neq p, q)
$$

The subhypergraph of H induced by the set $S_{p} \cup S_{q}$ admits an equitable 2-colouring $\left(S_{p}^{\prime}, S_{q}^{\prime}\right)$. Put $S_{i}^{\prime}=S_{i}$ for $i \neq p, q$. The new partition ($S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{k}^{\prime}$) defines new coefficients $\epsilon_{i j}^{\prime}$, such that every $E \in H$ satisfies $\epsilon_{p q}^{\prime}(E) \leq 1$. Furthermore

$$
\epsilon_{i j}^{\prime}(E)=\epsilon_{i j}
$$

for i and $j \neq p, q$. Further, for $i \neq p, q$ we cannot have $\epsilon_{i p}^{\prime}(E)=\epsilon\left(E_{0}\right)$ unless

$$
\epsilon_{i p}(E)=\epsilon\left(E_{0}\right) \text { or } \epsilon_{i q}(E)=\epsilon\left(E_{0}\right) .
$$

In summary, the number of triples (r, s, E) with $\epsilon_{r s}(E)=\epsilon\left(E_{0}\right)$ has decreased by at least one. By repeating this transformation we finally obtain a partition with $\epsilon^{\prime}(E) \leq 1$ for each $E \in H$; this partition is an equitable k-colouring of H.

Corollary 1. Let H be a unimodular hypergraph and let $k=\min _{E \in H}|E|$; there exists a partition $\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ of the set X of vertices of H into k transversal sets such that, for every $E \in H$,

$$
\begin{equation*}
\left[\frac{1}{k}|E|\right] \leq\left|E \cap T_{i}\right| \leq\left[\frac{1}{k}|E|\right] *(i=1,2, \ldots, k) \tag{1}
\end{equation*}
$$

Indeed, H admits and equitable k-colouring ($T_{1}, T_{2}, \ldots, T_{k}$), and consequently (1) holds. Further, as $k=\min |E|$, each T_{i} is a transversal.

Corollary 2. Let H be a unimodular hypergraph and let $k \geq 1$; then there exists a decomposition $H=H_{1}+H_{2}+\cdots+H_{k}$ into k classes such that for every vertex x of H,

$$
\left[\frac{1}{k} d_{H}(x)\right] \leq d_{H_{i}}(x) \leq\left[\frac{1}{k} d_{H}(x)\right]^{*} \quad(i=1,2, \ldots, k)
$$

Indeed, apply Theorem 6 to the dual hypergraph H^{*}, which is also unimodular.

Corollary 3. Every unimodular hypergraph satisfies the coloured edge property. Indeed, set $k=\Delta(H)$ in Corollary 2.

Our interest in totally unimodular matrices arises principally from the following result:

Theorem 7 (Hoffman, Kruskal [1956]). Let A be an $n \times m$ matrix: the following conditions are equivalent:
(i) $\quad A$ is totally unimodular;
(ii) for every $\mathbf{c} \in \mathscr{Z}^{n}$ the polyhedron of c-matchings

168 Hypergraphs

$$
Q(c)=\left\{\mathbf{y} / \mathbf{y} \in \mathbb{R}^{m}, \mathbf{y} \geq \mathbf{0}, A \mathbf{y} \leq \mathrm{c}\right\}
$$

has only integer valued extreme points,
(iii) for every $\mathbf{b}, \mathbf{c} \in \mathbb{Z}^{n}$, for every $\mathbf{p}, \mathbf{q} \in \mathbb{Z}^{m}$, the set

$$
Q(\mathbf{b}, \mathbf{c}, \mathbf{p}, \mathbf{q})=\left\{\mathbf{y} / \mathbf{y} \in \mathbb{R}^{m}, \mathbf{b} \leq A \mathbf{y} \leq \mathbf{c} ; \mathbf{p} \leq \mathbf{y} \leq \mathbf{q}\right\}
$$

is empty or contains an integer valued point.

Proof.

(i) implies (ii). Indeed, the extreme points of the polyhedron $Q(c)$ are given by the intersections of planes of the form $\left\langle\mathbf{a}^{i}, \mathbf{y}\right\rangle=c_{i}$. Cramer's rule says that every solution \mathbf{y} of such a system has for each coordinate y_{i} the quotient of two determinants; the first is integer valued (as a_{j}^{i} is an integer), the second has value 0 or ± 1 (since A is unimodular). Thus the point y has all its coordinates integer valued.
(ii) implies (i). Let B be a regular square submatrix of order n of the matrix

$$
\left(A, I_{n}\right)=\left(\begin{array}{rllll}
& 1 & & & 0 \\
\vdots & & 1 & & \\
A & & 1 & & \\
\vdots & & & & 1 \\
& 0 & & & 1
\end{array}\right)
$$

Let $\mathbf{y} \in \mathbb{Z}^{n}$ be such that $\mathbf{y}+B^{-1} \mathbf{u}^{i} \geq 0$, where \mathbf{u}^{i} is the i th unit vector of \mathbb{Z}^{n}. The vector $\mathbf{z}=\mathbf{y}+B^{-1} \mathbf{u}^{i}$ satisfies $B \mathbf{z}=B \mathbf{y}+\mathbf{u}^{i} \in \mathbb{Z}^{n}$. Consequently \mathbf{z} defines the nonzero components of an extreme point of $Q(\mathbf{c})$ where $\mathbf{c}=B \mathbf{y}+\mathbf{u}^{i}$; thus, from (ii), $\mathrm{z} \in \mathbb{Z}^{n}$.

Therefore $B^{-1} \mathbf{u}^{i}=\mathbf{z}-\mathbf{y} \in \mathscr{Z}^{n}$ for $i=1,2, \ldots, n$ and thus the matrix B^{-1} has integer coefficients. Hence $\operatorname{det} B$ and $\operatorname{det} B^{-1}$ are integers which satisfy $(\operatorname{det} B)\left(\operatorname{det} B^{-1}\right)=\operatorname{det} I_{n}=1$. Thus $\operatorname{det} B= \pm 1$. This proves that A is totally unimodular. (The idea for this much simpler proof is due to Viennot and Dantzig, [1968]).
(ii) is equivalent to (iii). The total unimodularity of A is equivalent to the total unimodularity of the matrix

$$
\bar{A}=\left(\begin{array}{c}
A \\
-A \\
I_{m} \\
-I_{m}
\end{array}\right)
$$

We now apply (ii) with $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n},-b_{1},-b_{2}, \ldots,-b_{n}, q_{1}, q_{2}, \ldots, q_{m}\right.$, $-p_{1},-p_{2}, \ldots,-p_{m}$) and the matrix \bar{A}. Thus, (iii) follows.

To show that this result implies all the characterisations of unimodular matrices by forbidden structures such as those of Ghouila-Houri [1862] quoted above, or those of Camion [1965], etc., the reader is referred to the excellent exposé by Padberg [1988].

Consider a hypergraph H, and its incidence matrix $A=\left(\left(a_{j}^{i}\right)\right)$ (with n rows, m columns, with no zero rows or zero columns). Let $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$. A $c-$ matching is a vector \mathbf{y} with integer coordinates of the polyhedron

$$
Q(\mathrm{c})=\left\{\mathbf{y} / \mathrm{y} \in \boldsymbol{R}^{m}, \mathbf{y} \geq 0, A \mathbf{y} \leq \mathrm{c}\right\}
$$

For $c=1$, a point of $Q(c)$ with integer coordinates is necessarily $0-1$ valued, and a 1 -matching is nothing but a matching. If we associate with each edge E_{j} an integer $d_{j} \geq 0$ called the weight of the edge E_{j}, and if $\sum_{j=1}^{m} d_{j} y_{j}$ is the total weight of the c-matching \mathbf{y}, we may ask for the maximum weight of a c-matching, which we denote by

$$
N-\max _{y \in Q(c)}\langle\mathrm{d}, \mathbf{y}\rangle=\max \left\{\langle\mathrm{d}, \mathbf{y}\rangle / \mathbf{y} \in Q(\mathbf{c}) \cap \mathbb{N}^{m}\right\}
$$

In particular, if $\mathbf{c}=\mathbf{1}, \mathbf{d}=\mathbf{1}$ we have $N-\max <\mathbf{d}, \mathbf{y}>=\nu(H)$.
For a vector $\mathbf{d} \in \mathbb{N}^{n}$ we may define a d-transuersal to be a vector $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ with integer coordinates of the polyhedron

$$
P(\mathrm{~d})=\left\{\mathrm{t} / \mathrm{t} \in R^{n}, \mathrm{t} \geq \mathbf{0}, A^{*} \mathrm{t} \geq \mathrm{d}\right\} .
$$

Defining the cost of a vertex x_{i} of the hypergraph to be an integer $c_{i} \geq 0$, we may ask for the minimum cost $\sum_{i=1}^{n} c_{i} t_{i}$ of a transversal t, which we denote by

$$
N_{t \in P(d)}-\min <\mathbf{c}, \mathbf{t}>=\min \left\{<\mathrm{c}, \mathbf{t}>/ \mathrm{t} \in P(\mathrm{~d}) \cap N^{n}\right\}
$$

In particular, $N \underset{A^{*} \geq 1}{N-\min }<\mathbf{1}, \mathbf{t}>=\tau(H)$.

We may now state, as an application of Theorem 7:

Corollary 1. Let H be a unimodular hypergraph with n vertices and m edges; for $\mathrm{c} \in \mathbb{N}^{n}$ and $\mathrm{d} \in \mathbb{N}^{m}$, we have

$$
\underset{y \in Q(c)}{N-\max }\langle\mathbf{d}, \mathbf{y}>=\underset{t \in P(d)}{N-\min }<\mathbf{c}, \mathbf{t}>
$$

Proof. If H is unimodular, the maximum of $\langle\mathbf{d}, \mathbf{y}\rangle$ for $\mathbf{y} \in Q$ ($\mathbf{c})$ is attained at a point y_{0} having integer coordinates; the minimum of $\langle c, t\rangle$ for $t \in P(d)$ is attained at a point t_{0} having integer coordinates. The duality theorem of linear programming shows that

$$
\left\langle d, y_{0}\right\rangle=\left\langle c, t_{0}\right\rangle
$$

This implies the equality stated in Corollary 1.

Corollary 2. A unimodular hypergraph H of rank r can be strongly coloured with r colours.

Proof. Let $A=\left(\left(a_{j}^{i}\right)\right)$ be the incidence matrix of H, where the rows represent the vertices and the columns represent the edges. An n-dimensional vector \mathbf{z} with coordinates 0 or 1 is the characteristic vector of a set $S \subset X$, and $\left|S \cap E_{j}\right|$ is equal to the scalar product $\left\langle\mathbf{z}, \mathbf{a}_{j}\right\rangle$.

There exists a set S which meets each edge E_{j} at most once, and exactly once each edge with $\left|E_{j}\right|=r$, if and only if there exists an integer solution to the following system of inequalities:

$$
\begin{aligned}
& \mathbf{0} \leq \mathbf{z} \leq \mathbf{1} \\
& 0 \leq<\mathbf{z}, \mathbf{a}_{j}>\leq 1 \quad \text { if } E_{j} \in H \\
& 1 \leq<\mathbf{z}, \mathbf{a}_{j}>\leq 1 \text { if } E_{j} \in H, \text { and }\left|E_{j}\right|=r
\end{aligned}
$$

The vector $z=\left(\frac{1}{r}, \frac{1}{r}, \ldots, \frac{1}{r}\right)$ satisfies all these inequalities, so there exists a solution in integers (and hence in 0,1), which is the characteristic vector of a set S of vertices defining the first colour. Repeating the procedure with the unimodular hypergraph
H_{X-S}, or rank $r-1$, define the second colour S^{\prime}, etc. When we arrive at a hypergraph of rank 1 we have defined a strong colouring (S, S^{\prime}, \ldots) of H with r colours.

Remark. A polynomial time algorithm to test whether a matrix is totally unimodular results from the work of Seymour [1980], and from the extensions of Bixby, Truemper, Tamir, etc. Indeed, the problem of testing if a matrix A is totally unimodular is equivalent to that of testing if its associated matroid $M(A)$ is regular. (For an exposition of the algorithm, cf. Bixby [1982]). For good algorithms to find maximum matchings in certain classes of unimodular hypergraphs, cf. Conforti, Cornuéjols [1987].

3. Balanced Hypergraphs

A hypergraph is said to be balanced if every odd cycle has an edge containing three vertices of the cycle. A hypergraph is said to be totally balanced if every cycle of length ≥ 3 has an edge containing three vertices of the cycle.

In other words, H is balanced if and only if its incidence matrix contains no square submatrix of the form:

$$
B_{k}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 1 \\
1 & 1 & 0 & 0 & \cdots & . & 0 \\
0 & 1 & 1 & 0 & \cdots & . & 0 \\
. & & & & & & . \\
. & & & & & & \\
. & & & & & & 0 \\
. & & & & & 1 & 0 \\
0 & \cdots & . & . & 0 & 1 & 1
\end{array}\right)
$$

where $k \geq 3$ is odd. Similarly H is totally balanced if and only if A contains no submatrix B_{k} with $k \geq 3$.

A totally balanced hypergraph is thus balanced; it is easy to see (by considering all the cycles) that the hypergraphs in Figures 9 and 10 are balanced.

Proposition 1. Every partial subhypergraph of a totally balanced hypergraph (resp. balanced) is totally balanced (resp. balanced).

Indeed, if H has A as its incidence matrix, a partial subhypergraph has a subma$\operatorname{trix} A^{\prime}$ of A as its incidence matrix; then if $A^{\prime} \supset B_{k}$ we must have $A \supset B_{k}$.

Proposition 2. The dual of a totally balanced (resp. balanced) hypergraph is totally

172 Hypergraphs

Figure 9. Balanced hypergraph (strongly unimodular).

Figure 10. Balanced hypergraph (not unimodular).
balanced (resp. balanced).
Indeed, if H has A as its incidence matrix, the dual H^{*} has for its incidence matrix the transpose A^{*} of A. Then if $A^{*} \supset B_{k}$ we must have $A \supset\left(B_{k}\right)^{*}=B_{k}$.

Example 1. Unimodular hypergraphs.

We shall show that every unimodular hypergraph is balanced. Let H be a unimodular hypergraph which is not balanced: the incidence matrix A contains a submatrix of the form B_{k} with $k \geq 3$ odd. However the matrix B_{k} is not totally unimodular (since the hypergraph which it represents is an odd cycle C_{k}, which cannot be equitably 2 -coloured and thus cannot be unimodular from Theorem 3). Thus H cannot be unimodular: a contradiction.

Observe that the converse is not true: the hypergraph of Figure 10 is clearly balanced, but it cannot be 2 -coloured equitably (because of edge E_{1}) and thus is not unimodular.

It was precisely in order to generalise some theorems for totally unimodular matrices that the concept of a balanced hypergraph was introduced (Berge [1969], [1972]).

Example 2. Strongly unimodular hypergraphs (Crama, Hammer, Ibaraki [1985]).
Another balanced hypergraph, due to Crama, Hammer and Ibaraki [1985] is the strongly unimodular hypergraph: this is a balanced hypergraph which further admits no odd cycles having one edge containing exactly three vertices of the cycle and all the other containing exactly two vertices of the cycle. (For example, the hypergraph of Figure 9, which contains odd cycles of length 5 and 7 , is strongly unimodular). In other words, H is strongly unimodular if and only if its incidence matrix contains no square submatrix of the form B_{k} with $k \geq 3$ odd, nor of the form B_{k}^{\prime}, where B_{k}^{\prime} is obtained from B_{k} by replacing a 0 by a 1 . Consequently we see as before that if H is strongly unimodular then its dual and its partial subhypergraphs are strongly unimodular.

The same authors have shown further that in a strongly unimodular hypergraph H there exists a non-empty set $S \subset X$ meeting each edge of H which is not a loop in 0 or 2 vertices. In Figure 9 we find for example the set $S=\{a, b, c, d\}$. We may show that H is unimodular as follows: consider such a set S_{1}; then in $H_{X-S_{1}}$ (which is also strongly unimodular) consider such a set S_{2}; then in $H_{X-S_{1}-S_{2}}$ such a set S_{3} etc. Each subhypergraph $H_{S_{i}}$ being a bipartite multigraph we can colour it equitably with two colours, red and blue. When all the vertices of H have been coloured, the blue set and the red set constitute an equitable 2 -colouring of H. Thus from Theorem 3, H is unimodular.

174 Hypergraphs

Example 3. Hypergraph of neighbourhoods.
Let T_{0} be a tree on $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$; denote by $\mu\left[x_{i}, x_{j}\right]$ the (unique) path whose extremities are x_{i} and x_{j}, and denote by $d\left(x_{i}, x_{j}\right)$ the distance between x_{i} and x_{j}, that is to say the length of $\mu\left[x_{i}, x_{j}\right]$. For $\rho \geq 0$ we define the neighbourhood centred at $a \in X$ of radius ρ to be the set

$$
T=\{x / x \in X, d(x, a) \leq \rho\}
$$

A family $H=\left(T_{1}, T_{2}, \ldots, T_{m}\right)$ of neighbourhoods is a hypergraph; we shall show that it is totally balanced.

Indeed, otherwise there exists an odd cycle, say

$$
\sigma=\left(x_{1}, T_{1}, x_{2}, T_{2}, \ldots, x_{k}, T_{k}, x_{k+1}=x_{1}\right)
$$

such that the set

$$
T_{i}=\left\{x / x \in X, d\left(x, a_{i}\right) \leq \rho_{i}\right\}
$$

does not contain x_{j} for $j \neq i, i+1$.
Since $T_{i} \cap T_{i+1} \neq \varnothing$, we have

$$
\begin{aligned}
& d\left(a_{i}, a_{i+1}\right) \leq \rho_{i}+\rho_{i+1} \\
& d\left(a_{i}, x_{i}\right) \leq \rho_{i} \\
& d\left(a_{i}, x_{i+1}\right) \leq \rho_{i}
\end{aligned}
$$

It is easy to see that in the tree T_{0}, at least three of the paths $\mu\left[a_{i}, a_{i+1}\right]$ have a non-empty intersection. Let $y \in T_{0}$ be such that it appears in, say, $\mu\left[a_{1}, a_{2}\right], \mu\left[a_{p}, a_{p+1}\right]$, $\mu\left[a_{q}, a_{q+1}\right]$. Suppose further that $d\left(y, x_{1}\right) \geq d\left(y, x_{p}\right) \geq d\left(y, x_{q}\right)$.

As $y \in \mu\left[a_{1}, a_{2}\right]$, we have either $y \in \mu\left[a_{1}, x_{1}\right]$ or $y \in \mu\left[x_{1}, a_{2}\right]$.
Suppose, for example, that $y \in \mu\left[a_{1}, x_{1}\right]$. Then

$$
\begin{aligned}
0 \leq \rho_{1}-d\left(a_{1}, x_{1}\right) & =\rho_{1}-d\left(a_{1}, y\right)-d\left(y, x_{1}\right) \\
& \leq \rho_{1}-d\left(a_{1}, y\right)-d\left(y, x_{p}\right) \\
& \leq \rho_{1}-d\left(a_{1}, x_{p}\right)
\end{aligned}
$$

Hence $x_{p} \in T_{1}$. For the same reason, $x_{q} \in T_{1}$. Thus T_{1} contains at least three vertices of the cycle σ : contradiction.

Example 4 (Tamir [1985]).
Consider a tree T on $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and let $S \subset X$ with $|S|=k$. We may generalise the example 3 by considering for every vertex $x \in X$ the sequence $0=d_{0}^{x} \leq d_{1}^{x} \leq d_{2}^{x} \leq \cdots \leq d_{k}^{x}$ of distances from x to the different elements of S. Consider the minimal subtree T_{i} of T containing x and the elements $s \in S$ with $d(x, s) \leq d_{i}^{x}$; for every integer ρ with $d_{i-1}^{x} \leq \rho \leq d_{i}^{x}$ denote by $E(x, i, \rho)$ the set of vertices y of the minimal subtree T_{i} which satisfy $d(x, y) \leq \rho$. Tamir [1985] showed that the hypergraph ($E(x, i, \rho) / x, i, \rho)$ is totally balanced.

If $S=X$ we obtain thus the hypergraph of neighbourhoods (Example 3). If $S=\left\{x_{1}\right\}$ we obtain the hypergraph of paths of an arborescence rooted at x_{1}.

Example 5. Composition of two totally balanced hypergraphs (Lubiw [1985]).
Given two hypergraphs $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ and $H^{\prime}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ on a set X, the composition hypergraph $H_{H^{\prime}}$ is a hypergraph whose vertices f_{i} represent respectively the edges $F_{i} \in H^{\prime}$ and whose edges are the sets $\bar{E}_{j}=\left\{f_{i} / F_{i} \cap E_{j} \neq \varnothing\right\}$. In order that $H_{\bar{H}}$ be a hypergraph on H^{\prime} we suppose further that each F_{i} meets at least one E_{j} and each E_{j} meets at least one F_{i}.

Figure 11

Figure 12

For example, consider the arborescence T of Figure 11 with $H=\left(E_{1}, E_{2}, E_{3}, \omega_{4}\right)$ and $H^{\prime}=\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$. Then H is the hypergraph represented in Figure 12.

Lubiw [1985] showed that if H and H^{\prime} are both totally balanced then their composition hypergraph $H_{H^{\prime}}$ is also totally balanced.
(Note that as in Figure 12, $H_{H^{\prime}}$ need not be unimodular, even if H and H^{\prime} are unimodular).

This theorem generalises a result of Frank [1977] who showed that if H and H^{\prime} are two hypergraphs of paths of an arboresence then $H_{H^{\prime}}$ is totally balanced; it also generalises a result of Tamir [1983] who showed that if H and H^{\prime} are two hypergraphs of neighbourhoods, then $H_{H^{I}}$ is totally balanced.

Theorem 7. A hypergraph is balanced if and only if its induced subhypergraphs are 2-colourable.

Proof.

1. To show that the condition is necessary it is enough to show that a balanced hypergraph is 2 -colourable.

Indeed, otherwise, there exists a balanced hypergraph H of minimum order with $\chi(H) \geq 3$. For each vertex x_{0}, the subhypergraph induced by $X-\left\{x_{0}\right\}$ has a 2 -colouring (S_{0}, S_{0}^{\prime}), since H is minimal. As H is not 2-colourable, this implies that x_{0} appears in two edges of H of cardinality 2 , say $\left[x_{0}, y\right]$ and $\left[x_{0}, y^{\prime}\right]$, with $y \in S_{0}, y^{\prime} \in S_{0}^{\prime}$. Thus the graph G formed by the edges of H of cardinality 2 satisfies $d_{G}(x) \geq 2$ for every $x \in X$. Since G is a balanced hypergraph, it is a bipartite graph. Let G_{1} be a connected component of G (which is of order at least 3 from the above) and let x_{1} be a vertex of G_{1} which is not an articulation point (there must exist at least two of these since G_{1} is of order ≥ 3). The subhypergraph of H induced by $X-\left\{x_{1}\right\}$ has a 2-colouring, say (S_{1}, S_{1}^{\prime}). Then x_{1} can be coloured in such a way that no edge of G_{1} is monochromatic. Thus every edge of H contains two colours if it has more than two elements, and contains also two colours if it has two elements: this contradicts $\chi(H) \neq 2$.

Observe that the existence of a 2-colouring of H also follows from the difficult theorem of Fournier-Las Vergnas (Theorem 1).
2. We shall show that if for every $A \subset X$ the subhypergraph H_{A} is 2-colourable, then H is balanced. Indeed, otherwise there exists an odd cycle $\left(a_{1}, E_{1}, a_{2}, E_{2}, \ldots, a_{2 k+1}, E_{2 k+1}, a_{1}\right)$ where no edge contains three of the a_{i} 's. The set $A=\left\{a_{1}, a_{2}, \ldots, a_{2 k+1}\right\}$ induces a subhypergraph H_{A} which contains the edges of the graph $C_{2 k+1}$, and consequently H_{A} is not 2-colourable, a contradiction.

Corollary. A hypergraph of rank ≤ 3 is unimodular if and only if it is balanced.

Proof. If $r(H) \leq 3$ and if H is balanced, then there exists a 2 -colouring of H, and this 2 -colouring is necessarily equitable. The same is true for every subhypergraph of
H. Then, from Theorem 3, H is unimodular.
Theorem 8. A balanced hypergraph H has a good k-colouring for every $k \geq \mathbf{2}$.

Proof. Let H be a balanced hypergraph on X. For $k=2$, the statement is proved by Theorem 7. For $k>2$, consider a k-partition $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ of X; for each $E \in H$, denote by $k(E)$ the number of classes of this partition which meet E. If every edge $E \in H$ satisfies $k(E)=\min \{|E|, k\}$, the partition is a good k-colouring of H. Suppose that there exists an edge E_{0} with $k\left(E_{0}\right)<\min \left\{\left|E_{0}\right|, k\right\}$. Since $k\left(E_{0}\right)<\left|E_{0}\right|$ there exists an index p such that $\left|S_{p} \cap E_{0}\right| \geq 2$. Since $k\left(E_{0}\right)<k$ there exists an index q such that $\left|S_{q} \cap E_{0}\right|=0$.

The subhypergraph of H induced by $S_{p} \cup S_{q}$ is balanced (Proposition 1): thus it admits a 2-colouring (\bar{S}_{p}, \bar{S}_{q}). Set $\bar{S}_{i}=S_{i}$ for $i \neq p, q$. Then ($\bar{S}_{1}, \bar{S}_{2}, \ldots, \bar{S}_{k}$) is also a k-partition of X, and the number $\bar{k}(E)$ of classes of this partition which meet an edge E satisfies

$$
\begin{aligned}
& \bar{k}(E) \geq k(E) \quad(E \in H) \\
& \bar{k}\left(E_{0}\right)=k\left(E_{0}\right)+1 .
\end{aligned}
$$

This transformation of the k-partition allows us to reduce $\min \{|E|, k\}-k(E)$ for each $E \in H$, and repeating as often as necessary, we obtain a good k-colouring of H.

Corollary 1. A balanced hypergraph has the coloured edge property.

Indeed, the dual hypergraph H^{*} of a balanced hypergraph H is of rank $r\left(H^{*}\right)=\Delta=\Delta(H)$. Setting $k=\Delta$ in Theorem 8 we obtain a strong colouring of the edges of H in Δ colours. Thus $q(H)=\Delta(H)$.

Applied to bipartite multigraphs (cf. Graphs, Chapter 12, Theorem 2), this statement gives König's theorem on edge colouring.

Corollary 2. A balanced hypergraph H contains $k=\min _{E \in H}|E|$ pairwise disjoint transversal sets.

It is sufficient to apply Theorem 8 with $k=\min _{E \in H}|E|$.

178 Hypergraphs

Applied to the dual of a bipartite graph, this gives Gupta's theorem [1978].

Corollary 3 (Las Vergnas). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph; denote by k_{0} the least integer greater than or equal to

$$
\min _{J} \frac{1}{|J|}\left|\bigcup_{j \in J} E_{j}\right|
$$

this minimum being taken over the non-empty subsets J of $\{1,2, \ldots, m\}$. Then H has a good k-colouring for every $k \leq k_{0}$.

Indeed, by definition of k_{0}, for every $J \neq \varnothing$,

$$
|J|\left(k_{0}-1\right)<\left|\bigcup_{j \in J} E_{j}\right|
$$

Let $k<k_{0}$; the condition in the generalisation of Theorem 3 is satisfied for k. Hence there exists a k-uniform hypergraph $H^{\prime}=\left(E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{m}^{\prime}\right)$ without cycles such that $E_{i}^{\prime} \subset E_{i}$ for every i. As H^{\prime} is also strongly balanced, Theorem 8 shows that there exists a good k-colouring of H^{\prime}, which is also a good k-colouring of H. Q.E.D.

Theorem 9 (Berge, Las Vergnas [1970]). A hypergraph is balanced if and only if every partial subhypergraph has the König property.

Proof.

1. If $\nu\left(H_{A}^{\prime}\right)=\tau\left(H_{A}^{\prime}\right)$ for every $H^{\prime} \subset H$ and $A \subset X$, then H is balanced, since otherwise there exists an H_{A}^{\prime} isomorphic to an odd cycle $C_{2 k+1} ;$ as $\nu\left(C_{2 k+1}\right)=k$ and $\tau\left(C_{1 k+1}\right)=k+1$, a contradiction follows.
2. If H is balanced, H_{A}^{\prime} is also balanced. Thus it suffices to show that a balanced hypergraph satisfies $\nu(H)=\tau(H)$.

Set $\tau(H)=t$. Consider a partial hypergraph H^{\prime} with $\tau\left(H^{\prime}\right)=t$, and such that H^{\prime} is minimal with this property. We shall show that H^{\prime} consists of pairwise disjoint edges, which implies

$$
\nu(H) \geq \nu\left(H^{\prime}\right)=\tau\left(H^{\prime}\right)=\tau(H) \geq \nu(H)
$$

consequently $\nu(H)=\tau(H)$, and the proof will be complete.
Suppose (to prove by contradiction) that two edges $E_{1}^{\prime}, E_{2}^{\prime}$ of H^{\prime} satisfy $E_{1}^{\prime} \cap E_{2}^{\prime} \neq \varnothing$; let $x_{0} \in E_{1} \cap E_{2}$. There exists a transversal T_{1} of $H^{\prime}-E_{1}^{\prime}$ with $\left|T_{1}\right|=t-1$, and there exists a transversal T_{2} of $H^{\prime}-E_{2}^{\prime}$ with $\left|T_{2}\right|=t-1$. Let $Q=T_{1} \cap T_{2}, \quad R_{i}=T_{i}-Q, \quad S=R_{1} \cup R_{2} \cup\left\{x_{0}\right\}$. The subhypergraph H_{S}^{\prime} is
balanced and thus has a 2-colouring (S_{1}, S_{2}). One of the colour classes, say S_{1}, satisfies $\left|S_{1}\right| \leq\left|R_{1}\right|$, since $|S|=2\left|R_{1}\right|+1$. Observe that E_{1}^{\prime} meets S in at least two points (one of them being x_{0}), so E_{1}^{\prime} meets S_{1}, and thus meets $S_{1} \cup Q$. Similarly E_{2}^{\prime} meets $S_{1} \cup Q(\mathrm{cf}$. Figure 13).

Figure 13

For $i \neq 1,2$, either the edge E_{i}^{\prime} of H^{\prime} meets Q or it meets $R_{1} \cup R_{2}$ in at least two points, in which case E_{i}^{\prime} meets S_{1}. Thus $S_{1} \cup Q$ is a transversal of H^{\prime}, which implies that

$$
\tau(H) \leq\left|S_{1} \cup Q\right| \leq\left|R_{1}\right|+|Q|=t-1
$$

A contradiction follows.
(This new proof is due to Lovász).

Corollary 1. Every balanced hypergraph has the Helly property and is conformal.

Proof. Let H be a balanced hypergraph and let $H^{\prime} \subset H$ be an intersecting family. Since H is balanced, Theorem 9 shows that $\tau\left(H^{\prime}\right)=\nu\left(H^{\prime}\right)=1$, and so there exists a vertex common to all the edges of H^{\prime}. Thus H has the Helly property. Since the dual of a balanced hypergraph is balanced, we deduce that H is conformal.

Corollary 2. A hypergraph H with m edges and n vertices is balanced if and only if for every $\mathbf{c} \in\{1,+\infty\}^{n}$ and each $\mathbf{d} \in \mathbb{N}^{m}$, we have

$$
\underset{y \in Q(c)}{N-\max }\langle\mathbf{d}, \mathbf{y}>=\underset{t \in P(d)}{N-\min }<\mathbf{c}, \mathbf{t}>.
$$

Proof. 1. Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph for which this equality holds; consider a partial subhypergraph H_{A}^{\prime}, and let

$$
\begin{aligned}
c_{i}=1 & \text { if } x_{i} \in A ; \\
c_{i}=+\infty & \text { if } x_{i} \notin A ; \\
d_{j}=1 & \text { if } E_{j} \in H^{\prime} ; \\
d_{j}=0 & \text { if } E_{j} \notin H^{\prime} .
\end{aligned}
$$

For $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ and $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$, we have:

$$
\nu\left(H_{A}^{\prime}\right)=\underset{y \in Q(c)}{N-\max }\langle\mathbf{d}, \mathbf{y}\rangle=N \underset{t \in P_{(d)}}{N-\min }\left\langle\mathbf{c}, \mathbf{t}>=\tau\left(H_{A}^{\prime}\right) .\right.
$$

Thus, from Theorem 9, H is balanced.
2. Let H be a balanced hypergraph; it suffices to show that for $d \in \mathbb{N}^{m}$, we have:

$$
\underset{y \in Q(1)}{N-\max }<\mathrm{d}, \mathbf{y}>=\underset{t \in P(d)}{N-\min }<\mathbf{1}, \mathrm{t}>
$$

If we associate with each edge E_{j} of H an integer $d_{j} \geq 0$ called its "weight" then it is enough to show that the maximum weight of a matching is equal to the minimum value of a d-transversal. For an integer $\lambda>0$, an edge $E=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ will be duplicated λ times if we replace each $x_{i} \in E$ by a set $X_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{\lambda}\right\}$ of λ additional vertices, and the edge E by λ new edges $E^{1}=\left\{x_{1}^{1}, x_{2}^{1}, \ldots, x_{r}^{1}\right\}, E^{2}=\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{r}^{2}\right\}$ etc. We say that the edge E is duplicated 0 times if we remove the edge E from H.

In each case, the hypergraph so obtained is balanced. For $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$, denote by $H^{[d]}$ the hypergraph obtained from H by duplicating the edge $E_{1} d_{\mathrm{t}}$ times, the edge $E_{2} d_{2}$ times, etc.

It is easily seen that

$$
\begin{aligned}
& \underset{y \in Q(1)}{N-\max }<\mathrm{d}, \mathbf{y}>=\nu\left(H^{[d]}\right) \\
& \underset{t \in P(d)}{N-\min }<\mathbf{1}, \mathbf{t}>=\tau\left(H^{[d]}\right)
\end{aligned}
$$

Since $H^{[d]}$ is a balanced hypergraph, these two coefficients are equal, which achieves the proof.

Theorem 10 (Fulkerson, Hoffman, Oppenheim [1974]). Let H be a balanced hypergraph with m edges and n vertices. For each $\mathrm{c} \in \mathbb{N}^{n}$, we have

$$
\underset{y \in Q(c)}{N-\max }<\mathbf{1}, \mathbf{y}>=\underset{t \in P(1)}{N-\min }<\mathbf{c}, \mathbf{t}>
$$

$\left(^{*}\right)$ Proof. We shall assume some knowledge of the theory of linear programming.

1. We shall show that the program:
```
minimize <c,t> for t }\inP(\mathbf{1}
```

has an integer solution.
From Corollary 2 of Theorem 9 , the maximum of $\langle\mathbf{d}, \mathbf{y}\rangle$ for those \mathbf{y} in the polyhedron $Q=\left\{\mathbf{y} / \mathbf{y} \in \mathbb{R}^{m}, \mathbf{y} \geq \mathbf{0}, \boldsymbol{A y} \leq \mathbf{1}\right\}$ is attained at a point \mathbf{y}_{0} with integer coordinates, indeed 0,1 coordinates since $A \mathbf{y}_{0} \leq \mathbf{1}$.

Since this is true for all $\mathbf{d} \in \mathbb{N}^{m}$, it is easy to see that all the extreme points of Q have coordinates 0,1 (cf. for example Lemma 1 of $\S 6$). The hyperplane $\left\{\mathbf{y} / \mathbf{y} \in \mathbb{R}^{m}, A \mathbf{y}=\mathbf{1}\right\}$ being a supporting hyperplane of the convex polyhedron Q, all the extreme points of the polyhedron $\bar{Q}=\left\{\mathbf{y} / \mathbf{y} \in \mathbb{R}^{m}, \mathbf{y} \geq \mathbf{0}, A \mathbf{y}=\mathbf{1}\right\}$ have 0,1 coordinates. Let \mathbf{z} be an extreme point of the polyhedron $\left\{\mathbf{y} / \mathbf{y} \in \mathbb{R}^{m}, \mathbf{y} \geq \mathbf{0}, A \mathbf{y} \geq \mathbf{1}\right\}$; this is also an extreme point of the polyhedron obtained by eliminating the inequalities of $A \mathbf{y} \geq 1$ which are strict. Thus \mathbf{z} has integer coordinates. Applying this result to the dual H^{*} of H, which is also balanced, we see that the extreme points of the polyhedron

$$
P(\mathbf{1})=\left\{\mathbf{t} / \mathbf{t} \in \mathbb{R}^{n}, \mathbf{t} \geq \mathbf{0}, A^{*} \mathbf{t} \geq \mathbf{1}\right\}
$$

have integer coordinates, whence the result.
2. We shall show that the program:

```
maximise <1,y> for y }\inQ(c
```

has a solution with integer coordinates. (This result, combined with the result of part 1 above immediately implies the equality in the statement of Theorem 10.) We shall argue by a double induction, on $\Sigma c_{i}=\lambda$ and on m; the result is clear if $\lambda=1$ or if $m=1$.

Let $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$ be a solution to the program (2) with fractional coordinates. If $z_{j}=0$, it suffices to apply the induction hypothesis with $m-1$ to the submatrix of A obtained by eliminating the j th column to show that the program (2) has a solution with integer coordinates. Thus we may suppose that $z_{j}>0$ for every j.

By virtue of part 1 and the duality theorem, we know that $\langle\mathbf{1 , z}\rangle=k$ is an integer. Suppose that the i th row vector a^{i} of the matrix satisfies $<\mathbf{z}, \mathbf{a}^{i}><c_{i}$. If $\left\langle\mathbf{z}, \mathrm{a}^{i}\right\rangle \leq c_{i}-1$ we may apply the induction hypothesis with $\lambda-1$ to show the existence of an integer solution \bar{z} of the programme (2) with $\langle\mathbf{1}, \overline{\mathbf{z}}\rangle=\langle\mathbf{1}, \mathbf{z}\rangle=k$.

182 Hypergraphs

Hence we may suppose that $\left\langle\mathbf{z}, \mathbf{a}^{i}\right\rangle=c_{i}-1+\epsilon$ with $0<\epsilon<1$. Clearly there exists a vector $\overline{\mathbf{z}} \in P\left(c_{1}, c_{2}, \ldots, c_{i}-1, \ldots, c_{n}\right)$ with $\overline{\mathbf{z}} \leq \mathbf{z},\langle\mathbf{1}, \overline{\mathbf{z}}\rangle=k-\epsilon$. By the induction hypothesis with $\lambda-1$, there exists a vector $\overline{\overline{\mathbf{z}}}$ with integer coordinates such that

$$
\overline{\overline{\mathbf{z}}} \geq 0, A \overline{\overline{\mathbf{z}}} \leq\left(c_{1}, \ldots, c_{i}-1, \ldots, c_{n}\right) \leq \mathbf{c},<\mathbf{1}, \overline{\overline{\mathbf{z}}}>\geq k-\epsilon
$$

Hence $\langle\mathbf{1}, \overline{\overline{\mathbf{z}}}>=k$ and the demonstration is done.
Thus we may suppose $\left\langle\mathbf{z}, \mathbf{a}^{i}\right\rangle=c_{i}$ for every i, and $z_{j}>0$ for every j. By virtue of the principle of complementary slackness, each optimal solution $\overline{\mathbf{x}}$ of the dual program:

$$
\begin{equation*}
\operatorname{minimise}<\mathbf{c}, \mathbf{x}>\text { for } \mathbf{x} \in P(1) \tag{3}
\end{equation*}
$$

satisfies $A^{*} \overline{\mathbf{x}}=\mathbf{1}, \overline{\mathbf{x}} \geq \mathbf{0},\langle\mathbf{c}, \overline{\mathbf{x}}\rangle=k$. Hence $\overline{\mathbf{z}}$ and $\overline{\mathbf{x}}$ are optimal solutions respectively of the dual programs:

$$
\begin{align*}
& \operatorname{minimise}<\mathbf{1}, \mathbf{y}>\text { for } \mathbf{y} \in Q(\mathbf{c}) \tag{4}\\
& \text { maximise }<\mathbf{c}, \mathbf{x}>\text { for } \mathbf{x} \in\left\{\mathbf{x} / \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} \geq \mathbf{0}, A^{*} \mathbf{x} \leq \mathbf{1}\right\}
\end{align*}
$$

Furthermore, $\langle\mathbf{1}, \mathbf{z}\rangle=\langle\mathrm{c}, \overline{\mathbf{x}}\rangle$.
As we have seen in part 1 , there exists a vector $\overline{\mathbf{z}}$ with integer coordinates such that $\overline{\mathbf{z}} \geq \mathbf{0}, A \overline{\mathbf{z}} \geq \mathbf{c},<\mathbf{1}, \overline{\mathbf{z}}>=k$. If $A \overline{\mathbf{z}}=\mathbf{c}$ the demonstration is done. Suppose therefore that $<\bar{z}, \mathrm{a}^{i} \gg c_{i}$ for an $i \leq n$. Since $z_{j}>0$ for every j, there exists an ϵ with $0<\epsilon<1$ such that $z_{j}>(1-\epsilon) \bar{z}_{j}$ for every j. Set

$$
\mathbf{w}=\frac{1}{\epsilon}[\mathbf{z}-(1-\epsilon) \bar{z}]
$$

Then $\mathbf{z}=(\mathbf{1}-\epsilon) \overline{\mathbf{z}}+\epsilon \mathbf{w}, \mathbf{w} \geq \mathbf{0},\langle\mathbf{1}, \mathbf{w}\rangle=k$. As $A \mathbf{z}=\mathbf{c}$ and $A \overline{\mathbf{z}} \geq \mathbf{c}$, we deduce that $A \mathbf{w} \leq \mathbf{c}$. Further, since there exists an i such that $<\mathbf{z}, \mathbf{a}^{i} \gg c_{i}$ we have $\left\langle w, \mathbf{a}^{i}\right\rangle\left\langle c_{i}\right.$. Thus \mathbf{w} is a solution of (2) with $\left\langle\mathbf{w}, \mathbf{a}^{i}\right\rangle\left\langle c_{i}\right.$ for some i. Applying the induction hypothesis once more, to show the existence of a solution $\overline{\mathbf{w}}$ of the program (2) with integer coordinates, we complete the proof.

Remark. Let H be a balanced hypergraph. From Theorem 10 and Corollary 2 of Theorem 9 , we see that many values of \mathbf{c} and d satisfy

$$
\underset{y \in Q(c)}{N-\max }<\mathrm{d}, \mathbf{y}>=\underset{t \in P(d)}{N-\min }<\mathrm{c}, \mathrm{t}>
$$

Nonetheless, this equality is not satisfied for all \mathbf{c} and \mathbf{d} for a balanced hypergraph (as it is for unimodular hypergraphs).

Consider for example the balanced hypergraph of Figure 12, with $\mathbf{c}=(3,2,2,2)$ and $\mathbf{d}=(2,1,1,1)$. The vector $\mathbf{t}=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is a fractional \mathbf{d}-transversal since

$$
\sum_{f_{i} \in E_{j}} t_{i} \geq d_{j} \quad(j=1,2,3,4)
$$

The vector $\mathrm{y}=\left(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is a fractional c-matching since

$$
\sum_{j / f_{i} \in E_{j}} y_{j} \leq c_{i} \quad(i=1,2,3,4) .
$$

We have $\langle\mathrm{d}, \mathrm{y}\rangle=\langle\mathrm{c}, \mathrm{t}\rangle=\frac{9}{2}$ and the minimax equality does not hold, since

$$
\underset{y \in Q(c)}{N-\max }<\mathrm{d}, \mathrm{y}><\frac{9}{2}<\underset{t \in P(d)}{N-\min }<\mathbf{1}, \mathrm{t}>.
$$

Application. Location problems.
Given a tree T on a set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, we may interpret the vertex x_{i} as a possible centre capable of distributing consumer goods to all vertices x such that $d\left(x, x_{i}\right) \leq \rho_{i}$, where ρ_{i} is a given integer ≥ 0. Further, each vertex x_{i} has an annual cost c_{i} of maintenance of a distribution centre. The problem consists of choosing a set of distribution centres, capable of serving all the clients, for which the total cost is as small as possible. If H is the hypergraph whose edges are the $T_{i}=\left\{x / d\left(x_{i}, x\right) \leq \rho_{i}\right\}$ then we require a minimum cost cover of H, that is to say for the dual H^{*} a minimum cost transversal. From Theorem 10, we have

$$
\underset{y \in Q(c)}{N-\max }<\mathbf{1}, y>=\underset{t \in P(1)}{N-\min }<c, t>.
$$

Thus the minimum cost of a cover of H is equal to the maximum cardinality of a family of vertices of H which has at most c_{j} representatives in the edge E_{j} for $j=1,2, \ldots, m$. Polynomial time algorithms to determine optimal locations are due to Tamir [1980], Kolen [1982], Farber [1984], Lubiw [1984].

To recognize whether a hypergraph is totally unimodular and to determine an optimal d-value c-matching it is useful to consider a particular order relation on the set of d-dimensional vectors (Lubiw [1074]). This relation, which we shall call reverse lexicographic order and denote by $\widetilde{\gtrless}$, is defined by

$$
\left(r_{1}, r_{2}, \ldots\right)<\left(s_{1}, s_{2}, \ldots\right)
$$

if the largest index k such that $r_{k} \neq s_{k}$ satisfies $r_{k}<s_{k}$.

Lemma 1. In every 0,1 matrix the rows and columns can be simultaneously arranged in reverse lexicographic order.

Proof. Consider a 0,1 -matrix $A=\left(\left(a_{j}^{i}\right)\right)$ with m columns, n rows. Consider the vector $\mathbf{d}_{A}=\left(d_{2}, d_{3}, \ldots, d_{m+n}\right)$ where $d_{k}=\sum_{i+j=k} a_{j}^{i}$.

If for two indices j_{1}, j_{2} with $j_{1}<j_{2}$ the column vectors corresponding to $\mathbf{a}_{j_{1}}$ and $\mathbf{a}_{j_{2}}$ are in the wrong order, i.e. $\mathbf{a}_{j_{2}} \widetilde{{ }^{2}} \mathbf{a}_{j_{1}}$, the matrix A^{\prime} obtained by permuting the columns j_{1} and j_{2} satisfies $\mathbf{d}_{A} \widetilde{<} \mathbf{d}_{A^{\prime}}$. Then, taking the permutation of rows and columns of the initial matrix A which maximises \mathbf{d}_{A} we obtain a new matrix satisfying the required conditions.

Lemma 2. If a matrix $A=\left(\left(a_{j}^{i}\right)\right)$ has its rows and columns arranged in reverse lexicographic order, and if A contains a submatrix equal to

$$
\left(\begin{array}{cc}
a_{j_{1}}^{i_{1}} & a_{j_{2}}^{i_{2}} \\
a_{j_{1}}^{i_{2}} & a_{j_{2}}^{i_{2}}
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)=B
$$

with $i_{1}<i_{2}, j_{1}<j_{2}$, then in the hypergraph H the vertices $x_{i_{1},}, x_{i_{2}}$ and the edges $E_{j_{1}}, E_{j_{2}}$ appear in a cycle of length ≥ 3 with no edge containing 3 vertices of the cycle.
(It is easy to show with an inductive construction that the given submatrix occurs with an unbalanced cycle).

Theorem 1 (Hoffman, Sakarovitch, Kolen [1985], Lubiw [1985]). Let $A=\left(\left(a_{j}^{i}\right)\right)$ be the incidence matrix of a hypergraph H. The following conditions are equivalent:
(i) the matrix A with its rows and columns arranged in reverse lexicographic order contains no such submatrix B;
(ii) it is possible to place the rows and columns of A in an order such that A contains no submatrix B;
(iii) the hypergraph H is totally balanced.

Proof.

(i) implies (ii). Clear.
(ii) implies (iii). Indeed, if H is not totally balanced, there exists a cycle

$$
\left(x_{i_{1}}, E_{j_{1}}, x_{i_{2}}, \ldots, E_{j_{k}}, x_{i_{1}}\right)
$$

with $k \geq 3$ where each edge contains exactly two vertices of the cycle. The submatrix of A generated by the rows i_{1}, i_{2}, \ldots and the columns j_{1}, j_{2}, \ldots contains exactly two 1 's in each row and in each column (whatever the order of their indices); the two columns which have a 1 in the top row, together with the top row and the row which has a 1 under the first 1 , gives the matrix B : this contradicts (ii).
(iii) implies (i). From Lemma 2.

Remark 1. Condition (i) provides an effective algorithm to determine whether a hypergraph H is totally balanced (Lubiw [1985], Hoffman, Sakarovitch, Kolen [1985]). This algorithm appears to perform better than other polynomial algorithms which had previously been proposed (Fagin [1983], Farber [1983], Anstee and Farber [1984]). Observe that this recognition problem is of practical interest in the study of database schemes (Fagin [1983]).

Remark 2. Hoffman, Sakarovitch and Kolen called a 0,1-matrix greedy if it satisfies condition (ii), and they showed that a maximum d-valued c-matching may be obtained by a greedy algorithm for every $\mathbf{d} \in \mathbb{N}^{m}$ and every $\mathbf{c} \in \mathbb{N}^{n}$ if and only if the matrix A is greedy. This is thus a characteristic property of totally balanced matrices. Moreover, it indicates how to obtain a minimum c-valued d-transversal in polynomial time when $\mathbf{d} \in \mathbb{N}^{m}, \mathbf{c} \in \mathbb{N}^{n}$.

Remark 3. Farber [1982], [1985] independently obtained logically equivalent results by a different approach relating to Graph Theory. Recall that a graph G is said to be triangulated if every cycle of length ≥ 4 has a chord (cf. Graphs, Chap. 16 §3). A sun of G is a subgraph induced by a set $S=\left\{a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}\right\}$ with $k \geq 3$ which is the union of the complete graph on $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ and the cycle ($a_{1}, b_{1}, a_{2}, b_{2}, \ldots, b_{k}, a_{1}$). Farber showed that for a graph G on X, the following conditions are equivalent:
(i) $\quad G$ is triangulated and sun-free;
(ii) each subgraph G^{\prime} of G contains a vertex x such that the family $\left(\left\{y \cup \Gamma_{G^{\prime}}(y) / y \in \Gamma_{G^{\prime}}(x)\right)\right.$ is totally ordered by inclusion;
(iii) the vertices x_{i} can be indexed in such a way that the adjacency matrix of G contains no submatrix B;
(iv) the sets $\{x\} \cup \Gamma_{G}(x)$ form a totally balanced hypergraph on X; the maximal cliques of G form a totally balanced hypergraph on X.

4. Arboreal Hypergraphs

A hypergraph H is arboreal if: H satisfies the Helly property;
each cycle of length ≥ 3 contains three edges having a non-empty intersection.

A hypergraph H is co-arboreal if it is the dual of an arboreal hypergraph, that is to say if: H is conformal;
(ii') every cycle of length ≥ 3 has three vertices contained in the same edge of H.

Example. A totally balanced hypergraph is both arboreal and co-arboreal. Indeed, from Corollary 1 of Theorem 9, such a hypergraph H satisfies (i) and (i'). Further it is clear that H satisfies (ii) and (ii'). In fact, a hypergraph is totally balanced if and only if all of its induced subhypergraphs are arboreal.

Observe that the hypergraph of Figure 14, whose edges are abd, bcd, acd is arboreal, but it is not totally balanced, since $a b c$ are the three vertices of a cycle, and no edge contains the three.
Theorem 2. A simple hypergraph is the family of maximal cliques of a triangulated graph if and only if it is co-arboreal.

Proof. 1. Let H be a simple co-arboreal hypergraph. As H is conformal from (i^{\prime}), it is the hypergraph of maximal cliques of $G=[H]_{2}$, the 2-section of H. Further, G is triangulated as otherwise it would contain a cycle of length ≥ 4 without chords, which corresponds in H to a cycle with no edge containing three vertices of the cycle: a contradiction with (ii').
2. Let H be the hypergraph of maximal cliques of a triangulated graph G. Then H is conformal and satisfies (i^{\prime}). Further, a cycle $\mu=[a, b, \ldots]$ of G has three vertices contained in the same edge of H if its length is 3 (since H is conformal). If the length of μ is ≥ 4, the partial subgraph $G_{\mu}-[a, b]$, which is connected, has a shorter path between a and b of the form $[a, x, b]$ (as G_{μ} is triangulated) which shows that the three

Figure 14. Arboreal hypergraph (not totally balanced).
vertices a, b, x of μ are contained in the same edge of H. Thus (ii') holds. Thus we have shown that H is co-arboreal.

Corollary. A hypergraph H is arboreal if and only if H satisfies the Helly property and the representative graph $L(H)$ is triangulated.

Indeed, we have seen (Proposition 1, §8, Chap. 1) that if a hypergraph H satisfies the Helly property, a graph G is the representative of H if and only if H^{*} is the hypergraph of the maximal cliques of G (with, perhaps, other cliques of G). From Theorem 12, this graph G is triangulated if and only if H^{*} is co-arboreal, i.e. H is arboreal.

Lemma. Let H be an arboreal hypergraph without loops; there exists a vertex x_{0} such that all the edges of H containing x_{0}, have a common vertex $y_{0} \neq x_{0}$.

Proof. Let $\left(x_{1}, E_{1}, x_{2}, \ldots, x_{q}, E_{q}, x_{q+1}, \ldots, E_{p}, x_{p+1}\right)$ be a path of H with $E_{i} \cap E_{j}=\varnothing$ if $|i-j|>1, x_{1} \notin E_{2}$ and $x_{p+1} \notin E_{p-1}$. Suppose that it is maximal in length and set $x_{0}=x_{p+1}$. By virtue of the maximality of this path, an edge $E_{\lambda} \in H$ with $x_{0} \in E_{\lambda}$, $\left|E_{\lambda}\right| \neq 1, E_{\lambda} \neq E_{p}$ satisfies $E_{\lambda} \cap E_{q} \neq \varnothing$ for some $q \leq p-1$.

Assume that q is the largest possible index defined in this way. The edges $E_{q}, E_{q+1}, \ldots, E_{p}, E_{\lambda}$ define a cycle, and as H is arboreal, we must have

$$
E_{\lambda} \cap\left(E_{q} \cap E_{q+1}\right) \neq \varnothing .
$$

From the maximality, we have $q=p-1$, whence $E_{\lambda} \cap E_{p-1} \cap E_{p} \neq \varnothing$.

As this is true for every edge E_{λ} with $x_{0} \in E_{\lambda},\left|E_{\lambda}\right| \neq 1$, the family formed by E_{p-1}, E_{p} and all the E_{λ} is intersecting; then by the Helly property these edges have a common element y_{0}. Further we have $y_{0} \neq x_{0}$ since $x_{0} \notin E_{p-1}$.

> Q.E.D.

Theorem 13 (Duchet [1978], Flament [1978], Slater [1978]). A hypergraph H on X is arboreal if and only if there exists a tree T on X such that the edges of H induce subtrees of T.

Proof.

1. Let H be a hypergraph of subtrees of T. We know from Theorem 10, Chap. 1, that H satisfies the Helly property. Further, a cycle ($x_{1}, E_{1}, x_{2}, E_{2}, \ldots, x_{k}$) of H of length ≥ 3 having no three edges with a non-empty intersection determines a sequence $\mu\left[x_{1}, x_{2}\right], \mu\left[x_{2}, x_{3}\right], \ldots$ of paths of T with $x_{j} \notin \mu\left[x_{i}, x_{i+1}\right]$ if $j>i+1$, which contradicts $x_{k}=x_{1}$. Consequently, the hypergraph H is indeed arboreal.
2. Let H be an arboreal hypergraph on X. We shall demonstate the existence of a tree T with the required properties by induction on $|X|$.

Let x_{0}, y_{0} be vertices of H defined as in the lemma; the subhypergraph \bar{H} induced by $\bar{X}=X-\left\{x_{0}\right\}$ is also arboreal since it satisfies (i) and (ii); thus by the induction hypothesis there exists a tree \bar{T} on \bar{X} satisfying the desired property for \bar{H}. Clearly the tree $T=\bar{T}+\left[x_{0}, y_{0}\right]$ satisfies the desired property.

> Q.E.D.
(This new proof is due to Duchet).

Application. If we represent species of animals at present in existence by the vertices of a hypergraph, with each edge being a set of species presenting a common hereditary characteristic, the theory of evolution says that this hypergraph is arboreal.

Observe that for the arboreal hypergraph of Figure 14, the corresponding tree T is uniquely determined. In general, a hypergraph H may have many corresponding trees; for a complete description of these trees, cf. Duchet [1985].

To determine whether a given hypergraph is arboreal we shall use an extension of the concept of the "cyclomatic number of a graph" due to Acharya and Las Vergnas.

Given a hypergraph $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ on X, its representative graph $L(H)$ will be "weighted" by associating with each edge $u=\left[e_{i}, e_{j}\right]$ the integer $w(u)=\left|E_{i} \cap E_{j}\right|$ which we call its "weight". If F is a partial graph of $L(H)$ without cycles ("forest" of $L(H)$), the weight of F is defined to be $w(F)=\sum_{u \in F} w(u)$.

Finally, we define the cyclomatic number of the hypergraph H to be the integer

$$
\mu(H)=\sum_{j=1}^{m}\left|E_{j}\right|-|X|-w_{H}
$$

where w_{H} is the maximum weight of a forest $F \subset L(H)$.
For example, the reader may verify that the hypergraph H of Figure 15 contains a forest of maximum weight 5 (in fact, F is a tree since $L(H)$ is connected); the cyclomatic number of H is then $\mu(H)=12-6-5=1$.

Figure 15. A balanced hypergraph, not co-arboreal, and its representative weighted graph.

The determination of the cyclomatic number $\mu(H)$ is an easy problem, as it reduces to the classical problem of the determination of a maximum weight tree in a graph with (positive) weighted edges; the complexity of various algorithms (e.g. Kruskal, Solin, Hell, etc.) has been studied. Recall, for example, Kruskal's greedy algorithm: form a forest edge by edge, each time taking the edge of greatest weight which will not create a cycle with the edges already chosen.

Remark. If H is a linear hypergraph of order n with m edges and p connected
components, then each edge of $L(H)$ is of weight 1 and the maximum weight forest F has weight $w(F)=n(F)-p(F)=m-p$. Then

$$
\mu(H)=\Sigma\left|E_{j}\right|-n-m+p
$$

In particular, if H is a simple graph, we obtain

$$
\mu(H)=2 m-n-m+p=m-n+p
$$

We thus recover the expression for the cyclomatic number of a simple graph.
If H has only one edge E_{1}, then

$$
\mu(H)=\left|E_{1}\right|-\left|E_{1}\right|=0 .
$$

If H has just two edges E_{1} and E_{2}, then

$$
\mu(H)=\left|E_{1}\right|+\left|E_{2}\right|-\left|E_{1} \cup E_{2}\right|-\left|E_{1} \cap E_{2}\right|=0
$$

If H has more than two edges we have $\mu(H) \geq 0$, as we see immediately (by induction on the number of edges) with the following proposition:

Proposition 1. Let H be a hypergraph with more than two edges. Then there exists an edge E_{1} of H such that $\mu(H) \geq \mu\left(H-E_{1}\right)$; further there exists an edge E_{2} such that

$$
\mu(H)-\mu\left(H-E_{1}\right) \geq\left|E_{1}\right|-\left|E_{1} \cap E_{2}\right|-\left|E_{1}-\bigcup_{j \neq 1} E_{j}\right| \geq 0
$$

Proof. Let e_{1} be a vertex of degree 1 of the maximum weight forest $F \subset L(H)$. Let e_{2} be the vertex adjacent to e_{1} in F. The partial hypergraph $H^{\prime}=H-E_{1}$ obtained by omitting the edge E_{1} corresponding to e_{1} satisfies

$$
w_{H^{\prime}} \geq w\left(F-\left[e_{1}, e_{2}\right]\right)=w_{H}-\left|E_{1} \cap E_{2}\right|
$$

Hence:

$$
\begin{aligned}
\mu(H)-\mu\left(H^{\prime}\right)= & \Sigma\left|E_{j}\right|-\left|\cup E_{j}\right|-w_{H}-\left(\left|\Sigma E_{j}\right|-\left|E_{1}\right|\right) \\
& \quad+\left(\left|\cup E_{j}\right|-\left|E_{1}-\cup E_{j \neq 1}\right|\right)+w_{H^{\prime}} \\
\geq & \left|E_{1}\right|-\left|E_{1}-\cup E_{j \neq 1}\right|+w_{H^{\prime}}-w_{H} \\
\geq & \left|E_{1}\right|-\left|E_{1}-\cup E_{j \neq 1}\right|-\left|E_{1} \cap E_{2}\right| \geq 0
\end{aligned}
$$

> Q.E.D.

Theorem 14 (Acharya, Las Vergnas [1882]). A hypergraph H satisfies $\mu(H)=0$ if
and only if H is co-arboreal (i.e. from the corollary to Theorem 12, if H is the hypergraph of cliques of a triangulated graph.)

Proof.

1. Let H be a co-arboreal hypergraph on X. We shall show that $\mu(H)=0$ by induction on $\sum_{j=1}^{m}\left|E_{j}\right|$.

- If $\Sigma\left|E_{j}\right|=1$ the hypergraph has a single edge, which is indeed a loop, so

$$
\mu(H)=\Sigma\left|E_{j}\right|-|X|-w_{H}=1-1-0=0,
$$

- If $\Sigma\left|E_{j}\right| \geq 2$, consider two cases.

Case 1: The hypergraph H has a vertex x_{1} of degree 1. The subhypergraph \bar{H} of H induced by $X-\left\{x_{1}\right\}$ satisfies

$$
\mu(\bar{H})=\left(\Sigma\left|E_{j}\right|-1\right)-(n-1)-w_{H}=\mu(H) .
$$

The hypergraph \bar{H} is also co-arboreal by the axioms (i^{\prime}) and (ii'). Since $\sum_{\bar{E} \in \bar{H}}|\bar{E}|<\sum_{E \in H}|E|$ we have, by the induction hypothesis, $\mu(\bar{H})=0$, hence $\mu(H)=0$.

Case 2: The hypergraph H has two edges E_{1} and E_{2} with $E_{1} \subset E_{2}$. The partial hypergraph $H^{\prime}=H-E_{1}$ satisfies $w_{H^{\prime}}=w_{H}-\left|E_{1}\right|$ from Kruskal's algorithm, whence

$$
\mu\left(H^{\prime}\right)=\left(\Sigma\left|E_{j}\right|-\left|E_{1}\right|\right)-n-\left(w_{H}-\left|E_{1}\right|\right)=\mu(H)
$$

As H^{\prime} is co-arboreal from axioms (i^{\prime}) and (ii'), and as $\sum_{E^{\prime} \in H^{t}}\left|E^{\prime}\right|<\sum_{E \in H}|E|$ we have

$$
\mu\left(H^{\prime}\right)=0
$$

by the induction hypothesis, hence $\mu(H)=0$.
We are necessarily in case 1 or case 2 , since H is the hypergraph of cliques of a triangulated graph (Theorem 12) and we know that a triangulated graph has a vertex which appears in only one maximal clique (cf. Graphs, Chap. $16 \S 3$). The proof is thus complete.
2. Let H be a hypergraph with $\mu(H)=0$. We shall show by induction on the number of edges that H is co-arboreal.

We may suppose that H has at least two edges (otherwise the result is clear); from Proposition 1, there exist two edges E_{1} and E_{2} such that

$$
\begin{aligned}
0 & =\mu(H) \geq \mu\left(H-E_{1}\right)+\left|E_{1}\right|-\left|E_{1} \cap E_{2}\right|-\left|E_{1}-\bigcup_{j \neq 1}^{\cup} E_{j}\right| \\
& \geq \mu\left(H-E_{1}\right)+\left|E_{1}\right|-\left|E_{1} \cap E_{2}\right|-\left|E_{1}-E_{2}\right| \\
& \geq \mu\left(H-E_{1}\right) \geq 0 .
\end{aligned}
$$

We thus have equality throughout, and in particular,

$$
\begin{align*}
& \mu(H)=\mu\left(H-E_{1}\right)=0 \tag{1}\\
& \left|E_{1}-\cup \sum_{j \neq 1} E_{j}\right|=\left|E_{1}-E_{2}\right|
\end{align*}
$$

By (1) and the induction hypothesis, $H-E_{1}$ is the family of maximal cliques of a triangulated graph G^{\prime} (plus, perhaps, other non-maximal cliques); the graph G obtained from G^{\prime} by joining pairs of vertices contained in E_{1} is also triangulated, because of (2). Thus the hypergraph H is co-arboreal.
Q.E.D.

Corollary 1. A hypergraph H is arboreal if and only if $\mu\left(H^{*}\right)=0$.

The recognition of arboreal hypergraphs is thus simple, as it reduces to the problem of maximum weight trees.

Corollary 2 (Lovász' Inequality). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a coarboreal hypergraph. Set

$$
s=\max _{i \neq j}\left|E_{i} \cap E_{j}\right|
$$

Then we have:

$$
\begin{equation*}
\sum_{j=1}^{m}\left(\left|E_{j}\right|-s\right) \leq n-s \tag{1}
\end{equation*}
$$

Indeed, as H is connected, the maximum weight forest $F \subset L(H)$ is a tree, and satisfies

$$
w(F) \leq s(n(F)-1)=s m-s
$$

whence

$$
0=\mu(H)=\Sigma\left|E_{j}\right|-n-w(F) \geq \Sigma\left|E_{j}\right|-n-s m+s .
$$

The inequality (1) is thus satisfied.

Remark. Inequality (1) was demonstrated by Lovász [1968] in the case where H has no cycles of length ≥ 3 and where $s=2$; it was studied by Hansen and Las Vergnas [1974] in the case where H has no cycles of length ≥ 3 and where $s \geq 2$. As has been noted by Acharya [1983] inequality (1) is satisfied in lots of other cases; for example, for the hypergraph H of Figure 15 we have $s=2$ and

$$
\Sigma\left(\left|E_{j}\right|-2\right)=2 \leq n-2=4 .
$$

Thus inequality (1) is also satisfied. Zhang and Li [1983] have shown that (1) holds also if H has no odd cycles and if every cycle has two vertices contained in at least two common edges.

5. Normal Hypergraphs

We say that a hypergraph H is normal if every partial hypergraph H^{\prime} has the coloured edge property, that is to say

$$
q\left(H^{\prime}\right)=\Delta\left(H^{\prime}\right) \quad\left(H^{\prime} \subset H\right)
$$

Example 1. A balanced hypergraph is normal. Indeed, we have seen that every partial hypergraph of a balanced hypergraph is also balanced, and that every balanced hypergraph has the coloured edge property (Corollary 1 to Theorem 8).

Note that the converse is not true: for example, the hypergraph H of Figure 16 is normal, but it is not balanced. In fact, it was in order to generalise results on balanced hypergraphs that Lovász [1972] introduced the concept of a normal hypergraph.
Example 2 (Shearer [1982]). The hypergraph of a simply connected polyomino is normal.

Theorem 15 (Fournier, Las Vergnas [1972]). Every normal hypergraph is 2-colourable.

Figure 16. A normal hypergraph (not balanced).
Indeed, a normal hypergraph H cannot contain an odd cycle $\left(x_{1}, E_{1}, x_{2}, E_{2}, \ldots, E_{2 k+1}, x_{1}\right)$ such that $H^{\prime}=\left(E_{1}, E_{2}, \ldots, E_{2 k+1}\right)$ is of maximum degree $\Delta\left(H^{\prime}\right)=2$, as this would imply $q\left(H^{\prime}\right) \geq 3$. From Theorem 1 we deduce that $\chi(H) \leq 2$.

We shall now establish the fundamental result of this chapter, Lovász's Theorem.
As a preliminary we shall prove the following lemma:

Lemma. Let $H=\left(E_{1}, \ldots, E_{m}\right)$ be a normal hypergraph on X. If E_{m+1} is a subset of X equal to E_{1}, the hypergraph $H^{\prime}=H+E_{m+1}$ is also normal.

Proof. It suffices to show that $q\left(H^{\prime}\right)=\Delta\left(H^{\prime}\right)$.
Case 1: The set E_{1} contains a vertex x with $d_{H}(x)=\Delta(H)$. In this case, $\Delta\left(H^{\prime}\right)=\Delta(H)+1$, so

$$
\Delta\left(H^{\prime}\right) \leq q\left(H^{\prime}\right) \leq q(H)+1=\Delta(H)+1=\Delta\left(H^{\prime}\right)
$$

We thus have equality throughout, and $q\left(H^{\prime}\right)=\Delta\left(H^{\prime}\right)$.

Case 2: The set E_{1} contains no vertex x with $d_{H}(x)=\Delta(H)$.
Set $\Delta(H)=\Delta$, and consider an optimal colouring of the edges of H with Δ colours; let α be the colour given to the edge E_{1}. Let H_{α} be the family of edges of H other than E_{1} which receive the colour α. A vertex x with $d_{H}(x)=\Delta$ must necessarily appear in an edge of colour α other than E_{1}, so $\Delta\left(H-H_{\alpha}\right)=\Delta-1$. Since H is normal we have

$$
q\left(H-H_{\alpha}\right)=\Delta\left(H-H_{\alpha}\right)=\Delta-1 .
$$

Thus there exists a colouring of the edges of $H-H_{\alpha}$ with $\Delta-1$ colours, and if we add a new colour to colour the edges of $H_{\alpha}+E_{m+1}$ we obtain a Δ-colouring of H^{\prime}. Hence

$$
q\left(H^{\prime}\right) \leq \Delta=\Delta\left(H^{\prime}\right) \leq q\left(H^{\prime}\right)
$$

Thus $q\left(H^{\prime}\right)=\Delta\left(H^{\prime}\right)$.

Theorem 16 (Lovász [1972]). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph of order n and let A be its incidence matrix with n rows, m columns. The following conditions are equivalent:
H is normal, i.e. every partial hypergraph $H^{\prime} \subset H$ has the coloured edge property;
(2) every extreme point of the matching polytope $Q=\left\{\mathbf{y} / \mathrm{y} \in R^{m}, \mathrm{y} \geq 0, A y \leq 1\right\}$ is a 0,1 vector;
every extreme point of the matching polytope is.integer valued;
$\underset{y \in Q(1)}{N-\max }<\mathrm{d}, \mathbf{y}>=\underset{t \in P(d)}{N-\min }<1, \mathrm{t}>$ for every $\mathrm{d} \in \mathbb{N}^{m} ;$ every partial hypergraph $H^{\prime} \subset H$ has the König property.

Proof.

(1) implies (2). Let \mathbf{z} be an extreme point of the polyhedron Q. As \mathbf{z} is the solution of a set of linear equalities with integer coefficients, each coordinate of the vector z is a rational number: thus there exist integers $p_{1}, p_{2}, \ldots, p_{m}$ and $k \geq 0$ such that $k \mathbf{z}=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$.

Let H^{\prime} be the hypergraph obtained from H by repeating each edge $E_{i} p_{i}$ times. From the lemma, H^{\prime} is normal. Further, for $x_{i} \in X$ we have

$$
\left.\left.d_{H^{\prime}}\left(x_{i}\right)=\sum_{j \mid x_{i} \in E_{j}} p_{j}=<\mathbf{a}^{i}, k \mathbf{z}\right\rangle=k<\mathbf{a}^{i}, \mathbf{z}\right\rangle \leq k .
$$

Thus $q\left(H^{\prime}\right)=\Delta\left(H^{\prime}\right) \leq k$ and we may consider a k-colouring of the edges of H^{\prime} with colours $1,2, \ldots, k$. Set

$$
\begin{aligned}
y_{j}(\alpha) & =1 \text { if a copy of } E_{j} \text { receives colour } \alpha \\
& =0 \text { otherwise } .
\end{aligned}
$$

The vector $\mathbf{y}(\alpha)=\left(y_{1}(\alpha), y_{2}(\alpha), \ldots, y_{m}(\alpha)\right)$ has coordinates 0,1 , and is contained in Q. Further

$$
z=\frac{1}{k}\left(p_{1}, p_{2}, \ldots, p_{m}\right)=\frac{1}{k} \sum_{\alpha=1}^{k} \mathbf{y}(\alpha)
$$

As the vector \mathbf{z} is an extreme point of the polyhedron Q and as $\mathbf{y}(\alpha) \in Q$ we deduce: $y(1)=y(2)=\cdots=y(k)$. Then $\mathbf{z}=\mathbf{y}(1)$ and consequently \mathbf{z} is a 0,1 vector, so (2) holds.
(2) implies (3). Clear.
(9) implies (4). For $\mathrm{d} \in \mathbb{N}^{m}$ consider the set

$$
\bar{Q}=\left\{\mathbf{z} / \mathbf{z} \in Q, \mathbf{z} \in \mathbb{N}^{m},\langle\mathrm{~d}, \mathrm{z}\rangle=\max _{y \in Q}\langle\mathrm{~d}, \mathrm{y}\rangle\right\} .
$$

As $\bar{Q} \neq \varnothing$ from (3), and as \bar{Q} is contained in a facet of the polyhedron Q, there exists a row vector $\mathbf{a}^{i_{1}}$ of the matrix such that

$$
<\mathrm{a}^{i_{1}}, \mathbf{z}>=1 \quad(\mathrm{z} \in \bar{Q})
$$

In other words, in H, every maximum d-value matching covers the vertex $x_{i_{1}}$. Set

$$
\begin{aligned}
d_{j}^{1} & =d_{j}-1 \text { if } E_{j} \text { appears in an optimal matching and contains } x_{i_{1}} \\
& =d_{j} \text { otherwise. }
\end{aligned}
$$

It follows that $\mathbf{d}^{1}=\left(d_{1}^{1}, d_{2}^{1}, \ldots, d_{m}^{1}\right) \geq 0$ and that $N-\max \left\langle\mathrm{d}^{\mathbf{1}}, \mathbf{y}\right\rangle=N-\max \langle\mathrm{d}, \mathbf{y}\rangle$. As before, there exists a vector $\mathrm{d}^{2} \geq \mathbf{0}$ satisfying $\left.N-m a x<\mathrm{d}^{2}, \mathbf{y}\right\rangle=N-\max \left\langle\mathrm{d}^{1}, \mathbf{y}\right\rangle-1$.

Continuing in this way, we arrive at d^{k} such that

$$
N-\max <\mathrm{d}^{k}, \mathrm{y}>=0
$$

Thus we have determined a sequence ($x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$) which contains, say, the vertex x_{1} exactly t_{1} times, x_{2} exactly t_{2} times, etc.

Observe that the vector $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a \mathbf{d}-transversal of H; further

$$
\sum_{i=1}^{n} t_{i}=k=\underset{y \in Q}{N-\max }\langle\mathrm{d}, \mathbf{y}>
$$

From the duality theorem in linear programming, \mathbf{t} is a minimum value \mathbf{d}-transversal, whence

$$
\underset{y \in Q}{N-\max }<\mathbf{d}, \mathbf{y}>=\Sigma t_{i}=\underset{t \in P(d)}{N-\max }<\mathbf{1}, \mathrm{t}>.
$$

Thus (4) holds.
(4) implies (5). Let $H^{\prime} \subset H$ be a partial hypergraph of H; set $d_{j}=1$ if $E_{j} \in H^{\prime}$ and $d_{j}=0$ otherwise. The vector $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ satisfies

$$
\begin{gathered}
\underset{y \in Q(1)}{N-\max }\langle\mathbf{d}, \mathbf{y}\rangle=\nu\left(H^{\prime}\right) \\
\underset{t \in P(d)}{N-\min }<\mathbf{1}, \mathbf{t}>=\tau\left(H^{\prime}\right) .
\end{gathered}
$$

Thus (4) implies $\nu\left(H^{\prime}\right)=\tau\left(H^{\prime}\right)$, whence (5).
(5) implies (1). Let $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ be a hypergraph on X satisfying (5). Let $\bar{H}=\left(E_{1}, E_{2}, \ldots, \bar{E}_{m}\right)$ be a hypergraph on the set of matchings of H where \bar{E}_{j} denotes the family of matchings of H which contain the edge E_{j}. Clearly, $\bar{E}_{j} \cap \bar{E}_{k}=\varnothing$ if and only if $E_{j} \cap E_{k} \neq \varnothing$.

As H has the Helly property by virtue of (5), we have

$$
\begin{aligned}
& \nu(\bar{H})=\Delta(H) \\
& q(\bar{H})=\tau(H)
\end{aligned}
$$

Further

$$
\begin{aligned}
& \tau(\bar{H})=q(H) \\
& \Delta(\bar{H})=\nu(H) .
\end{aligned}
$$

As H satisfies the König property, we deduce that $q(\bar{H})=\Delta(\bar{H})$; for the same reason, every partial hypergraph of \bar{H} has the coloured edge property. As we have already shown that (1) implies (5) we see that $\nu(\bar{H})=\tau(\bar{H})$, i.e. $q(H)=\Delta(H)$, and (1) follows.

Corollary 1. A hypergraph H is normal if and only if H satisfies the Helly property and $L(H)$ is a perfect graph.

Indeed, if H is normal, it has the Helly property, since from (5) an intersecting family H^{\prime} satisfies $\tau\left(H^{\prime}\right)=\nu\left(H^{\prime}\right)=1$. Further, as $q(H)=\Delta(H)$, we have $\gamma\left(H^{*}\right)=r\left(H^{*}\right)$, and the 2-section $G=\left[H^{*}\right]_{2}$ satisfies $\gamma(G)=\omega(G)$. This equality being satisfied (for the same reason) for every induced subgraph of G, the graph G is "perfect" (cf. Graphs, §3, Chap. 16).

Conversely, if H has the Helly property and if G is its representative graph, the maximal edges of H^{*} are the maximal cliques of G (Proposition 1, §8, Chap. 1). If G is perfect, then $\gamma(G)=\omega(G)$, whence $\gamma\left(H^{*}\right)=r\left(H^{*}\right)$, whence $q(H)=\Delta(H)$.

This equality being satisfied for the same reason for every $H^{\prime} \subset H$, the hypergraph H is normal.

Q.E.D.

It should be noted that H need not be normal if we do not assume the Helly property (cf. for example the hypergraph H_{2} of Figure 8, Chap. 1).

Corollary 2. Every co-arboreal hypergraph is normal.
Indeed, let H be a co-arboreal hypergraph; it satisfies the Helly property, and $L(H)$ is a triangulated graph from the corollary to Theorem 12. Since every triangulated graph is perfect (cf. Graphs §, Chap. 6), Corollary 1 shows that H is normal.

6. Mengerian Hypergraphs

A hypergraph H is said to be Mengerian if for every $\mathbf{c} \in \mathbb{N}^{n}$ we have

$$
\begin{equation*}
\underset{y \in Q(c)}{N-\max }<1, \mathrm{y}>=\underset{t \in P(1)}{N-\min }<\mathrm{c}, \mathrm{t}>. \tag{1}
\end{equation*}
$$

Observe that every balanced hypergraph is Mengerian (by Theorem 10). The converse is not true: for example a Mengerian hypergraph may have a chromatic number greater than 2, as does the hypergraph of Figure 17.

Figure 17. A non-bicolorable Mengerian hypergraph.

Proposition 1. Let H be a Mengerian hypergraph, and let A be a set of vertices containing at least one edge; then the partial hypergraph $H / A=\left(E_{i} / E_{i} \subset A\right)$ is Mengerian.

Proof. Let $c_{i} \geq 0$ be an integer defined for every vertex x_{i} of H / A. Set $\bar{c}_{i}=c_{i}$ if x_{i} is a vertex of H / A and $\bar{c}_{i}=0$ otherwise; if \bar{P} and \bar{Q} denote the polyhedra associated with the hypergraph H / A, we have:

$$
\begin{align*}
& N-\max _{y \in Q(c)}^{N}<1, y>=\underset{y \in Q(\bar{c})}{N-\max }<1, y> \tag{1}\\
& N-\min
\end{align*} \underset{t \in \mathrm{P}(1)}{N}, \mathrm{t}>=\underset{t \in P(1)}{N-\min }\langle\mathbf{c}, \mathrm{t}>. .
$$

As H is Mengerian, the numbers (1) and (2) are equal, so the hypergraph H / A is Mengerian.
Q.E.D.

Proposition 2. Let H be a Mengerian hypergraph, and let A be a set of vertices meeting all of the edges; then the induced subhypergraph $H_{A}=\left(E_{i} \cap A / i \leq m, E_{i} \cap A \neq \varnothing\right)$ is Mengerian.

Proof. Let $c_{i} \geq 0$ be defined for every vertex $x_{i} \in A$. Set $\bar{c}_{i}=c_{i}$ if $x_{i} \in A$ and $\bar{c}_{i}=+\infty$ otherwise. If \bar{P} and \bar{Q} denote the polyhedra associated with the hypergraph H_{A} we have

$$
\begin{equation*}
\underset{y \in \bar{Q}(c)}{N-\max }<1, y>=\underset{y \in Q(\bar{c})}{M-\max }<1, y> \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
N_{t \in P(1)} \min <\mathbf{c}, \mathbf{t}>=N_{t \in P(1)}^{N-\min }<\bar{c}, t> \tag{2}
\end{equation*}
$$

As H is Mengerian the numbers (1) and (2) are equal. The hypergraph H_{A} is thus Mengerian.

Let H be a hypergraph, and let $\lambda \geq 0$ be an integer. We shall say that we expand the vertex x by λ if we replace x by λ new vertices $x^{1}, x^{2}, \ldots, x^{\lambda}$, and replace each edge E which contains x by λ new edges $E^{1}=(E-\{x\}) \cup\left\{x^{1}\right\}, E^{2}=(E-\{x\}) \cup\left\{x^{2}\right\} \cdots$. Expanding the vertex x by $\lambda=0$ will be taken to mean deleting the vertex x and all

200 Hypergraphs

the edges of H containing x.
Let $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ be a vector each of whose coordinates c_{i} is an integer ≥ 0. The expansion of H by \mathbf{c} is the hypergraph H^{c} obtained from H by successively expanding vertex x_{1} by c_{1}, x_{2} by c_{2}, etc.

Theorem 17. Let H be a hypergraph with m edges and n vertices. Let $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$, and let $k \geq 1$ be an integer. Then

$$
\begin{align*}
& \nu_{k}\left(H^{c}\right)=\max \left\{\langle\mathbf{1}, \mathbf{y}\rangle / \mathbf{y} \in \mathbb{N}^{m}, A \mathbf{y} \leq k \mathbf{c}\right\} \tag{1}\\
& \tau_{k}\left(H^{c}\right)=\min \left\{\langle\mathbf{c}, \mathbf{t}\rangle / \mathbf{t} \in \mathbb{N}^{n}, A^{*} \mathbf{t} \geq k \mathbf{1}\right\} \tag{2}\\
& \left.\left.\tau^{*}\left(H^{c}\right)=\max _{y \in Q(c)}<\mathbf{1}, \mathbf{y}\right\rangle=\min _{t \in P(1)}<\mathbf{c}, \mathbf{t}\right\rangle \tag{3}
\end{align*}
$$

Proof. It suffices to show (1) and (2) for the hypergraph H^{c} obtained by expanding the vertex x_{1} by $\lambda=0$ (suppression) or by $\lambda=2$ (doubling), i.e. for $c=(0,1,1, \ldots, 1)$ or for $c=(2,1,1, \ldots, 1)$.

Proof of (1) with $\mathbf{c}=(0,1,1, \ldots, 1)$. Consider a $k \mathbf{c}$-matching $\overline{\mathbf{y}}=\left(\bar{y}_{1}, \bar{y}_{2}, \ldots, \bar{y}_{m}\right)$ of H of maximum value $\Sigma \bar{y}_{i}$. Since $\bar{y}_{j}=0$ for each edge E_{j} containing x_{1}, the vector $\overline{\mathbf{y}}$ determines a k-matching of H^{c} of value $\Sigma \bar{y}_{j}$, whence

$$
\nu_{k}\left(H^{c}\right) \geq \sum_{j \geq 1} y_{j}=\max \left\{<\mathbf{1}, \mathbf{y}>/ \mathbf{y} \in \mathbb{N}^{m}, A \mathbf{y} \leq k \mathbf{c}\right\}
$$

Further, in H^{c} a k-matching $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ of maximum value determines in H a $k \mathrm{c}$-matching of value Σy_{j} whence

$$
\max \left\{<\mathbf{1}, \mathbf{y}>/ \mathbf{y} \in \mathbb{N}^{m}, A \mathbf{y} \leq k \mathbf{c}\right\} \geq \Sigma y_{j}=\nu_{k}\left(H^{c}\right)
$$

Combining these inequalities we obtain (1).
Proof of (1) with $c=(2,1,1, \ldots, 1)$. Let $\left(\bar{y}_{1}, \bar{y}_{2}, \ldots, \bar{y}_{m}\right)$ be a maximum value $k c-$ matching. In H^{c} there are two vertices x_{1}^{\prime} and $x_{1}^{\prime \prime}$ corresponding to a single vertex x_{1} of H, and the set of edges $\left\{E_{j} / j \in J\right\}$ of H containing x_{1} corresponds in H^{c} to two sets $\left\{E_{j}^{\prime} / j \in J\right\}$ and $\left\{E_{j}^{\prime \prime} / j \in J\right\}$; we have

$$
\sum_{j \in J} \bar{y}_{j} \leq 2 k .
$$

Consider a vector

$$
\mathbf{y}=\left(y_{j} / j \in\{1,2, \ldots, m\}-J\right) \cdot\left(y_{j}^{\prime} / j \in J\right) \cdot\left(y_{j}^{\prime \prime} / j \in J\right)
$$

where

$$
\begin{aligned}
& y_{j}^{\prime}+y_{j}^{\prime \prime}=\bar{y}_{j} \quad(j \in J) \\
& \sum_{j \in J} y_{j}^{\prime} \leq k \\
& \sum_{j \in J} y_{j}^{\prime \prime} \leq k .
\end{aligned}
$$

This vector being a k-matching of H^{c} we have

$$
\nu_{k}\left(H^{c}\right) \geq \Sigma y_{y_{i}}=\sum_{j=1}^{m} \bar{y}_{j}=\max \left\{<\mathbf{1}, \mathbf{y}>/ \mathbf{y} \in \mathbb{N}^{m}, A \mathbf{y} \leq k \mathbf{c}\right\}
$$

Thus (1) follows.

Proof of (2) with $\mathbf{c}=(0,1,1, \ldots, 1)$. Consider a k-transversal $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ of H of minimum c-value $\sum_{i \neq 1} t_{i}$. As the vector $\left(t_{2}, t_{3}, \ldots, t_{n}\right)$ is a k-transversal of H^{c} we have

$$
\tau_{k}\left(H^{c}\right) \leq \sum_{i \neq 1} t_{i}=\min \left\{<\mathbf{c}, \mathrm{t}>/ \mathbf{t} \in \mathbb{N}^{n}, A^{*} \mathbf{t} \geq k \mathbf{1}\right\}
$$

Conversely, if $\left(t_{2}, t_{3}, \ldots, t_{n}\right)$ is a minimum k-transversal of H^{c}, the vector $\left(k, t_{2}, t_{3}, \ldots, t_{n}\right)$ is a k-transversal of H, whence

$$
\min \left\{<\mathrm{c}, \mathbf{t}>/ \mathrm{t} \in \mathbb{N}^{n}, A^{*} \mathbf{t} \geq k \mathbf{1}\right\} \leq \sum_{i \neq 1} t_{i}=\tau_{k}\left(H^{c}\right) .
$$

By combining these inequalities we obtain (2).

Proof of (2) with $c=(2,1,1, \ldots, 1)$. Consider an optimal k-transversal $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ of H with minimum c-value $2 t_{1}+t_{2}+\cdots+t_{n}$. Since the vector $\left(t_{1}, t_{1}, t_{2}, t_{3}, \cdots, t_{n}\right)$ is a k-transversal of H^{c} we have

$$
\tau_{k}\left(H^{c}\right) \leq 2 t_{1}+t_{2}+\cdots+t_{n}=\min \left\{<\mathbf{c}, \mathbf{t}>/ \mathbf{t} \in \mathbb{N}^{n}, A^{*} \mathbf{t} \geq k \mathbf{1}\right\}
$$

Conversely, if $\left(t_{1}, t_{1}^{\prime}, t_{2}, \ldots, t_{n}\right)$ is a minimum k-transversal of H^{c}, we have $t_{1}^{\prime}=t_{1}$. Since the vector $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a k-transversal of H, we have

$$
\min \left\{<\mathrm{c}, \mathrm{t}>/ \mathrm{t} \in \mathbb{N}^{n}, A^{*} \mathrm{t} \geq k \mathbf{1}\right\} \leq 2 t_{1}+t_{2}+\cdots+t_{n}=\tau_{k}\left(H^{c}\right) .
$$

Combining these inequalities we obtain (2).

Proof of (3). Let k tend to infinity in $\frac{1}{k} \tau_{k}\left(H^{c}\right)$ or $\frac{1}{k} \nu_{k}\left(H^{c}\right)$. We obtain $\tau^{*}\left(H^{c}\right)$. Hence (1) and (2) imply (3).

Corollary. Let \mathcal{H} be a family of hypergraphs with the König property, which further satisfy:

$$
H \in \mathcal{H}, \mathbf{c} \in \mathbb{N}^{n(H)} \Rightarrow H^{c} \in \mathcal{H} .
$$

Then every hypergraph of \mathcal{H} is Mengerian.

Proof. Clear.

Example 1 (Menger). Let G be a multigraph and let a, b be two vertices of G. Denote by H the hypergraph on the set of edges of G, having as edges the simple paths joining a and b. A transversal of H is then a simple cocycle $\omega(S)$ of G with $a \in S$ and $b \in X-S$.

Menger's theorem implies that H has the König property. Further, expanding a vertex of H by $\lambda \geq 0$ becomes replacing an edge of G by λ parallel edges: thus H is a Mengerian hypergraph.

Example 2 (Menger). Let G be a simple graph and let a, b be two non-adjacent vertices. Denote by H the hypergraph on the set of vertices of G different from a, b, and having as edges the sets of intermediate vertices of simple paths joining a and b. A minimal tranversal of H is then a minimal cut-set disconnecting a and b, and Menger's second theorem shows that H has the König property. Furthermore, expanding a vertex of x by $\lambda \geq 0$ corresponds to replacing the vertex x in G by an independent set of λ elements, each joined to all the neighbours of x. Thus H is a Mengerian hypergraph.

Example 3 (Edmonds). Let G be a multigraph on X, and let S be a subset of X having at least two elements. Denote by H the hypergraph on the set of edges of G having as edges the simple paths of the form $\mu=\left[s_{1}, a_{1}, a_{2}, \ldots, a_{k}, s_{2}\right]$ with $s_{1}, s_{2} \in S$ and $a_{1}, a_{2}, \ldots, a_{k} \in X-S$. A theorem of Edmonds [1970] shows that H has the König property. Since expanding a vertex of H corresponds to multiplying an edge of G, H is a Mengerian hypergraph.

Example 4 (Edmonds [1973]). Let $G=(X, U)$ be a directed graph, and let a be a vertex of G which is an ancestor of all the others (a "root" of G). Denote by H the hypergraph on the set of arcs of G having as edges those arborescences rooted at a which cover all the vertices of G.

The transversals of H are the sets of arcs of the form $\omega^{+}(S)$ with $a \in S, S \neq X$ (i.e. which go from S to $X-S$). A theorem of Edmonds [1973] implies that H has the König property. Expanding a vertex of H by $\lambda=0$ corresponds to eliminating an arc of G, and expanding by $\lambda>0$ corresponds to replacing it by λ parallel arcs. Thus H is a Mengerian hypergraph.

For the extension of this example by replacing rooted arborescences by forests of arborescences, cf. Frank [1979].

Example 5. Let $G=(X, U)$ be a directed graph; denote by H the hypergraph on the set of arcs of G having as edges the cocircuits of G. A theorem of Lucchesi and Younger [1978] shows that H has the König property. Expanding a vertex of H by $\lambda=0$ corresponds to contracting an arc of G, and expanding by $\lambda>0$ corresponds to replacing an arc by a path of length λ. Thus H is a Mengerian hypergraph.

For further examples, cf. Woodall [1978], Seymour [1977], Maurras [1976]. A method of proving that these hypergraphs have the König property is, nonetheless, necessary; general ideas for such a method have been given by Lovász [1976] and extended by Schrijver and Seymour [1979].

Lemma 1 (Hoffman [1974]). Let $A=\left(\left(a_{j}^{i}\right)\right)$ be a matrix with n rows and m columns, with $a_{j}^{i} \in \mathbb{N}$. Let k be an integer ≥ 1. If the convex polyhedron $P=\left\{\mathbf{x} / \mathbf{x} \in R^{n}, A^{*} \mathbf{x} \geq \mathbf{1}\right\}$, is such that the number $k \min _{x \in P}\langle\mathbf{c}, \mathbf{x}>$ is an integer for every $\mathbf{c} \in \mathbb{N}^{n}$, then the extreme points of P have coordinates multiples of $\frac{1}{k}$.

Proof. Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ be an extreme point of P; we shall show, for example, that y_{1} is a multiple of $\frac{1}{k}$. Set $\mathbf{e}_{1}=(1,0,0, \ldots, 0)$. We show that there exists a vector $\mathrm{c} \in \boldsymbol{N}^{\boldsymbol{n}}$ such that

204 Hypergraphs

$$
\begin{equation*}
\langle\mathrm{c}, \mathbf{y}\rangle=\min _{x \in P}\langle\mathrm{c}, \mathbf{x}\rangle \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\mathrm{c}+\mathbf{e}_{1}, \mathbf{y}\right\rangle=\min _{x \in P}\left\langle\mathrm{c}+\mathbf{e}_{1}, \mathbf{x}\right\rangle \tag{2}
\end{equation*}
$$

Then, the hypothesis will imply that $\left.y_{1}=\left\langle\mathbf{c}+\mathbf{e}_{1}, \mathbf{y}\right\rangle-<\mathrm{c}, \mathrm{y}\right\rangle$ is a multiple of $\frac{1}{k}$, which achieves the proof.

Set $I=\left\{i / y_{i}=0\right\}$ and $J=\left\{j /<\mathbf{a}_{j}, \mathbf{y}>=1\right\}$ and consider the vector $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, where

$$
d_{i}= \begin{cases}\sum_{j \in J} a_{j}^{i}+1 & \text { if } i \in I \\ \sum_{j \in J} a_{j}^{i} & \text { if } i \notin I\end{cases}
$$

For every $\mathbf{x} \in P$ we have

$$
<\mathrm{d}, \mathbf{x}>=\sum_{i} d_{i} x_{i}=\sum_{i \in I} x_{i}+\sum_{j \in J}<\mathbf{a}_{j}, \mathbf{x}>\geq|J|
$$

As equality holds for $\mathbf{x}=\mathbf{y}$,

$$
\left.\langle\mathbf{d}, \mathbf{y}\rangle=\min _{x \in P}<\mathbf{d}, \mathbf{x}\right\rangle
$$

Further, as the hyperplanes $\left\{\mathbf{x} / x_{i}=0\right\}$ for $i \in I$ and the hyperplanes $\left\{\mathbf{x} /<\mathbf{a}_{j}, \mathbf{x}>=1\right\}$ with $j \in J$ completely define the extreme point y, we have also

$$
\begin{equation*}
<d, x \gg<d, y>\quad(x \neq y, x \in P) \tag{3}
\end{equation*}
$$

Suppose that for each integer $\lambda \geq 1$, the minimum of $\left\langle\lambda d+e_{1}, \mathbf{x}\right\rangle$ for $x \in P$ is attained at an extreme point $\mathbf{z}(\lambda) \neq \mathbf{y}$; as P has only a finite number of extreme points, there is an extreme point $\overline{\mathbf{x}}$ such that $\overline{\mathbf{x}}=\mathbf{z}(\lambda)$ for infinitely many values of λ, that is to say for infinitely many λ we have

$$
\langle\mathrm{d}, \overline{\mathbf{x}}\rangle+\frac{1}{\lambda} \bar{x}_{1} \leq\langle\mathbf{d}, \mathbf{y}\rangle+\frac{1}{\lambda} y_{1}
$$

Thus $\overline{\mathbf{x}} \neq \mathbf{y}, \overline{\mathbf{x}} \in P$, and $\langle\mathbf{d}, \overline{\mathbf{x}}\rangle \leq\langle\mathrm{d}, \mathbf{y}\rangle$, contradicting (3). Hence for some $\lambda \geq 1$ the minimum of $\left\langle\lambda \mathbf{d}+\mathbf{e}_{1}, \mathbf{x}\right\rangle$ is attained at \mathbf{y}. Since the minimum of $\langle\lambda \mathbf{d}, \mathbf{x}\rangle$ is also attained at \mathbf{y}, the vector $c=\lambda d$ must satisfy conditions (1) and (2), which completes the proof.

Lemma 2. Let H be a hypergraph of order n, and let k be an integer ≥ 1; the following conditions are equivalent:

$$
\begin{equation*}
k \tau^{*}\left(H^{c}\right) \text { is an integer for every } \mathbf{c} \in \mathbb{N}^{n} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\tau^{*}\left(H^{c}\right)=\frac{1}{k} \tau_{k}\left(H^{c}\right) \text { for every } \mathbf{c} \in \mathbb{N}^{n} . \tag{2}
\end{equation*}
$$

Proof. It suffices to show that (1) implies (2).
Let A be the incidence matrix of H. The polyhedron $P=\left\{\mathbf{x} / \mathbf{x} \in R^{n}, \mathbf{x} \geq \mathbf{0}, A^{*} \mathbf{x} \geq \mathbf{1}\right\}$ satisfies the conditions of lemma 1 , so each of its extreme points has all coordinates a multiple of $\frac{1}{k}$. In particular, the minimum of $\langle\mathbf{c}, \mathbf{x}\rangle$ is attained at a point of the form $\mathbf{x}_{0}=\frac{\mathbf{t}_{0}}{k}$ where $\mathbf{t}_{0}=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{N}^{n}$. As $A^{*} \mathbf{x}_{0} \geq \mathbf{1}$ the vector t_{0} is a k-transversal of H and further it has minimum c -value. Thus

$$
\begin{aligned}
\frac{1}{k}\left\{\min <\mathrm{c}, \mathrm{t}>/ \mathrm{t} \in \mathbb{N}^{n}, A^{*} \mathrm{t} \geq k 1\right\} & =\frac{1}{k}<\mathrm{c}, \mathrm{t}_{0>} \\
& =\min _{x \in P}\langle\mathrm{c}, \mathbf{x}>.
\end{aligned}
$$

From Theorem 17, this implies (2).

Lemma 3. Let H be a hypergraph of order n, and let k be an integer ≥ 1. The following conditions are equivalent:

$$
\begin{equation*}
\frac{1}{k} \nu_{k}\left(H^{c}\right)=\tau^{*}\left(H^{c}\right) \text { for every } \mathbf{c} \in \mathbb{N}^{n} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\nu_{k}\left(H^{c}\right)=\tau_{k}\left(H^{c}\right) \text { for every } \mathrm{c} \in \mathbb{N}^{n} \tag{4}
\end{equation*}
$$

It suffices to show that (3) implies (4).
Indeed, (3) implies condition (1) of Lemma 2, and thus (2); further, (2) and (3) imply (4).

Theorem 18 (Lovász [1976]). A hypergraph H of order n is Mengerian if and only if for an integer $q \geq 0$ we have

$$
\begin{equation*}
\frac{1}{q} \nu_{q}\left(H^{c}\right)=\nu\left(H^{c}\right) \quad\left(c \in \mathbb{N}^{n}\right) \tag{5}
\end{equation*}
$$

Proof. Suppose that for each $c \in \mathbb{N}^{n}$ we have (5), that is

$$
\min \left\{<1, y>/ \mathbf{y} \in \mathbb{N}^{m}, A y=q c\right\}+q \min \left\{<1, y>/ y \in \mathbb{N}^{m}, A y \leq c\right\}
$$

Let $\mathbf{c}=q c^{\prime}$; we may write

$$
\min \left\{<\mathbf{1}, \mathbf{y}>/ \mathbf{y} \in \mathbb{N}^{m}, A \mathbf{y} \leq q^{2} \mathbf{c}^{\prime}\right\}=q \min \left\{<\mathbf{1}, \mathbf{y}>/ \mathbf{y} \in \mathbb{N}^{m}, A \mathbf{y} \leq q \mathbf{c}^{\prime}\right\}
$$

Hence, for every $\mathbf{c} \in \boldsymbol{N}^{n}$

$$
\frac{1}{q^{2}} \nu_{q}\left(H^{c}\right)=\frac{1}{q} \nu_{q}\left(H^{c}\right)=\nu\left(H^{c}\right)
$$

From Theorem 1, Chapter 3,

$$
\tau^{*}\left(H^{c}\right)=\lim _{s \rightarrow \infty} \frac{1}{q^{s}} \nu_{q^{*}}\left(H^{c}\right)=\nu\left(H^{c}\right)
$$

From Lemma 3 with $k=1$, we obtain $\nu\left(H^{c}\right)=\tau\left(H^{c}\right)$. Thus H is Mengerian.
Q.E.D.

Let H be a hypergraph of order n. We say that the vertex x_{1} is multiplied by an integer $\lambda \geq 0$ if we replace x_{1} by a set $X_{1}=\left\{x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{\lambda}\right\}$ of λ new vertices and if we replace each edge E containing x_{1} by an edge $\bar{E}=\left(E-\left\{x_{1}\right\}\right) \cup X_{1}$; multiplication of x_{1} by $\lambda=0$ becomes replacement of H by the subhypergraph of H induced by $\boldsymbol{X}-\left\{x_{1}\right\}$.

Let $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{N}^{n}$. The multiplication of H by \mathbf{c} is the hypergraph $\bar{H}^{(c)}$ obtained by multiplying the vertex x_{1} by c_{1}, x_{2} by c_{2}, etc.

Remark. If H is balanced then $\bar{H}^{(c)}$ is also balanced. Indeed, for $\mathrm{c}=(0,1,1, \ldots, 1)$ the hypergraph $\bar{H}^{(c)}$, which is a subhypergraph of H, is necessarily balanced (Proposition 1 , §3). For $c=(2,1,1, \ldots, 1)$ the hypergraph $\bar{H}^{(c)}$ is obtained by replacing the vertex x_{1} by $\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}\right\}$; if $\bar{H}^{(c)}$ cannot contains an odd cycle ($a_{1} \bar{E}_{1}, a_{2} \bar{E}_{1}, \ldots, a_{1}$) such that no \bar{E}_{i} contains three a_{i}, then x_{1}^{\prime} and $x_{1}^{\prime \prime}$ are both vertices of the cycle, and the two edges next to x_{1}^{\prime} in the cycie also contain $x_{1}^{\prime \prime}$, so at least one contains three vertices of the sequence: a contradiction.

In contrast, if H is balanced, its expansion H^{c} need not necessarily be balanced. For example, consider the balanced hypergraph shown in Figure 12, and split the vertex f_{1} into two vertices f_{1}^{\prime} and $f_{1}^{\prime \prime}$: then no edge of the resulting hypergraph contains three vertices for the following odd cycle:

$$
f_{1}^{\prime \prime},\left\{f_{1}^{\prime \prime}, f_{4}\right\}, f_{4},\left\{f_{1}^{\prime}, f_{2}, f_{3}, f_{4}\right\}, f_{2},\left\{f_{1}^{\prime \prime}, f_{2}\right\}, f_{1}^{\prime \prime}
$$

We shall study some conditions for the transversal hypergraph to be Mengerian. Let $\sigma(H)$ be the maximum number of colours for a colouring of the vertices of H such that each edge contains all the colours. Clearly

$$
\sigma(H) \leq \min _{j}\left|E_{j}\right|=s(H)
$$

We shall say that H has the Gupta property if $\sigma\left(\bar{H}^{c)}\right)=s\left(\bar{H}^{(c)}\right)$ for all $\mathrm{c} \in \mathbb{N}^{n}$. For example, the dual of a bipartite graph has the Gupta property, by Gupta's Theorem [1978].

Lemma. Let H be a simple hypergraph of order n and let $K=\operatorname{Tr} H$ be its transversal hypergraph. Then K is Mengerian if and only if H has the Gupta property.

Proof. We see immediately that if $\mathbf{c} \in \mathbb{N}^{n}$ we have

$$
\begin{equation*}
\operatorname{Tr} \vec{H}^{(c)}=(\operatorname{Tr} H)^{c} . \tag{1}
\end{equation*}
$$

Further, for every hypergraph H,

$$
\begin{align*}
& \sigma(H)=\nu(\operatorname{Tr} H) \tag{2}\\
& s(H)=\tau(\operatorname{Tr} H)
\end{align*}
$$

From (1), (2) and (3) we obtain

$$
\begin{aligned}
& \sigma\left(\bar{H}^{c}\right)=\nu\left(\operatorname{Tr} \bar{H}^{(c)}\right)=\nu\left[(\operatorname{Tr} H)^{c}\right] \\
& s\left(\bar{H}^{c}\right)=\tau\left(\operatorname{Tr} \bar{H}^{(c)}\right)=\tau\left[(\operatorname{Tr} H)^{c}\right]
\end{aligned}
$$

H has the Gupta property if and only if these two quantities are equal, i.e. if H is Mengerian.

Theorem 19 (Berge [1984]). Let H be a simple balanced hypergraph; then $\operatorname{Tr} H$ is a

Mengerian hypergraph.

Indeed, if H is balanced, the hypergraph $\bar{H}^{c)}$ is also balanced; thus, from Corollary 2 to Theorem 8, we have $\sigma\left(\bar{H}^{(c)}\right)=s\left(\bar{H}^{(c)}\right)$. From the lemma, this implies that $\operatorname{Tr} H$ is Mengerian.

Remark. The converse of Theorem 19 is not true; for example, if H is the dual hypergraph of K_{4} (Figure 19), then $\operatorname{Tr} H$ is the Mengerian hypergraph of Figure 17, but it is clear that H is not balanced. Nonetheless, if $\operatorname{Tr} H^{\prime}$ is Mengerian for all $H^{\prime} \subset H$, then every $H^{\prime} \subset H$ has the Gupta property and H is necessarily balanced.

7. Paranormal Hypergraphs

We may generalise Mengerian hypergraphs. Observe first of all the equivalence of the following properties:
every extreme point of the polyhedron $P=\left\{\mathbf{t} / \mathbf{t} \in \mathbb{R}^{n}, \mathbf{t} \geq \mathbf{0}, A^{*} \mathbf{t} \geq \mathbf{1}\right\}$ is a vector with integer coordinates;

$$
\begin{align*}
& \min _{t \in P(1)}<\mathbf{c}, \mathbf{t}>\text { is an integer for every } \mathbf{c} \in \mathbb{N}^{n} ; \tag{2}\\
& N-\min _{t \in P(1)}<\mathbf{c}, \mathbf{t}>=\min _{t \in P(1)}<\mathbf{c}, \mathbf{t}>\text { for every } \mathbf{c} \in \mathbb{N}^{n} .
\end{align*}
$$

The equivalence of (1) and (2) follows from Lemma 1 (with $k=1$); the equivalence of (2) and (3) follows from Lemma 2 (with $k=1$). We shall say that a hypergraph H is paranormal if it satisfies (1) or, equivalently, (2) or (3). (These hypergraphs, which were first studied by Fulkerson, are also called "fulkersonian" by Schrijver, or "having the weak max-flow min-cut property" by Seymour).

If a hypergraph H is Mengerian then it satisfies (3) and is thus paranormal; the converse is not true, as may be seen in Figure 19: the hypergraph $\left(K_{4}\right)^{*}$, dual of K_{4}, is paranormal but not Mengerian (since $\tau \neq \nu$).

Seymour [1977] conjectured that if a simple paranormal hypergraph cannot be reduced to $\left(K_{4}\right)^{*}$ by means of the operations H / A and H_{A} described in Propositions 1 and 2, $\S 6$, then H is Mengerian.

We shall now give some examples of paranormal hypergraphs.

Example 1 (Seymour [1977]). Let G be a planar graph; let $H(G)$ be the hypergraph whose vertices are the edges of G and whose edges are the elementary odd cycles of G. Then Seymour has shown that $H(G)$ is paranormal. In contrast, for $G=K_{5}$, which is

Figure 18

A paranormal non-Mengerian hypergraph. Figure 18
non-planar, $H\left(K_{5}\right)$ is not paranormal.

Example $2(\mathrm{Hu}[1863])$. Let G be a graph, $s, s^{\prime}, t, t^{\prime}$ four vertices of G, and let $H(G)$ be the hypergraph whose vertices are the edges of G and whose edges are the simple paths joining s and s^{\prime}, or joining t and t^{\prime}. Hu has shown that $H(G)$ is paranormal (a result known as the "two-commodity flow theorem"). The hypergraph $H(G)$ need not be Mengerian as may be seen from the graph G of Figure 20 for which $H(G)$ is none other than the non-Mengerian hypergraph of Figure 18.

Figure 20

Theorem 20 (Lehman, Fulkerson). Let H be a simple hypergraph and let $K=\operatorname{Tr} H$ be its transversal hypergraph. Then H is paranormal if and only if we have

$$
\begin{equation*}
\tau\left(H^{w}\right) \tau\left(K^{c}\right) \leq<\mathbf{c}, \mathbf{w}>\quad\left(\mathbf{c}, \mathbf{w} \in \mathbb{N}^{n}\right) \tag{1}
\end{equation*}
$$

Recall that (1) is sometimes known as the width-length inequality for the following reason: let G be a network flow with a source a and a sink z; if c_{i} denotes the "length" of edge i and w_{i} its "width", the hypergraph H, whose vertices are the edges of G and whose edges are the paths between a and z, gives us the following interpretation:
$\tau\left(K^{c}\right)=\min _{E \in H_{i \in E}} \sum_{i} c_{i}$ is the length of a shortest path from a to z,
$\tau\left(H^{w}\right)=\min _{T \in T_{T} H_{i} \in T} \sum_{i} w_{i}$ is the width of a smallest cut between a and z.
The proof of (1) given by Lehman [1975] is valid for all paranormal hypergraphs and Fulkerson extended it to matrices with non-integer entries using the theory of pairs of "blocking" matrices ${ }^{(1)}$.

Corollary. Let H be a simple paranormal hypergraph; then $\operatorname{Tr} H$ is also a paranormal hypergraph.

Indeed, for $K=\operatorname{Tr} H$ inequality (1) may be rewritten as

$$
\tau\left(K^{w}\right) \tau\left([\operatorname{Tr} K]^{c}\right) \leq<\mathbf{w}, \mathbf{c}>\quad\left(\mathbf{w}, \mathbf{c} \in \mathbb{N}^{n}\right)
$$

Thus K is paranormal.

Remark. If H is Mengerian, the preceding corollary shows that $\operatorname{Tr} H$ is paranormal; nonetheless $\operatorname{Tr} H$ need not be Mengerian: for example the Mengerian hypergraph of Figure 17 has as its transversal hypergraph that of Figure 19, which is not Mengerian. If H is balanced we also know that $\operatorname{Tr} H$ is paranormal (from Theorem 18). In the case when H is normal, the hypergraph $\operatorname{Tr} H$ need not be normal: for example, the normal

[^0]It is easily seen that the matrices A and B play a symmetric role. When A is the incidence matrix of a hypergraph H, the matrix B is the incidence matrix of $7 \boldsymbol{H} H$ if and only if H is paranormal.
hypergraph H of Figure 16 satisfies $\tau^{*}(\operatorname{Tr} H)=\frac{3}{2}$, so $\operatorname{Tr} H$ is not paranormal.

An important family of paranormal hypergraphs appears in Graph Theory: these are the " S-joints" (introduced by Little [1973] to generalise an idea of Kasteleyn), and the " S-cuts" (considered by Lovász in 1977).

Let $G=(X, E)$ be a multigraph which we suppose for simplicity to have no loops and to be connected; let $S \subset X$ be a non-empty set of vertices.

We call an S-joint of G a set of edges $F \subset E$ forming a partial graph $G^{\prime}=(X, F)$ whose set of vertices of odd degree coincide with S, with F being minimal for this property.

Observe that an S-joint of G exists if and only if $|S|$ is even. Indeed, if $|S|$ is even, divide S into disjoint pairs $\left\{s_{1}, s_{1}^{\prime}\right\},\left\{s_{2}, s_{2}^{\prime}\right\}$, etc., and consider for each i a chain μ_{i} joining s_{i} and s_{i}^{\prime}. The edges of G which belongs to an odd number of μ_{i} form an S-joint.

Conversely, if there exists an S-joint F, then the partial graph $G^{\prime}=(X, F)$ satisfies, modulo 2 ,

$$
|S| \equiv \sum_{x \in S} d_{G^{\prime}}(x) \equiv \sum_{x \in X} d_{G^{\prime}}(x) \equiv 2 m\left(G^{\prime}\right) \equiv 0
$$

We shall study the hypergraph of S-joints of G which we denote by H^{s}.
Recall some classical notation from Graph Theory. Let $G=(X, E)$ be a multigraph on X, and let $A \subset X$. The cocycle $\omega(A)$ is the set of edges of G joining A to its complement $X-A$; a cocycle is elementary if it contains no other cocycles, or equivalently if G_{A} and G_{X-A} are connected. Further, $\omega(A)=\omega(X-A)$. If $S \subset X$, an S-cut of G is an elementary cocycle $\omega(A)$ for which $|S \cap A|$ and $|S \cap(X-A)|$ are both odd.

Observe that an S-cut of G exists if and only if $|S|$ is even. We shall study the hypergraph of S-cuts of G which we denote K^{s}.

Example 1. Let $G=(X, E)$ be a connected multigraph of even order. An X-joint of G (being minimal) cannot contain a cycle of G; thus it is a forest of G. Further, each vertex of this forest has odd degree. In particular, a perfect matching of G, if it exists, is an X-joint of G.

212 Hypergraphs

On the other hand, an X-cut is nothing but an elementary cocycle $\omega(A)$ for which $|A|$ is odd.

Example 2. Let $G=(X, E)$ be a transporation network with source $a \in X$ and sink $z \in X$, and a capacity associated with each edge. Set $S=\{a, z\}$. An S-joint is a simple path between a and z, and an S-cut is a "cut" between a and z.

Example 3. Let G be a connected multigraph on X with a length associated with each edge, and let S be the set of vertices x with $d_{G}(x)$ odd. An S-joint is a minimal set of edges which must be doubled to obtain an eulerian multigraph.

An S-joint of minimum total length defines the edges to be traversed twice in the "chinese postman problem" (Guan Meigu) well known in Operations Research. An S-cut is an elementary cocyle $\omega(A)$ with $|A \cap S|$ odd, i.e. satisfying, modulo 2,

$$
|\omega(A)| \equiv \sum_{x \in A \cap(X-S)} d_{G}(x)+\sum_{x \in A \cap S} d_{G}(x) \equiv|A \cap S| \equiv 1
$$

Proposition. Let G be a connected multigraph, and let S be a set of vertices with $|S|$ even. Then the hypergraph H^{s} of S-cuts is the transversal hypergraph of the hypergraph K^{s} of S-joints.

Proof.

1. First we shall show that if $E \in H^{s}$ and $F \in K^{s}$, then $E \cap F \neq \varnothing$.

Indeed, otherwise we have $E \cap F=\varnothing, E \in H^{\delta}, F=\omega(A)$, where $|S \cap A|$ and $|S \cap(X-A)|$ are odd. Since E is the union of edge-disjoint paths μ_{i} between pairs $\left\{s_{i}, s_{i}^{\prime}\right\}$ forming a partition of S, and since none of the μ_{i} meet $\omega(A)$, this implies that $|S \cap A|$ and $|S \cap(X-A)|$ are even: contradiction.
2. Let $F_{0} \in \operatorname{Tr} H^{s}$. Since F_{0} meets all the $E \in H^{s}$, the partial graph $G-F_{0}$ does not allow S to be joined in pairs, and thus it has several connected components $X_{1}, X_{2}, \ldots, X_{k}$; further, at least one of the $\left|S \cap X_{i}\right|$ is odd (otherwise we may join the vertices in pairs). Since G is connected, we have $F_{0} \supset \omega\left(S \cap X_{i}\right)$; thus F_{0} contains an S-cut F. From the minimality of the transversal F_{0}, and from part 1 , we have $F_{0}=F$. Thus every minimal transversal of H^{S} is as S-cut, which achieves the proof.

Lovász-Seymour Theorem. Let G be a connected multigraph, and let S be a set of vertices with $|S|$ even. Then H^{s} and K^{s} are paranormal hypergraphs.

The fact that K^{s} is paranormal was shown by Lovász [1977], and that H^{s} is paranormal by Seymour [1977]. In fact these two theorems are clearly equivalent by virtue of Proposition 1. Further Lovász [1977] has shown that

$$
\nu_{2 k}\left(K^{s}\right)=k \nu_{2}\left(K^{s}\right) .
$$

Remark. H^{s} and K^{s} are not, in general, Mengerian. For example, if G is a cubic graph without bridges, of chromatic index 4 (such as Petersen's graph), Seymour has shown that H^{X} cannot have the König property and so certainly is not Mengerian. By contrast, H^{X} is Mengerian if it cannot be reduced to $\left(K_{4}\right)^{*}$ in the sense of Seymour's conjecture (Seymour [1877]).

Exercises on Chapter 5

Exercise 1 (§1)

If $r(H)>3$, it is not true that every B-cycle contains a B-cycle such that every pair of non-consecutive edges are disjoint. Show this for the B-cycle of length 7 defined by the sequence of edges:

$$
(12,2390,34,45,5690,678,781) .
$$

Exercise 2 (§1)

Sterboul [1973] has conjectured that if $\chi(H)>2$ there exists a B-cycle such that every pair of non-consecutive edges is disjoint. Show that we cannot suppose that the B-cycle has the further property that two consecutive edges have exactly one vertex in common: for example take the hypergraph $K_{2 r-1}^{r}$.

Exercise 3 (§1)

Show that example 2 is a special case of example 3 (§2), but that example 4 (§2) cannot be considered a special case of example 3 (which relies on a theorem of Tutte on graphic matroids).

Exercise 4 (\$2)

Let P_{n} be a graph on X which consists of an elementary path of n vertices.
Let H_{n} be the hypergraph on X whose edges are the maximal cliques of the complement \bar{P}_{n}. Show that for $n \leq 6, H_{n}$ is unimodular (Chvatal).

214 Hypergraphs

Hint: reduce to example 4 by an appropriate choice of a tree.

Exercise 5 (§2) Show that Ghouila-Houri's Theorem may be applied to extend Theorem 5 in the following way: if a matrix A of 0 's, 1 's, and -1 's has no square submatrix of order $2 k+1$ each of whose entries is greater than or equal to the corresponding entry of $B_{2 k+1}$ (the incidence matrix of the cycle $C_{2 k+1}$), then A is totally unimodular.
(Another proof has been given by Commoner [1973], and Yannakakis [1980] has given an efficient algorithm to find a maximum matching in this case).

Exercise 6 (§2)

Let G be a bipartite graph. Let H be a hypergraph on the edge-set E of G whose edges are E and the complete stars of G. Show that H is unimodular.

Exercise 7 (§3)

Meyniel has conjectured that for every hypergraph H, the relation

$$
\chi\left(H_{A}\right) \leq k \quad(A \subset X)
$$

implies $\tau(H) \leq(k-1) \nu(H)$. This is always true for $k=2$, from Theorem 9 ; further if H is a partial hypergraph of the complete multipartie hypergraph, this reduces to the conjecture of Ryser.

Exercise 8 (§3)

Show that if A is a totally balanced incidence matrix, the matrix $A^{*} A$ (boolean matrix product of A with its transpose A^{*}) is also a totally balanced matrix, as is the k-th boolean power A^{k} (Lubiw [1985]).

Exercise 9 (\$3)

Show that if $H=\left(E_{1}, E_{2}, \ldots, E_{m}\right)$ is a totally balanced hypergraph on X, then $H+(X)$ and $H+\left(E_{1} \cap E_{2}\right)$ are also totally balanced hypergraphs.

Exercise 10 (§3)

Using the preceding exercise, show that a totally balanced hypergraph of order n without repeated edges has at most $\binom{n}{2}+n$ edges; further every maximal totally balanced hypergraph without repeated edges has exactly $\binom{n}{2}+n$ edges (Anstee [1985]).

For a simpler proof, cf. Lehel [1985].

Exercise 11 (§4)

Let H be a hypergraph and let $L(H)$ be the representative graph of H with weight $\left|E_{i} \cap E_{j}\right|$ associated with each edge $\left[e_{i}, e_{j}\right]$. Let $F \subset L(H)$ be a maximum weight forest. Show that

$$
\mu(H)=\sum_{i=1}^{n}\left[p\left(F_{X_{i}}\right)-1\right]
$$

where $X_{i}=\left\{e_{j} / x_{i} \in E_{j}\right.$ in $\left.H\right\}$ and where $p\left(F_{X_{i}}\right)$ denotes the number of connected components of the subgraph of F induced by X_{i} (Lewin [1983]).

Exercise 12 (§7)

Lovász has shown: "If a digraph G has at most k pairwise disjoint co-circuits, then each family (with repetition) of co-circuits covering each arc at most twice is of cardinality $\leq 2 k$ ". Show that this implies a generalisation of a theorem of Lucchesi and Younger: "If in a digraph G, we associate with each edge i an integer weight $c_{i} \geq 0$, then the minimum weight of a set of arcs which meet every cocircuit is equal to the maximum number of cocircuits forming a family using the arc i at most c_{i} times for $i=1,2, \ldots, m^{\prime \prime}$.

Exercise 13 (§7)

As an analogue of Lemma 3, Theorem 17, Schrijver has conjectured that the following conditions are equivalent:

$$
\begin{array}{ll}
\frac{1}{k} \tau_{k}\left(H^{\prime}\right)=\tau^{*}\left(H^{\prime}\right) & \left(H^{\prime} \subset H\right) \\
\nu_{k}\left(H^{\prime}\right)=\tau_{k}\left(H^{\prime}\right) & \left(H^{\prime} \subset H\right) \tag{ii}
\end{array}
$$

The equivalence of (i) and (ii), proved by Lovász [1977] for $k=1,2,3$ is false for $k=60$ (Schrijver, Seymour [1979]). Show this for the hypergraph H on $X=\{1,2, \ldots, 9\}$ whose edges are

$$
E_{1}=X-\{1,3,5\}
$$

216 Hypergraphs

$$
\begin{aligned}
& E_{2}=X-\{1,4,6\} \\
& E_{3}=X-\{2,3,6\} \\
& E_{4}=X-\{2,4,5\} \\
& E_{5}=X-\{7\} \\
& E_{6}=X-\{8\} \\
& E_{7}=X-\{9\}
\end{aligned}
$$

Show that $\tau_{60}\left(H^{\prime}\right)=60 \tau\left(H^{\prime}\right)$ and $\nu_{60}(H) \neq 60 \tau^{*}(H)$.

Exercise 14 (87)

Show that the following conditions are equivalent:
(i) $\quad \tau^{*}\left(H^{c}\right)$ is an integer $\left(c \in\{0,1\}^{n}\right)$
(ii) $\quad \tau^{*}\left(H^{c}\right)=\tau\left(H^{c}\right) \quad\left(c \in\{0,1\}^{n}\right)$

Hint: If (i) is true and (ii) is false, consider a hypergraph of minimum order such that (ii) is false.

Exercise 15 (§7)

Deduce from the preceding exercise that the following are equivalent:
(i) $\quad \nu\left(H^{c}\right)=\tau\left(H^{c}\right) \quad\left(c \in\{0,1\}^{n}\right)$
(ii) $\quad \nu\left(H^{c}\right)=\tau^{*}\left(H^{c}\right) \quad\left(c \in\{0,1\}^{n}\right)$.

Appendix

Matchings and Colourings in Matroids

The concept of a matroid, introduced by Whitney in 1835 in order to generalise linear independence allows us to restate a large number of theorems in optimization theory. First of all, it has been observed by many authors that the hypergraph of independent sets is such that one may use Kruskal's greedy algorithm to determine a tree of maximum weight. The identification of regular matroids with unimodular hypergraphs is due to Tutte, Camion, and to Seymour, who also showed that if C is the family of circuits of a matroid and if e is an element of the matroid then the hypergraph $\{C-e / C \in C, e \in C\}$ is mengerian if and only if the matroid is linear and does not contain Fano's matroid as a minor ${ }^{(1)}$.

We shall consider here the concepts of matching and colouring defined for hypergraphs in the preceding chapters.

Let $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a finite set, and let \mathcal{F} be a set of subsets of E. We shall say that \mathcal{F} constitutes a matroid on E if

$$
\begin{equation*}
\left\{e_{i}\right\} \in \mathcal{F}(i=1,2, \ldots, m) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
F \in \mathcal{F}, F^{\prime} \neq \varnothing, F^{\prime} \subset F \Rightarrow F^{\prime} \in \mathcal{F} \tag{2}
\end{equation*}
$$

(3) For each $S \subset E$, if F and F^{\prime} are two members of \mathcal{f} contained in S and maximal with this property, then $|F|=\left|F^{\prime}\right|$.

The pair $M=(E, \mathcal{F})$ is called a simple matroid (on E); in particular it is a hereditary hypergraph, and we may consider for matroids the same concepts defined above for hypergraphs. In particular, the rank $r(S)$ will be defined by

$$
r(S)=\max _{F \in \mathcal{F}}|F \cap S| .
$$

Axiom (3) states that a member of the family \mathcal{F} contained in S and maximal in S has cardinality $r(S)$.

[^1]In matroid theory, the elements of E are the elements of the matroid M, and the members of \mathcal{F} are the independent sets. They are also the edges of the hypergraph \mathcal{F}. Those sets which do not appear in \mathcal{F} are the dependent sets. A minimal dependent set is called a circuit.

Proposition 1. If $M=(E, \mathcal{F})$ is a matroid of rank $r(E)$, then the maximal independent sets form a uniform hypergraph of rank $r(E)$.

Clear.

Proposition 2. If $M=(E, \mathcal{F})$ is a matroid of rank r, and if $A \subset E$, the subhypergraph $\mathcal{F}_{A}=\{F \cap A / F \in \mathcal{F}, F \cap A \neq \varnothing\}$ of M is a matroid of rank $r_{A}(S)=r(S)$.

Clear.

Proposition 3. If $M=(E, \mathcal{F})$ is a matroid, every k-section

$$
\mathcal{F}_{(k)}=\{F / 1 \leq|F| \leq k, F \in \mathcal{F}\}
$$

forms a matroid of rank $r_{(k)}(S)=\min \{k, r(S)\}$.
Clear.

Example 1. The family $P^{\prime}(E)$ of non-empty subsets of a set E is a matroid of rank $r(S)=|S|$, and its strong stability number is $\bar{\alpha}=1$.

The family $\mathcal{P}_{(k)}(E)$ of subsets of E of cardinality $\leq k$ and ≥ 1 is also a matroid, since $i t$ is the k-section of the preceding matroid. Its strong stability number is $\bar{\alpha}=1$, its circuits are the subsets of E having $k+1$ elements.

Example 2. Take for E a finite set of vectors, and for \mathcal{F} the family of linearly independent sets of vectors. Then (E, \mathcal{F}) is a matroid, and the rank $r(S)$ of a set S of vectors is the dimension of the linear space spanned by $S ; \bar{\alpha}$ is the maximum number of vectors of E which are all colinear.

Example 3. Let G be a multigraph; take for E the edge-set of G, and for \mathcal{F} the family of sets of edges which contain no cycles. (E, \mathcal{F}) is then a matroid with rank $r(S)$ equal to the cocyclomatic number of the partial graph generated by S. An independent set is a forest of G, and a circuit is an elementary cycle in G.

Example 4. Let G be a multigraph without bridges. Take for E the set of edges of
G, and for \mathcal{F} the family of sets of edges of G whose suppression does not increase the number of connected components. (E, \mathcal{F}) is then a matroid, having rank $r(S)$ equal to the cyclomatic number of the partial graph generated by S. A base is a minimal co-forest, a circuit is an elementary cocycle of G.

Example 5 (Edmonds, Fulkerson 1965). Let G be a graph without isolated vertices and for every matching V denote by $S(V)$ the set of vertices saturated by the matching V; take as members of \mathcal{f} every set F of vertices contained in at least one $S(V)$.

It can be shown that (X, \mathcal{F}) is a matroid of rank

$$
r(S)=|S|-\max _{T \subset S}\left\{p_{i}\left(G_{T}\right)-\left|\Gamma_{G}(T)-T\right|\right\}
$$

where $p_{i}(H)$ denotes the number of components of odd order in a subgraph H of G.

Example 6. For a family $\left(A_{j} / j \in Q\right)$ of subsets of a set E, set

$$
A(Q)=\bigcup_{j \in Q} A_{j}=E ;
$$

we call a partial transversal a subset $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ of E such that there exists an injection $j(i):\{1,2, \ldots, k\} \rightarrow Q$, with

$$
t_{i} \in A_{j(i)} \quad(i=1,2, \ldots, k)
$$

The family of partial transversals defines a matroid on E of rank

$$
r(S)=|Q|+\min _{J \subset Q}(|A(J) \cap S|-|J|) .
$$

This matroid is called the transversal matroid of the family $\left\{A_{j} / j \in Q\right\}$.
Indeed, consider the bipartite graph (Q, E, Γ) formed by two sets $Q=\{1,2, \ldots, q\}$ and $E=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ where

$$
\Gamma(j)=A_{j} \quad(j \in Q)
$$

We know from Example 5 that the family of sets of saturated vertices in a matching defines a matroid: the family of partial transversals is the trace on E of this matroid: it is thus a matroid. Its rank is given by König's Theorem:

$$
r(S)=\min _{J \subset Q}(|Q-J|+|\Gamma(J) \cap S|)=q+\min _{J \subset Q}(|A(J) \cap S|-|J|) .
$$

Example 7. If $\left(C_{1}, C_{2}, \ldots, C_{p}\right)$ is a partition of a set E into p classes, and if $c_{1}, c_{2}, \ldots, c_{p}$ are integers with $1 \leq c_{i} \leq\left|C_{i}\right|$, the family

$$
\mathcal{F}=\left\{F / F \subset E, F \neq \varnothing,\left|F \cap C_{i}\right| \leq c_{i} \text { for each } i\right\}
$$

defines a matroid on E of rank

$$
r(S)=\sum_{i=1}^{p} \min \left\{c_{i},\left|S \cap C_{i}\right|\right\} .
$$

Example 8. Let G be a simple graph, and let k be an integer ≥ 2. A k-star with centre x is a partial graph of G formed by a set of $\leq k$ edges incident on x. Las Vergnas has shown that the sets S of vertices which may be covered by a family of pairwise vertex-disjoint k-stars form the independent sets of a matroid of rank

$$
r(S)=\min _{T \subset S}\left\{k\left|\Gamma_{G}(T)\right|+|S-T|\right\}
$$

Example 9. Let f be a map from subsets of \boldsymbol{X} to \mathbb{N} such that

$$
\begin{aligned}
& f(\varnothing)=0 \\
& A \subset B \Rightarrow f(A) \leq f(B) \\
& f(A \cup B)+f(A \cap B) \leq f(A)+f(B)
\end{aligned}
$$

Edmonds, Rota, and Welsh showed that the sets S such that $|T| \leq f(T)$ for every $T \subset S$ form the independent sets of a matroid of rank

$$
r(S)=\min _{T \supset S}\{f(T)+|S-T|\}
$$

We shall now prove two propositions which we will need for the following.

Proposition 4. If $M=(E, \mathcal{F})$ is a matroid, then its rank $r(A)$ satisfies the following properties:

$$
\begin{equation*}
r(\varnothing)=0 \tag{1}
\end{equation*}
$$

(2) $\quad r(\{e\})=1 \quad(e \in E)$

$$
\begin{equation*}
A \subset B \Rightarrow r(A) \leq r(B) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
r(A)+r(B) \geq r(A \cup B)+r(A \cap B) \tag{4}
\end{equation*}
$$

Properties (1), (2) and (3) are clear. We shall prove (4). Let F be an independent set contained in $A \cap B$ with $|F|=r(A \cap B)$.

Let F_{A} be an independent set contained in A with $\left|F_{A}\right|=r(A)$ and $F_{A} \supset F$.
Let E_{0} be an independent set containing F_{A}, contained in $A \cup B$, with $\left|E_{0}\right|=r(A \cup B)$.

Clearly $E_{0} \cap A=F_{A}$ (since F_{A} is a maximal independent set in A) and $E_{0} \cap(A \cap B)=F$ (since F is a maximal independent set in $A \cap B$). Then

$$
\begin{aligned}
r(A \cup B)= & \left|E_{0}\right|+\left|\left(E_{0} \cap A\right) \cup\left(E_{0} \cap B\right)\right| \\
= & \left|E_{0} \cap A\right|+\left|E_{0} \cap B\right|-\left|E_{0} \cap A \cap B\right| \\
& \leq\left|F_{A}\right|+r(B)-|F|=r(A)+r(B)-r(A \cap B) .
\end{aligned}
$$

Thus (4) follows.
(Properties (1), (2), (3), (4) are characteristics of the rank and may also be taken as the axioms of a matroid on E).

Proposition 5. If, in a matroid M, we have $F \in \mathcal{F}$ and $F \cup\{a\} \in \mathcal{F}$, then the set $F \cup\{a\}$ contains exactly one circuit.

Let F be a minimum independent set which would be a counterexample. Since $F \cup\{a\}$ contains two distinct circuits C_{1} and C_{2}, we have $a \in C_{1}, a \in C_{2}$. By the minimality of C_{1} and C_{2} there exists a point $a_{1} \in C_{1}-C_{2}$, and a point $a_{2} \in C_{2}-C_{1}$.

1. The set $A_{0}=F \cup\{a\}-\left\{a_{1}, a_{2}\right\}$ is independent. Otherwise, consider the set $F^{\prime}=F-\{a\}$, which is independent as it is contained in F. The set $F^{\prime} \cup\{a\}$ contains the circuit C_{2} and a minimal dependent set of A_{0}; thus it contains two distinct circuits, and as $\left|F^{\prime}\right|<|F|$, this contradicts the minimality of F.
2. The submatroid spanned by $F \cup\{a\}$ is a matroid of rank $|F|$ which contains the independent set A_{0}. Since $\left|A_{0}\right|<|F|$ we have

$$
A_{0} \cup\left\{a_{i}\right\} \in \mathcal{F}
$$

for $i=1,2$. The contradiction follows, as C_{i} is a dependent set contained in $A_{0} \cup\left\{a_{i}\right\}$.

Lemma. If S is a maximal strongly stable set in a matroid (E, \mathcal{F}), then each $s \in S$ is adjacent to every $a \in E-S$.

Consider a maximal strongly stable set S. Then $r(S)=1$. Let

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}
$$

Consider a point $a \in E-S$; since $S \cup\{a\}$ is not strongly stable there exists an $s_{j} \in S$ adjacent to a. If $k \neq j$ the vertex $s_{k} \in S$ is adjacent to $\left\{a, s_{j}\right\}$, since the set $A=\left\{a, s_{j}, s_{k}\right\}$ is of rank 2 , and an independent set containing s_{k} is contained in a maximal independent set F satisfying $|F \cap A|=2$. Thus a is adjacent to s_{k}, for every k.

Theorem 1. If $M=(E, \mathcal{F})$ is a matroid with strong stability number $\bar{\alpha}(M) \geq \frac{|E|}{2}$ then $\bar{\alpha}(M)=\rho(M)$.

Indeed, consider a maximum strongly stable set

$$
S=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}
$$

we may write

$$
E-S=\left\{a_{1}, a_{2}, \ldots, a_{q}\right\}, q \leq p
$$

From the lemma, there exists an edge $F_{i j}$ which contains a_{i} and s_{j}, and E can be covered by the p edges $F_{1,1}, F_{2,2}, \ldots, F_{q, q}, F_{q, q+1}, \ldots, F_{q, p}$; thus

$$
\rho(M) \leq p=\bar{\infty}(M)
$$

Since the reverse inequality also holds, we have $\rho(M)=\bar{\alpha}(M)$.

Theorem 2 A matroid $M=(E, \mathcal{F})$ is conformal if and only if there exists a partition $\left(S_{1}, S_{2}, \ldots, S_{q}\right)$ of E such that \mathcal{F} consists of the family of non-empty sets F with

$$
\left|F \cap S_{i}\right| \leq 1 \quad(i=1,2, \ldots, q)
$$

Let $S_{1}=\left\{s_{1}, s_{2}, \ldots, s_{p}\right\}$ be a maximal strongly stable set in a conformal matroid of rank $h=r(E)$. It is sufficient to show that the family \mathcal{F} is of the desired form.

1. Let F_{1} be a maximal independent set containing the point s_{1}. Put

$$
\begin{aligned}
& A=E-S_{1} \\
& A_{1}=F_{1} \cap A
\end{aligned}
$$

Then $\left|F_{1}\right|=h$, so $\left|A_{1}\right|=h-1$.
2. We shall show that A_{1} is a maximal independent set in A. Indeed, if this were not the case, there would exist an $a \in A$ with

$$
A_{1} \cup\{a\} \in \mathcal{F} .
$$

From the lemma, the vertices a and s_{1} are adjacent and are thus contained in a maximal independent set $F_{a, 8_{1}}$. As the matroid M is conformal, from Theorem 15, Chapter 1, there exists an $F_{0} \in \boldsymbol{F}$ such that

$$
\begin{gathered}
\left.F_{0} \supset\left[F \cap\left(A_{1} \cup\{a\}\right)\right] \cup\left[A_{1} \cup\{a\}\right) \cap F_{a, s_{1}}\right] \cup\left(F_{a, s_{1}} \cap F\right) \\
=A_{1} \cup\{a\} \cup\left\{s_{1}\right\}
\end{gathered}
$$

Thus $\left|F_{0}\right| \geq h+1$ contradicting that h is the rank of M.
3. From the above, we have $r(A)=h-1$, so every maximal independent set F satisfies

$$
\left|F \cap S_{1}\right|=1 .
$$

In the submatroid induced by A, which is of rank $h-1$, consider a maximal strongly stable set S_{2}; as above we see that

$$
\left|F \cap S_{2}\right|=1
$$

We determine thus a partition $S_{1}, S_{2}, \ldots, S_{h}$ of E and every maximal independent set F of M satisfies $\left|F \cap S_{i}\right|=1$ for $i=1,2, \ldots, h$.
4. Conversely, every set F which satisfies the above equalities has its points pairwise adjacent, and since the matroid is conformal and of rank h it is a maximal independent set.

The family \boldsymbol{f} is thus of the desired form.

> Q.E.D.

Let $\mathcal{A}=\left(A_{1}, A_{2}, \ldots, A_{q}\right)=\left(A_{i} / q \in Q\right)$ be a family of subsets of a set E. A family of distinct representatives is a family $(a(i) / i \in Q)$ of elements of E such that

$$
\begin{equation*}
i \neq j \Rightarrow a(i) \neq a(j) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a(i) \in A_{i} \quad(i=1,2, \ldots, q) \tag{2}
\end{equation*}
$$

The point $a(i)$ is the representative of the set A_{i}. Clearly a family of distinct representatives defines a transversal of cardinality q; the converse, however, is not true.

If we consider the bipartite graph (Q, E, Γ) with $e \in \Gamma(i)$ if $e \in A_{i}$, a set of distinct representatives is the image of a matching of Q into E.

If $J \subset Q$, put $A(J)=\bigcup_{j \in J} A_{j}$; a necessary and sufficient condition for the existence of a family of distinct representatives, from König's theorem, is that

$$
|A(J)| \geq|J| \quad(J \subset Q) .
$$

The following theorems are generalisations of this result.

Theorem 3 (Perfect, 1969). Let $M=(E, \mathcal{F})$ be a matroid of rank $r(E)$, let k be an integer $\leq r(E)$ and let $A=\left(A_{1}, A_{2}, \ldots, A_{q}\right)=\left(A_{i} / i \in Q\right)$ be a family of q subsets of E; a necessary and sufficient condition for the existence of an independent set $F=\{a(i) / i \in K\}, K \subset Q,|K|=k$, with $a(i) \in A_{i}$ for every $i \in K$ is that we have

$$
r(A(J)) \geq|J|+k-q \quad(J \subset Q)
$$

1. If there exists such an independent set F, we have

$$
\begin{aligned}
r(A(J)) \geq|F \cap A(J)| & \geq|K \cap J|=|K|+|J|-|K \cup J| \\
& \geq k+|J|-q
\end{aligned}
$$

Thus we have the stated inequality.
2. Conversely, suppose the inequality holds. Consider the family $B=\left(B_{i} / i \in Q\right)$ with

$$
\begin{cases}B_{i} \subset A_{i} & (i \in Q) \tag{1}\\ r(B(J)) \geq|J|+k-q & (J \subset Q)\end{cases}
$$

The relation $B<B^{\prime}$ meaning $B_{i} \subset B_{i}^{\prime}$ for every $i \in Q$ is an order relation. Consider a family $B=\left(B_{1}, B_{2}, \ldots, B_{q}\right)$ which is minimal with respect to this order. We shall show that $\left|B_{i}\right|=1$ for every i.

Indeed, if for example $\left|B_{1}\right|>1$, there exist two points $b^{\prime}, b^{\prime \prime} \in B_{1}$ with $b^{\prime} \neq b^{\prime \prime}$. Put

$$
\begin{aligned}
& B_{1}^{\prime}=B_{1}-\left\{b^{\prime}\right\} \\
& B_{1}^{\prime \prime}=B_{1}-\left\{b^{\prime \prime}\right\} \\
& B_{i}^{\prime}=B_{i}^{\prime \prime}=B_{i} \text { if } i \neq 1
\end{aligned}
$$

By the minimality of B there exist two subsets $I, J \subset Q$ with

$$
\begin{aligned}
& r\left(B^{\prime}(I)\right)<|I|+k-q \\
& r\left(B^{\prime \prime}(I)\right)<|J|+k-q
\end{aligned}
$$

Thus

$$
r\left(B^{\prime}(I)\right)+r\left(B^{\prime \prime}(J)\right) \leq|I|+|J|+2(k-q)-2 .
$$

Further,

$$
\begin{aligned}
& B^{\prime}(I) \cup B^{\prime \prime}(J)=B(I \cup J) \\
& B^{\prime}(I) \cap B^{\prime \prime}(J)=B(I \cap J-\{1\}) .
\end{aligned}
$$

From proposition 4 we may write

$$
\begin{aligned}
r\left(B^{\prime}(I)\right)+r\left(B^{\prime \prime}(J)\right) & \geq r\left(B^{\prime}(I) \cup B^{\prime \prime}(J)\right)+r\left(B^{\prime}(I) \cap B^{\prime \prime}(J)\right) \\
& \geq r(B(I \cup J))+r(B(I \cap J-\{1\})) \\
& \geq|I \cup J|+|I \cap J-\{1\}|+2(k-q) \\
& \geq|I|+|J|-2(k-q)-1 .
\end{aligned}
$$

A contradiction follows.
We have thus shown that \boldsymbol{B} is of the form $\left(\left\{b_{i}\right\} / i \in Q\right)$. Put

$$
B=\left\{b_{i} / i \in Q\right\}
$$

From (1) we have

$$
r(B)=r(B(Q)) \geq|Q|+k-q=k .
$$

Thus there exists a set $K \subset Q$ with $|K|=k$, and an independent set $F=\left\{b_{i} / i \in K\right\} \subset B$ with

$$
b_{i} \in A_{i} \quad(i \in K)
$$

Q.E.D.

As an immediate consequence, we have the well known theorem of Rado:

Theorem 4 (Rado, 1942). If $M=(E, \mathcal{F})$ is a matroid, a family $A=\left(A_{1}, \ldots, A_{q}\right)$ of subsets of E has an independent set of distinct representatives if and only if

$$
r(A(J)) \geq|J| \quad(J \subset Q)
$$

Indeed, let $k=q$ in the statement of Theorem 3.

Corollary 1. Two families $A=\left(A_{1}, A_{2}, \ldots, A_{q}\right)$ and $B=\left(B_{1}, B_{2}, \ldots, B_{q}\right)$ have a common
set of distinct representatives if and only if

$$
|A(J) \cap B(K)| \geq|J|+|K|-q \quad(J, K \subset Q)
$$

Indeed, consider the transversal matroid M of the family B (example 6), whose rank is

$$
r(S)=q+\min _{K \subset Q}(|B(K) \cap S|-|K|) .
$$

There exists a transversal set of \boldsymbol{A} which is independent in M if and only if, for every $J \subset Q$, we have

$$
r(A(J))=q+\min _{K \subset Q}(|A(J) \cap B(K)|-|K|) \geq|J|
$$

giving us the desired condition.

Corollary 2. If $C=\left(C_{1}, C_{2}, \ldots, C_{p}\right)$ is a partition of E, and if $c_{1}, c_{2}, \ldots, c_{p}$ are integers with $0 \leq c_{i} \leq\left|C_{i}\right|$ for each i, a family $\mathbb{A}=\left(A_{1}, A_{2}, \ldots, A_{q}\right)$ has a set T of distinct representatives with $\left|T \cap C_{i}\right| \leq c_{i}$ for every i if and only if

$$
\sum_{i=1}^{p} \min \left\{c_{i},\left|A(J) \cap C_{i}\right|\right\} \geq|J| \quad(J \subset Q)
$$

Indeed, consider the matroid M formed by the sets $F \subset E$ with $\left|F \cap C_{i}\right| \leq c_{i}$ for each i (example 7), whose rank is

$$
r(S)=\sum_{i=1}^{p} \min \left\{c_{i},\left|S \cap C_{i}\right|\right\}
$$

There exists a set of distinct representatives of \mathcal{A} which is independent in M if and only if, for every $J \subset Q$,

$$
r(A(J))=\sum_{i=1}^{p} \min \left\{c_{i},\left|A(J) \cap C_{i}\right|\right\} \geq|J|
$$

Q.E.D.

Recall the proposition (cf. Graphs, Corollary to Theorem 6, Chap. 7) which says: A necessary and sufficient condition for a set $B \subset E$ to be contained in a set of distinct representatives of a family $\mathcal{A}=\left(A_{1}, A_{2}, \ldots, A_{q}\right)$ is that

$$
\min \{|A(J) \cup B|, q-|B-A(J)|\} \geq|J| \quad(J \subset Q)
$$

This may be exterded to matroids; first we shall prove a lemma:

Lemma. Let $M=(E, \mathcal{F})$ be a matroid of rank r, let $B \in \mathcal{F}$, and let $q \geq|B|$; the family

$$
\mathcal{F}_{B, q}=\{F / F \subset E, F \cup B \in \mathcal{F},|F \cup B| \leq q\}
$$

defines a matroid on E and its rank is

$$
r_{B, q}(S)=\min \{r(S \cup B), q\}-|B-S| .
$$

Let $S \subset E$, and let S_{0} be a subset of S that belongs to $\mathcal{F}_{B, q}$: every set F with

$$
\begin{equation*}
F \in \mathcal{F}_{B, q} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
S_{0} \subset F \subset S \tag{2}
\end{equation*}
$$

clearly satisfies

$$
|F| \leq \min \{r(S \cup B), q\}-|B-S|
$$

It thus remains to show that equality can hold.
The set $B \cup S_{0}$, being independent in M, is contained in an independent set F^{\prime} of $B \cup S$ with

$$
\left|F^{\prime}\right|=r(S \cup B)
$$

Let $F^{\prime \prime}$ be an independent set with

$$
B \cup S_{0} \subset F^{\prime \prime} \subset F^{\prime} ; \quad\left|F^{\prime \prime}\right|=\min \{r(S \cup B), q\}
$$

The set $F=F^{\prime \prime} \cap S$ satisfies (1) and (2), and

$$
|F|=\min \{r(S \cup B), q\}-|B-S| .
$$

Q.E.D.

Theorem 5 (Las Vergnas, 1968). Let $M=(E, \mathcal{F})$ be a matroid of rank r, and let $B \in \mathcal{F}$, and $q \geq|B| ;$ a family $A=\left(A_{1}, A_{2}, \ldots, A_{q}\right)$ of subsets of E has a family of distinct representatives which is an independent set containing B if and only if

$$
\min \{r(A(J) \cup B), q\}-|A(J)-B| \geq|J| \quad(J \subset Q)
$$

Consider the matroid on E defined by the family

Figure 21

$$
\mathcal{F}_{B, q}=\{F / F \subset E, F \cup B \in \mathcal{F},|F \cup B| \leq q\} .
$$

If there exists a set T of distinct representatives of A with $T \in \mathcal{F}, T \supset B$, then $|T|=q$, so

$$
T \in \mathcal{F}_{B, q}
$$

Conversely, if there exists a set T of distinct representatives of A with $T \in \mathcal{F}_{B, q}$, then

$$
T \cup B \in \mathcal{F}, \quad|T \cup B| \leq q,|T|=q
$$

so

$\boldsymbol{T} \in \boldsymbol{\mathcal { F }} ; \boldsymbol{T} \boldsymbol{O} \boldsymbol{B}$.

Thus, from Rado's theorem, there exists a set T satisfying the conditions of the statement if and only if the rank $r_{B, q}$ of the matroid ($E, \boldsymbol{F}_{B, q}$) satisfies

$$
r_{B, q}(A(J)) \geq|J| \quad(J \subset Q)
$$

or

$$
\min \{r(A(J) \cup B), q\}-|B-A(J)| \geq|J| .
$$

Q.E.D.

Let $M=(E, \mathcal{F})$ be a matroid on $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and consider a map ϕ of E onto \bar{E}; define the image of M under ϕ to be the hypergraph

$$
\overline{\mathcal{F}}=(\phi(F) / F \in \mathcal{F}) .
$$

As ϕ is a map onto $\bar{E}, \bar{M}=(\bar{E}, \overline{\mathcal{Y}})$ is clearly a hypergraph, which we shall now study.

Theorem 6 (Nash-Wiliams, 1966). If $\bar{M}=(\bar{E}, \overline{\mathcal{F}})$ is the image of a matroid $M=(E, \mathcal{F})$ under a map ϕ of E onto \bar{E}, then \bar{M} is a matroid and its rank is

$$
\bar{r}(\bar{E})=\min _{\bar{A} \subset \bar{E}}\left(r\left(\phi^{-1}(\bar{A})\right)+|\bar{E}-\bar{A}|\right)
$$

1. We shall show that:

$$
\max _{\bar{F}}|\bar{F}|=\min _{\bar{A} \bar{E}}\left(r\left(\phi^{-1}(A)\right)+|\bar{E}-\bar{A}|\right) .
$$

Clearly, $\max |\vec{F}|$ is the greatest integer \boldsymbol{k} such that the family

$$
\left(\phi^{-1}\left(\bar{e}_{1}\right), \phi^{-1}\left(\bar{e}_{2}\right), \ldots, \phi^{-1}\left(\bar{e}_{m}\right)\right)
$$

has a partial set of distinct representatives that is an independent set in M and has cardinality \boldsymbol{k}. From Theorem 3, this is the greatest integer \boldsymbol{k} such that

$$
\frac{\min }{\bar{A} \subset \bar{E}}\left(r\left(\phi^{-1}(\bar{A})\right)+|\bar{E}-\bar{A}|\right) \geq k,
$$

whence

$$
\max |\bar{F}|=\min _{\bar{A} \subset \bar{E}}\left(r\left(\phi^{-1}(\bar{A})\right)+|\vec{E}-\bar{A}|\right) .
$$

2. Now, it remains to show that the image of M under ϕ is a matroid.

Consider a map ϕ of $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ onto $\bar{E}=\left\{\bar{e}_{2}, \bar{e}_{3}, \ldots, \bar{e}_{m}\right\}$ satisfying

$$
\begin{aligned}
& \phi\left(e_{1}\right)=\bar{e}_{2} \\
& \phi\left(e_{i}\right)=\bar{e}_{i} \text { if } i \neq 1
\end{aligned}
$$

We shall say that ϕ is a map contracting the set $\left\{e_{1}, e_{2}\right\}$; since every map is a composition of contracting maps, it suffices to show that the image of the matroid M under the contracting map ϕ is a matroid. Consider an independent set $F_{0} \in \mathcal{F}$ such that \bar{F}_{0} is maximal in $\overline{\boldsymbol{F}}$ we shall show that \bar{F}_{0} is maximum for $\overline{\boldsymbol{F}}$, that is, from Part 1, that there exists a set $\bar{A} \subset \bar{E}$ with

$$
\left|\bar{F}_{0}\right|=r\left(\phi^{-1}(\bar{A})\right)+|\bar{E}-\bar{A}| .
$$

For simplicity, set $E_{0}=E-\left\{c_{1}, e_{2}\right\}$. The set \bar{F}_{0} being maximal in $\overline{\mathcal{F}}$ we may suppose that F_{0} is a maximum set of \mathcal{F}.

We may also suppose that F_{0} contains both e_{1} and e_{2}, since otherwise \bar{F}_{0} will be maximum, as we may write:

$$
\left|F_{0}\right|=\left|F_{0}\right|=r(E)=r\left(\phi^{-1}(\bar{E})\right)+|\bar{E}-\bar{E}| .
$$

We shall distinguish three cases.

Case 1: $r\left(E_{0}\right)=r(E)$.
Since

$$
r\left(E_{0}\right) \leq r\left(E-\left\{e_{1}\right\}\right) \leq r(E)
$$

we also have $r\left(E-\left\{e_{1}\right\}\right)=r(E)$. As F_{0} contains e_{1} and e_{2}, we have

$$
\left|F_{0}-\left\{e_{1}\right\}\right|=r(E)-1<r\left(E-\left\{e_{1}\right\}\right)
$$

Consequently there exists a maximum independent set F_{0}^{\prime} which does not contain the point e_{1} and satisfies

$$
\bar{F}_{0}^{\prime} \supset \overline{F_{0}-\left\{e_{1}\right\}}=\bar{F}_{0} .
$$

Thus $\bar{F}_{0}=\bar{F}_{0}^{\prime}$ and may write:

$$
\left|\bar{F}_{0}\right|=\left|\bar{F}_{0}^{\prime}\right|=\left|F_{0}^{\prime}\right|=r(E)=r\left(\phi^{-1}(\bar{E})\right)+|\bar{E}-\bar{E}| .
$$

Case 2: $r\left(E_{0}\right)=r(E)$ - 1. Every maximum independent set thus contains e_{1} or e_{2}. Further, we have

$$
\left|F_{0} \cap E_{0}\right|=\left|F_{0}\right|-2=r(E)-2<r\left(E_{0}\right)
$$

Thus there exists a point $a \in E_{0}$ such that $\left(F_{0} \cap E_{0}\right) \cup\{a\}$ is an independent set of cardinality $r\left(E_{0}\right)=r(E)-1$; let F_{0}^{\prime} be a maximum independent set which contains this set. Since F_{0}^{\prime} is maximum, it contains e_{1} or e_{2}, for example:

$$
F_{0}^{\prime}=\left(F_{0} \cap E_{0}\right) \cup\left\{a, e_{1}\right\} .
$$

Clearly $\bar{F}_{0}^{\prime} \supset \bar{F}_{0}$, so $\bar{F}_{0}=\bar{F}_{0}^{\prime}$ and we may write:

$$
\left|\bar{F}_{0}^{\prime}\right|=\left|\bar{F}_{0}\right|=r(E)=r\left(\phi^{-1}(\bar{E})\right)+|\bar{E}-\bar{E}| .
$$

Case 3: $r\left(E_{0}\right)=r(E)-2$. Every maximum independent set thus contains both e_{1} and e_{2}. We have $\bar{F}_{0} \supset \bar{F}$, so

$$
\begin{aligned}
\left|\bar{F}_{0}\right|=\left|F_{0}\right|-1 & =r(E)-1 \\
& =r\left(E_{0}\right)+1+r\left(\phi^{-1}\left(\bar{E}_{0}\right)\right)+\left|\bar{E}-\bar{E}_{0}\right| .
\end{aligned}
$$

In each of these cases, the set \bar{F}_{0} is maximum for $\overline{\mathcal{F}}$.
Q.E.D.

Let $H^{1}, H^{2}, \ldots, H^{p}$ be hypergraphs on a set X of vertices; their j oin is the hypergraph

$$
H=H^{1} \vee H^{2} \vee \cdots \vee H^{p}
$$

defined by the family

$$
H=\left\{E^{1} \cup E^{2} \cup \cdots \cup E^{p} / E^{1} \in H^{1}, E^{2} \in H^{2}, \ldots, E^{p} \in H^{p}\right\} .
$$

H is clearly a hypergraph on X.

Theorem 7. If $\left(E, \mathcal{F}^{1}\right),\left(E, \mathcal{F}^{2}, \ldots,\left(E, \mathcal{F}^{p}\right)\right.$ are matroids of rank $r^{1}, r^{2}, \ldots, r^{p}$ respectively, their hypergraph-join is a matroid of rank

$$
\bar{r}(E)=\min _{A \subset E}\left(r^{1}(A)+\cdots+r^{p}(A)+|E-A|\right) .
$$

Make p identical copies $E^{1}, E^{2}, \ldots, E^{p}$ of the set E, and consider the map ϕ of $\bigcup_{i=1}^{p} E^{i}$ into E which maps each $e_{k}^{i} \in E^{i}$ to the corresponding $e_{k} \in E . \quad M=\left(\cup E^{i}, \vee \mathcal{F}^{i}\right)$ is clearly a matroid, and its rank is

$$
r(X)=r^{1}\left(E^{1}\right)+r^{2}\left(E^{2}\right)+\ldots+r^{p}\left(E^{p}\right) .
$$

From Theorem 6, the image of this matroid under the map ϕ is also a matroid \bar{M}, which is exactly the join $\vee_{i=1}^{p} \mathcal{F}_{i}^{i}$; the rank of the matroid-join \bar{M} is thus

$$
\begin{aligned}
\bar{r}(E) & =\min _{A \subset E}\left(r\left(\phi^{-1}(A)\right)+|E-A|\right) \\
& =\min _{A \subset E}\left(\sum_{i=1}^{p} r^{i}(A)+|E-A|\right) .
\end{aligned}
$$

Corollary 1 (Edmonds, 1968; Nash-Williams, 1968). For a matroid $M=(E, \mathcal{F})$ the minimum number of independent sets required to cover E is

$$
\rho(M)=\max _{A \subset E}\left[\frac{|A|}{r(A)}\right]^{*} .
$$

By definition, $\rho(M)$ is the least integer k such that the join $M \vee M \vee \cdots \vee M$ of k matroids identical to M is of rank $|E|$, or, from Theorem 7, the least integer k such that

$$
\min _{A \subset E}(k r(A)+|E-A|)=|E| .
$$

This is equivalent to:

$$
\min _{A \subset E}(k r(A)-|A|)=0
$$

or

$$
\operatorname{kr}(A)=|A| \geq 0 \quad(A \subset E)
$$

or

$$
k \geq \frac{|A|}{r(A)} \quad(A \subset E, A \neq \varnothing)
$$

We thus have

$$
\rho(M)=\max _{A \subset E}\left[\frac{|A|}{r(A)}\right]^{*} .
$$

Corollary 2. If $M=(E, F)$ is a matroid, the maximum number k_{0} of maximal independent pairuise disjoint sets is

$$
k_{0}=\min _{\substack{A \subset E \\(A)+r(E)}}\left[\frac{|E-A|}{r(E)-r(A)}\right]
$$

Indeed, \boldsymbol{k}_{0} is the largest integer \boldsymbol{k} such that the matroid-join of \boldsymbol{k} matroids identical to M is of rank $\operatorname{kr}(E)$, or

$$
\min _{A \subset E}(\operatorname{kr}(A)+|E-A|)=\operatorname{kr}(E)
$$

This is equivalent to

$$
\min _{A \subset E}(k r(A)-k r(E)+|E-A|=0,
$$

or

$$
k(r(E)-r(A)) \leq|E-A| \quad(A \subset E)
$$

giving us the stated formula.

Corollary 3. Consider a matroid $M=(E, \mathcal{F})$ and a sequence $k_{1}, k_{2}, \ldots, k_{q}$ with

$$
r(E) \geq k_{1} \geq k_{2} \geq \cdots \geq k_{q}>0 ; \quad \sum_{i=1}^{q} k_{i}=|E| .
$$

Let k_{j}^{*} be the number of k_{i} 's which are $\geq j$. The set E can be partitioned into q independent sets $F_{1}, F_{2}, \ldots, F_{q}$ with $\left|F_{i}\right|=k_{i}$ for each i if and only if

$$
\sum_{j>r(A)} k_{j}^{*} \geq|E-A| \quad(A \subset E)
$$

Consider the $\boldsymbol{k}_{\boldsymbol{i}}$-section $M_{\left(\boldsymbol{k}_{i}\right)}$, defined by the family

$$
\mathcal{F}_{\left(k_{i}\right)}=\left\{F / F \in \mathcal{F},|F| \leq k_{i}\right\} .
$$

This is a matroid of $\operatorname{rank} r^{i}(A)=\min \left\{r(A), k_{i}\right\}$, and the matroid-join

$$
M=\bigvee_{i-1}^{q} M_{\left(k_{i}\right)}
$$

is of rank $|E|$. Thus

$$
\min _{A \subset E}\left(\sum_{i=1}^{q} r^{i}(A)+|E-A|\right)=|E| .
$$

This is equivalent to

$$
\sum_{i=1}^{q} \min \left\{r(A), k_{i}\right\}+|E-A| \geq|E|=\sum_{i=1}^{q} k_{i}=\sum_{j>0} k^{*} \quad(A \subset E) .
$$

Hence

$$
\sum_{j>0} k_{i}^{*}-\sum_{j=1}^{r(A)} k_{j}^{*} \leq|E-A| \quad(A \subset E)
$$

giving us the stated condition.

Corollary 4. The chromatic number of the hypergraph H^{M} consisting of the circuits of a matroid $M=(E, \mathcal{F})$ of rank r is equal to

$$
\chi\left(H^{M}\right)=\max _{\substack{A \subset E \\ A \not \varnothing}}\left[\frac{|A|}{r(A)}\right]^{*} .
$$

Indeed, a set $F \subset E$ is independent if and only if it contains no circuits. Thus a partition $\left(A_{1}, A_{2}, \ldots, A_{q}\right)$ is a colouring of the hypergraph H^{M} if and only if $A_{1}, A_{2}, \ldots, A_{q}$ are independent sets; thus $\chi\left(H^{M}\right)=\rho(M)$ and corollary 1 gives the stated formula.

The preceding results allow us to obtain rapidly some results for graphs, originally proven by direct but much longer methods.

Application 1 (Tutte, 1961). The set of edges of a simple connected graph $G=(X, E)$ contains k pairwise disjoint spanning trees if and only if, for every partition P of X, the number of edges $m_{G}(\mathcal{P})$ which join vertices in distinct classes of the partition satisfies

$$
m_{G}(P) \geq k(|P|-1)
$$

1. If there exist k spanning trees H_{1}, \ldots, H_{k} in G, pairwise edge-disjoint, then for a partition P of the vertices,

$$
m_{H_{i}}(P) \geq|P|-1 \quad(i=1,2, \ldots, k)
$$

Thus

$$
m_{G}(\mathcal{P}) \geq \sum_{i=1}^{k} m_{H_{i}}(\mathcal{P}) \geq k(|\mathcal{P}|-1)
$$

2. If the stated condition holds, consider the matroid $M=(E, \mathcal{F})$ on E defined by the family of forests $F_{1}, F_{2}, \ldots, F_{q} \subset E$ of the graph G; if $r(A)$ denotes the rank of M and if $A \subset E$ defines a partial graph of G having p connected components, forming a partition

$$
P=\left(X_{1}, X_{2}, \ldots, X_{p}\right)
$$

of X, we have

$$
r(E)-r(A)=(n-1)-(n-p)=p-1=|P|-1
$$

Thus, from the conditions in the statement, we have

$$
|E-A| \geq m_{G}(P) \geq k(|P|-1)=k(r(E)-r(A))
$$

Hence,

$$
k \leq \min _{\substack{A \subset E \\ r(A) \nmid \vdash(E)}}\left(\frac{|E-A|}{r(E)-r(A)}\right)
$$

Thus, from Corollary 2 to Theorem 7, there exist k disjoint spanning trees in G.

Application 2 (Nash-Williams, 1964). The edges of a simple graph $G=(X, E)$ may be coloured with k colours in such a way that no cycle is monochromatic if and only if for every set $A \subset X$ the number $m_{G}(A, A)$ of edges having both ends in A satisfies

$$
m_{G}(A, A) \leq k(|A|-1)
$$

In other words, the chromatic number of the hypergraph G^{C} formed by the cycles of edges of G is equal to

$$
\chi\left(G^{C}\right)=\max _{|A|>1}\left[\frac{m_{G}(A, A)}{|A|-1}\right]^{*}
$$

1. If the edges of G are coloured thus with k colours $1,2, \ldots, k$, let $m_{i}(A, A)$ be the number of edges of colour i having both ends in A; since these edges form a forest, $m_{i}(A, A) \leq|A|-1$. Thus

$$
m_{G}(A, A)=m_{1}(A, A)+\ldots+m_{k}(A, A) \leq k(|A|-1)
$$

as stated.
2. Conversely, suppose that the condition of the Theorem is satisfied. Consider the matroid (E, \mathcal{F}) formed by the family of forests of the graph G, and let r be its rank. If the partial graph (X, F) of G generated by $F \subset E$ has p connected components $\left(X_{1}, F_{1}\right),\left(X_{2}, F_{2}\right), \ldots,\left(X_{p}, F_{p}\right)$ which are not isolated points, then

$$
k r\left(F_{i}\right)-\left|F_{i}\right| \geq k\left(\left|X_{i}\right|-1\right)-m_{G}\left(X_{i}, X_{i}\right) \geq 0
$$

Hence

$$
k r(F)-|F|=\sum_{i=1}^{p}\left(k r\left(F_{i}\right)-\left|F_{i}\right|\right) \geq 0,
$$

or

$$
k \geq \max _{\substack{F \in E \\ F \neq \varnothing}}\left[\frac{|F|}{r(F)}\right]^{*}
$$

Thus, from Corollary 4, it is possible to colour the edges of G with k colours so that no cycle is monochromatic.

Application 3. If G is a simple graph of maximum degree h, it is possible to colour its edges with $\left[\frac{h}{2}\right]^{*}+1$ colours so that no cycle is monochromatic.

Indeed, let $G=(X, E)$ and let $A \subset X$. Suppose $|A|>1$ and $a \in A$, and set $\bar{A}=A-\{a\}$. Then

$$
\begin{aligned}
\frac{1}{|A|-1} m_{G}(A, A) & =\frac{1}{|\bar{A}|}\left(m_{G}(\bar{A}, \bar{A})+m_{G}(\bar{A}, a)\right) \\
& \leq \frac{1}{|\bar{A}|}\left(|\bar{A}| \frac{h}{2}+|\bar{A}|\right) \leq \frac{h}{2}+1
\end{aligned}
$$

From Nash-Williams' Theorem (Application 2), it follows that:

$$
\chi\left(G^{C}\right) \leq\left[\frac{h}{2}\right]^{*}+1
$$

Thus it is possible to colour the edges of G with $\left[\frac{h}{2}\right]^{*}+1$ colours so that no cycle of G is monochromatic.

REFERENCES

Chapter 1: General concepts

Aigner, M., Some theorems on coverings, Studia Sci. Math. Hung. 5, 1970, 303-315.
Baranyai, Z., On the factorisation of the complete uniform hypergraph, Infinite and Finite Sete (A. Hajnal, R. Rado, V.T. S6a, eds.), North Holland, Amsterdam 1975, 91-108.

Beineke, L.W., On derived graphs and digraphs, Beiträge zur Graphentheorie (H. Sachs, H.J. Voss, H. Walther, eds.), Teubner 1868, 17-23.
Berge, C., Graphes et Hypergraphes, Dunod, Paris 1972.
Berge, C., Nombres de coloration de lhypergraphe h-parti-complet, Ann. di Math. Aura Appl. IV, 103, 1975, 3-9.
Berge, C., Introduction à la Théorie des Hypergraphes, Les Presses de I'Univ. de Montréal, Montréal 1973.

Berge, C., The Helly Property, South-East Asian Math. Soc. Bull. 1, 1979, 16-18.
Berge, C., A theorem related to the Chvátal conjecture, Proc. 5th British Combinatorial Conference (Nash-Williams, Sheehan, eds.), Utilitas Math. 1976, 35-40.
Berge, C., On the chromatic index of a linear hypergraph and the Chvátal conjecture, New York Acad. Sc. Proceedings 1985.
Berge, C., and P. Duchet, A generalization of Gilmore's theorem, Recent Advances in Graph Theory, (M. Fiedler, ed.), Acad. Praha, Prague 1975, 49-55.

Berge, C., and E.L. Johnson, Coloring the edges of a hypergraph and linear programming techniques, Studies in Integer Arogramming, Ann. of Discrete Math. 1, 1977, 65-78.
Bermond, J.C., M.C. Heydemann, and D. Sotteau, Line graphs of hypergraphs, I, Discrete Math. 18, 1977, 235-241.
Bermond, J.C., M.C. Heydemann, and D. Sotteau, Graphes représentatifs d'hypergraphes, Colloque Codes et Hypergraphes, Cahiers du C.E.R.O. 20, 1978, 325-329.
Bermond, J.C., and J.C. Meyer, Graphes représentatifs des arềtes d'un multigraphe, J. Math. Pures et Appl. 52, 1973, 289-308.
Bollobás, B., On generalized graphs, Acta Math. Acad. Sci. Hungar. 18, 1985, 447-452.
Bollobás, B., Sperner systems consisting of pairs of complementary subsets, J. Comb. Theory. A, 15, 1973, 363-366.
Bollobás, B., and P. Duchet, Helly families of maximal size, J. Comb. Theory A, 26, 1979, 187-200.
Bollobás, B, and P. Duchet, On Helly families of maximal size, J. Comb. Theory B, 35, 1983, 290-296.
Boonyasomba, V., Degree sequences of connected hypergraphs and hypertrees, Graph Theory, Singapore 1983 (K.M. Koh, H.P. Yap, eds.) Lecture Notes in Math. 1073, Springer-Verlag 1984, 236-247.
Brace, A., and D.E. Daykin, Sperner type theorems for finite sets, Proc. Oxford Conference on Combinatories, 1972, IMA 1972.

Brouwer, A.E., On the edge-colouring property for the hereditary closure of a complete uniform hypergraph, Math. Centre report EW 95/77, Amsterdam 1977.
Brouwer, A.E., and R. Tudeman, Math. Centrum Internal Report 1978.
Chvátal, V., Unsolved problem no. 7, Hypergraph Seminar (C. Berge, D.R. Ray-Chaudhuri, eds.), Lecture Notes in Math. 411, Springer Verlag, Berlin 1974.
Chvátal, V., Intersecting families of edges in hypergraphs having the hereditary property, Hypergraph Seminar (C. Berge, D.K. Ray-Chaudhuri, eds.), Lecture Notes in Math. 411, Springer Verlag, Berlin 1974.

Clements, G.F., A minimization problem concerning subsets, Discrete Math. 4, 1973, 123-128.
Clements, G.F., The Kruskal-Katona Method made explicit, J. Comb. Theory A, 21, 1976, 245-249.
Daykin, D.E., A simple proof of the Kruskal-Katona theorem, J. Comb. Theory A, 17, 1974, 252-253.
Daykin, D.E., J. Godfrey, and A.J. Hilton, Existence theorems for Sperner families, J. Comb. Theory A, 17, 1974, 245-251.
Daykin, D.E., and L. Lovász, The number of values of a Boolean function, J. London Math. Soc. 12 (1976), 225-230.

Daykin, D.E., A.J.W. Hilton, and D. Miklós, Pairings from down-sets and up-sets in distributive lattices, J. Comb. Theory A, 34, 1983, 215-230.
Dewdney, A.K., Degree sequences in complexes and hypergraphs, Proc. Am. Math. Soc. 53, 1975, 535-540.
Erdös, P., Chao-Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford 12, 1961, 313-318.
Erdös, P., On extremal problems of graphs and generalized graphs, Israel J. Math. 2, 1964, 183-190.
Erdös, P., A.W. Goodman, and L. Pósa, The representation of a graph by set intersections, Canad. J. Math. 18, 1966, 106-112.
Erdös, P., and D.J. Kleitman, Extremal problems among subsets of a set, Discrete Math. 8, 1974, 281294.

Erdös, P., M. Herzog, and J. Schönheim, An extremal problem, Israel J. Math. 8, 1970, 408-412.
Erdös, P., and L. Lovász, Problems and results on 3-chromatic hypergraphs, Infinite and Finite Sets, (A. Hajnal, R. Rado, V.T. Sós, eds.), Proc. Soc. J. Bolyai, 10, North Holland 1974, 609-627.

Erdös, P., P. Frankl, and G.O.H. Katona, Intersecting families and their convex hull, Combinatorica 4, 1984, 21-34.
Frankl, P., The proof of a conjecture of G.O.H. Katona, J. Comb. Theory A, 19, 1975, 208-213.
Frankl, P., Sperner systems satisfying an additional condition, J. Comb. Theory A, 20, 1976, 1-11.
Frankl, P., On intersecting families of finite sets, J. Comb. Theory A, 24, 1978, 146-161.
Frankl, P., Families of finite sets satisfying a union condition, Discrete Math. 21, 1979, 111-118.
Frankl, P., A new short proof for the Kruskal-Katona Theorem, Discrete Math. 48, 1984, 327-329.
Frankl, P., and Z. Füredi, On hypergraphs without two edges intersecting in a given number of vertices, J. Comb. Theory A, 36, 1984, 230-236.
Füredi, Z., On maximal intersecting families of finite sets, J. Comb. Theory A, 28, 1980, 282-289.
Gardner, M.L., On the impossibility of a finite forbidden configuration characterization of the graphs which are intersection graphs of r-graphs, (in preparation).
Gilmore, P.C., and R.E. Gomory, A linear programming approach to the cutting stock problem, Operat. Res. 1, 1961, 849-859; II, 1963, 863-889.
Greene, C., G.O.H. Katona, and D.J. Kleitman, Extensions of the Erdös-Ko-Rado Theorem, Recent Advances in Graph Theory, Academia Praha 1975, 223-231. SIAM J. 55, 1976, 1-8.

Greene, C., and D.J. Kleitman, The structure of Sperner k-families, J. Comb. Theory A, 20, 1976, 41-68.
Greene, C., Some partitions associated with a partially ordered set, J. Comb. Theory A, 20, 1976, 69-79.
Gyárfás, A., A note on hypergraphs with the Helly property, Discrete Math. 24, 1978, 221-223.
Gyárfás, A., and J. Lehel, A Helly-type theorem on trees, Combinatorial Theory and Its Applications (Erdös, Rényi, Sós, eds.) North-Holland, Amsterdam-London 1970, 571-584.
Heydemann, M.C., and D. Sotteau, Line graphs of hypergraphs, II, Combinatorics (Coll. Math. Sc. János Bolyai 1978), North Holland 1978.
Hilton, A.J.W., Some intersection and union theorems for several families of finite sets, Mathematika 25, 1978, 125-128.
Hilton, A.J.W., An intersection theorem for a collection of families of subsets of a finite set, J. London Math. Soc. 15, 1977, 369-376.
Hilton, A.J.W., On order set systems, Mathematika 28, 1981, 54-66.
Hilton, A.J.W., The Erdös-Ko-Rado theorem with a valency condition, (in preparation).
Hilton, A.J.W., Analogues of a theorem of Erdös, Ko, Rado, on a family of finite sets, Quart. J. Math. 25, 1974; 27, 1976, 33-38.
Hilton, A.J.W., and E.C. Milner, Some intersection theorems for systems of finite sets, Quart. J. Math. Oxford 18, 1967, 369-384.
Hochberg, M., and W.M. Hirsch, Sperner families, set-systems and a theorem of Meshalkin, Annals New York Acad. Sc. 175, 1970, 224-237.
Hoffman, A.J., On the line graph of the complete bipartite graph, Ann. Math. Stat. 35, 1964, 883-885.
Katona, G.O.H., On a conjecture of Erdös and a stronger form of Sperner's theorem, Studia Sc. Math. Hungar. 1, 1966, 59-63.
Katona, G.O.H., Intersection theorems for systems of finite sets, Acta Math. Acad. Sc. Hung. 15, 1964, 329-337.
Katona, G.O.H., A simple proof of Erdös-Chao Ko-Rado theorem, J. Comb. Theory B, 13, 1972, 183-184.
Katona, G.O.H., A theorem of finite sets, Theory of Graphs, Akadémia Kiadó, Budapest 1968, 187-207.
Kleitman, D.J., Maximal number of subsets of a finite set no k of which are pairwise disjoint, J. Comb. Theory 5, 1968, 157-163.
Kleitman, D.J., Families of non-disjoint subsets, J. Comb. Theory 1, 1966, 153-155.
Kleitman, D.J., On a combinatorial conjecture of Erdös, J. Comb. Theory 1, 1966, 209-214.
Kruskal, J.B., The number of simplices in a complex, Mathematical Optimization Techniques, Univ. of California Press 1963, 251-278.
Lindner, C.C., A. and Rosa (eds.), Topics on Steiner Systems, Annals of Discrete Math. 7, North Holland 1980.

Lovász, L., Combinatorial Problems and Exercises, 13.31, North Holland, Amsterdam 1979.
Lubell, D., A short proof of Sperner's theorem, J. Comb. Theory 1, 1966, 299.
Meshalkin, L.D., A generalization of Sperner's theorem on the number of subsets of a finite set, Theor. Frobability Appl. 8, 1963, 203-204. Teor. Ver. 8, 1963, 219-220.
Meyer, J.C., Quelques problèmes concernant les cliques des hypergraphes h-complets et q-parti h-complets, Hypergraph Seminar (Berge, Ray-Chaudhuri, eds.), Lecture Notes in Math. 411, Springer-Verlag 1974, 127-139 and 285-286.
Mulder, H.M., The number of edges in a k-Helly hypergraph, Annals of Discrete Math. 17, 1983, 497-501.
Milner, E.C., A combinatorial theorem on systems of sets, J. London Math. Soc. 43, 1966, 204-206.

Naik, R.N., S.B. Rao, S.S. Shrikhande, and N.W. Singhi, Intersection graphs of k-uniform linear hypergraphs, Europ. J. Combinatorics 8, 1982, 159-172.
Nickel, L., Private communication, 1976.
Ore, O., The chinese remainder theorem, Am. Math. Monthly 59, 1952, 365-370.
Peltesohn, R., Das Turnierproblem, Thesis, Friederich Wilhelmns Univ., Berlin 1833.
Ramachandra Rao, A., Some extremal problems and characterizations in the theory of graphs, Thesis, I.S.I., Calcutta 1869.

Ray-Chaudhuri, D.K., Characterisations of line graphs, J. Comb. Theory 8, 1967, 201-214.
Schönheim, J., On a problem of Daykin concerning intersecting families of sets, Combinatorics, London Math. Soc. Lecture Notes Series 13, Cambridge Univ. Press 1974, 139-140.
Schönheim, J., Hereditary systems and Chvátal's conjecture, Proc. 5th British Combinatorial Conference 1975, 537-539.
Shrikhande, S.S., On a characterization of the triangular association scheme, Ann. Math. Stat. 80 1959, 39-47.
Sperner, E., Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27, 1928, 544-548.
Sterboul, F., Sur une conjecture de V. Chvátal, Hypergraph Seminar, Lecture Notes in Math. 411, Springer Verlag, Berlin 1974, 152-164.
Stein, P., and J. Schōnheim, On Chvátal's conjecture related to hereditary systems, Ars Combinatoria 5, 1978, 275-291.
Stein, P., Chvátal's conjecture and point-intersections, Discrete Math. 43, 1983, 321-323.
Tijdeman, R., On the edge-colouring property of the hereditary closure of a complete uniform hypergraph II, Math. Centre report 106/78, Amsterdam 1878.
Tusa, Z., Helly-type hypergraphs and Sperner families, Europ. J. Combinatorics 5, 1984, 185-187.
Wang, D.-L., and P. Wang, Some results about the Chvátal conjecture, Discrete Math. 24, 1978, 95-101.
Wegner, G., Eigenshaften der Neuen homologisch einfacher Familien in R^{n}, Thesis, Göttingen 1965.
Wilson, R.M., An existence theory for pairwise balanced designs, II, J. Comb. Theory A, 13, 1872, 246-273.
Wilson, R.M., The exact bound in the Erdös-Ko-Rado theorem, Combinatorica 4, (2-3), 1984, 247-258.
Yamamoto, K., Logarithmic order of free distributive lattices, J. Math. Soc. Japan, 8, 1954, 343-353.

Chapter 2: Transversal sets and matchings

Berge, C., C.C. Chen, V. Chvátal, and C.S. Seow, Combinatorial properties of polyominoes, Combinatorica 1, (3) 1981, 217-224.

Berge, C., and P. Duchet, Une généralisation du théorème de Gilmore, Cahier du C.E.R.O., 17, 1975, 111-124.

Bollobás, B., On generalized graphs, Acta Math. Acad. Sci. Hung. 16, 1965, 445-452.
Bollobás, B., D.E. Daykin, and P. Erdös, Sets of independent edges of a hypergraph, Quart. J. Math. Oxford (2), 21 (1976), 25-32.

Brouwer, A.E., and A. Schrijver, The blocking number of an affine space, J. Comb. Theory A, 24, 1978, 251-253.

Brualdi, R.A., and T.H. Foregger, Packing boxes with harmonic bricks, J. Comb. Theory B, 17, 1974, 81-114.

Bruen, A.A., Blocking sets in finite projective planes, SIAM J. Applied Math. 21, 1971, 380-392.
Bruen, A.A., and M.J. de Resmini, Blocking sets in affine planes, Combinatorics 81 (Barletti Cecehesini), Ann. Discrete Math. 18, 1883, 169-176.

Chaiken, S., D.J. Kleitman, M. Saks, and J. Shearer, Covering regions by rectangles, SIAM J. on Alpebrasc and Discrete Methods, 2, 1981, 384-410.

Chvátal, V., Hypergraphs and Ramseyian theorems, Proc. Am. Math. Soc. 27, 1971, 434-440.
Erdös, P., On a combinatorial problem, V, Acta Math. Acad. Sci. Hung. 15, 1964, 445-447.
Erdös, P., A problem of independent r-tuples, Annales Univ. Budapest 8, 1965, 93-95.
Erdös, P., and T. Gallai, On the maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10, 1959, 337-357.

Erdös, P., and T. Gallai, On the maximal number of vertices representing the edges of a graph, MTA Mat. Kut. Int. Közl, 6, 1961, 181-203.

Erdös, P., A. Hajnal, and J.W. Moon, Mathematical notes, Amer. Math. Monthly 71, 1964, 1107-1110.
Gyárfás, A., and J. Lehel, Hypergraph families with bounded edge cover or transversal number, Combinatorica 3, 1983, 351-358.

Gyárfás, A., J. Lehel, and Z. Tusa, Upper bound on the order of t-critical hypergraphs, J. Comb. Theory $B, 33,1982,161-165$.

Györi, E., Covering simply connected regions by rectangles (private communication, 1984).
Györi, E., A minimax theorem on intervals, J. Comb. Theory B, 1, 1985.
Hansen, P., and M. Lorea, Degrees and independent sets of hypergraph, Discrete Math. 14, 1978, 305309.

Hansen, P., and B. Toft, On the maximum number of vertices in n-uniform cliques, Ars Combinatoria 18A, 1983, 205-216.

Henderson, J., and R.A. Dean, The 1-width of (0,1)-matrices having constant sum three, J. Comb. Theory A, 16, 1974, 355-370.

Herzog, M., and J. Schönheim, The B property and chromatic numbers of generalized graphs, J. Comb. Theory B, 12, 1972, 41-49.

Jaeger, F., and C. Payan, Détermination du nombre maximum d'arêtes d'un hypergraphe \boldsymbol{t}-critique, C.R. Acad. Sci. Paris 271, 1971, 221-223.

Jamison, R.E., Covering finite fields with cosets of subspaces, J. Comb. Theory B, 37, 1984, 279-282.
Kahn, K., A family of perfect graphs associated with directed graphs, J. Comb. Theory B, 37, 1984, 279-282.

Lehel, J., Covers in hypergraphs, Combinatorica 2, 1982, 305-309.
Lehel, J., t-critical hypergraphs and the Helly property, Ann. Discrete Math. 17, 1983, 413-418.
Lehel, J., Multitransversals in τ-critical hypergraphs, Finite and Infinite Sets, Coll. Math. Soc. Bolyai, 1981, 567-576.

Lorea, M., Ensembles stables dans les hypergraphes, C.R. Acad. Sci. Paris 275, 1972, 163-165.
Lucchesi, C.C., and D.H. Younger, A minimax theorem for directed graphs, J. London Math. Soc. 17, 1978, 369-374.

Meyer, J.C., Ensembles stables maximaux dans les hypergraphes, C.R. Acad. Sci. Paris, 274, 1975, 144-147.

Pelikan, J., Properties of balanced incomplete block designs, in Combinatorial Theory and Its Applications (Erdös, Renyi, Sös, eds.), North Holland, Amsterdam 1971, 869-890.
Ryser, H., New types of combinatorial designs, Actes Congrès International des mathématiciens, Nice 1970, 3, 235-239.

Schmidt, W.M., Ein kombinatorisches Problem von Erdös und Hajnal, Acta Math. Acad. Sci. Hung. 15, 1964, 373-374.

Seymour, P.D., On the two colouring of hypergraphs, Quart. J. Math. Oxford (3), 25, 1974, 303-312.
Seymour, P.D., Packing nearly-disjoint sets, Combinatorica 2, 1982, 91-97.
Stein, S.K., The combinatorial covering theorems, J. Comb. Theory A, 16, 1974, 391-397.
Sterboul, F., Sur le nombre transversal des hypergraphes uniformes, Discrete Math. 22, 1978, 91-96.
Szemerédi, E. and Gy. Petruska, On a combinatorial problem I, Studia Sci. Math. Hung. 7, 1972, 363-374.

Tuza, Z., Helly-type hypergraphs and Sperner families, European J. Combinatorice 5, 1984, 185-187.
Tuza, Z., The method of set-pairs for extremal problems in hypergraphs, Finite and Infinite Sets, Coll. Math. Soc. Bolyai, 1981, 749-762.

Tuza, Z., Critical hypergraphs and intersecting set-pair systems, J. Comb. Theory B, 39, 1985, 134-145.

Chapter 3: Fractional tranversals

Aharoni, R., Matchings in n-partite n-graphs, Graphs and Combinatorics 1, 1985, 303-304.
Aharoni, R., P. Erdös, and N. Linial, Optima of dual integer linear programs, Combinatorica 8 (1), 1988, 13-20.

Balas, E., Integer and fractional matchings, Studies in Graphs and Discrete Programming, (P. Hansen, ed.), Annals of Discrete Math. 11, 1981, 1-13.

Balinski, M., On the maximum matching, minimum covering, Proc. Princeton Symposium on Math. Programming, (H.W. Kuhn, ed.), Princeton University Press, 1970, 301-312.

Berge, C., Two theorems in Graph Theory, Proc. Nat. Acad. Sciences U.S.A. 43, 1957, 842.
Berge, C., Regularisable Graphs, Advances in Graph Theory, (Bollobás, ed.), Annals of Discrete Math. 3, 1978, 11-20.

Berge, C., Théorie fractionnaire des graphes, Actes Coll. C.N.R.S. Grenoble 1878 (Benzaken) Grenoble 1979.

Berge, C., Packing problems and hypergraph theory, Ann. Discrete Math, 4, 1979, 3-37.
Berge, C., and P. Duchet, Une généralisation du théorème de Gilmore, Cahiers Centre d'Etudes de Rec. Opér. 17, 1975, 117-124.

Berge, C., and A. Hoffman, Multicolorations dans les hypergraphes unimodulaires et matrices dont les coefficients sont des ensembles, Problèmes Combinatoires et Théorie des Graphes, Colloque d'Orsay 1876, Editions du C.N.R.S., Paris 1978.

Berge, C., and M. Simonovits, The coloring numbers of the direct product of two hypergraphs, Hypergraph Seminar, 1972 (Berge, Ray-Chaudhuri, eds.), Springer Verlag, Lecture Notes 411, 21-33.

Bollobás, B., Disjoint triples in a 3-graph with given maximal degree, Quart. J. Math. Ox ford 28, 1877, 81-85.

Bollobás, B., and A.G. Thomason, Uniquely partitionable graphs, London Math. Soc. 18, 1977, 403-440.
Bollobás, B., and A.G. Thomason, Private communication, 1977.
Brouwer, A.E., and A. Schrijver, The blocking number of an affine space, Publ. Math. Centrum Amsterdam 1976.

Brualdi, R., and T.H. Foregger, Packing boxes with harmonic bricks, J. Comb. Theory B, 17, 1974, 81-114.

Chvátal, V., On finite polarised relations, Canad. J. Math. Bull. 12, 1969, 321-326.
Chvatal, V., and D. Hanson, Degrees and matchings, J. Comb. Theory B, 20, 1976, 129-138.

244 Hypergraphs

Deming, R.W., Independence numbers of graphs - An extension of the König-Ergevary theorem, Discrete Math. 27, 1979, 23-24.

Edmonds, J., Maximum matchings and a polyhedron with (0,1) vertices, J. Res. Nat. Bureau of Standards, B69, 1985, 125-130.

Erdös, P., On extremal problems of graphs and generalized graphs, Israel J. Math. 2, 1964, 183-190.
Erdös, P., and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 82, 1958, 427-489.
Erdös, P., Chao-Ko, and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. 12, 1961, 313-320.
Erdös, P., R.J. McEliece, and H. Taylor, About Ramsey numbers, Pacific J. Math. 37, 1971, 45-46.
Frankl, P., and Füredi, Disjoint r-tuples in a r-graph, Quart. J. Math. Ox ford 34, 1983, 423-426.
Füredi, Z., Maximum degrees and fractional matchings in uniform hypergraphs, Combinatorica 1, 1081, 155-162.

Guy, R.K., A many-facetted problem of Zarankiewicy, The Many Facets of Graph Theory, Lecture Notes in Math 110, Springer-Verlag, Berlin 1969, 12@-148.

Hajós, G., G. Katona, and D. Szasz, Solution of problem 119, Math. Lapok 13, 1962, 214-217.
Hales, R.S., Numerical invariants and the strong product of graphs, J. Comb. Theory B, 15, 1873, 146-155.

Hedrlin, Z., An application of the Ramsey theorem to the topological product, Bull. Acad. Sci. Poland 14, 196B, 25-26.

Henderson, J.R., and R.A. Dean, The 1-width of (0,1)-matrices having constant sum three, J. Comb. Theory A, 16, 1974, 355-370.

Kövary, T., V.T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3, 1954, 50-57.
Lováss, L., 2-matchings and 2-covers of hypergraphs, Acta Math. Ac. Sei. Hungar. 16, 1975, $433-444$.
Lováss, L., On the ratio of optimal integral and fractional covers, Discrete Math. 13, 1975, 383-390.
MeEliece, R.J., and E.C. Posner, Hide and seek, Ann. Stat. 42, 1971, 1706-1716.
McKey, K. General numeric measures and the Kronecker product of graphs, Thesis, Pennsylvania State Univ., June 1973.

Möhrs, M., A new result on Zarankiewies problem, J. Comb. Theory A, 31, 1981, 126-130.
Mühlbacker, J.R., FX. Steinparz, and G. Tinhofer, On certain classes of fractional matchings, Discrete Appl. Math. 9, 1884, 235-244.

Naddef, D., Rank of maximum matchings in a graph, Math. Frogramming 22, 1982, 52-70.
Nemhauser, G.L., and L.E. Trotter, Vertex packings, Math. Argramming 8, 1975, 232-248.
Nemhauser, G.L., and L.E. Trotter, Properties of vertex packings, Math. Programming 6, 1974, 48-61.

Payan, C., Covering by minimal transversals, Discrete Math. 23, 1978, 273-277.
Pelikan, J., Properties of balanced incomplete block designs, Combinatorial Theory and Its Applications, (Erdös, Renyi, Sós, eds.), North-Holland, Amsterdam 1971, 889-890.

Poels, J.M., Conditions d'intersections dans les systèmes de Steiner, Mem. Lie. Se. Math. Université de Bruxelles 1972.

Pulleyblank, W.R., Dual integrality in b-matching problems, Math. Prog. Study 12, 1980, 178-198.
Pulleyblank, W.R., Total dual integrality and b-matchings, Operations Research Letters 1, 1981, 28-30.
Pulleyblank, WR., Polyhedral combinatorics, (A. Bachem, M. Grötschel, B. Korte, eds.), Mathematical Programming - The State of the Art, Springer Verlag, Heidelberg 1983, 312-345.

Pulleyblank, W.R., and J. Edmonds, Faces of 1-matching polyhedra, Hypergraph Seminar, (C. Berge, D.K. Ray-Chaudhuri, eds.), Springer Verlag 1974, 214-242.

Reiman, I., Uber ein Problem von Zarankiewiez, Acta Math. Acad. Sci. Hung. 9, 1958, 269-278.
Richardson, M., On finite projective games, Froc. Amer. Math. Soc. 7, 1985, 458-465.
Rosenfeld, M., On a problem of C.E. Shannon in Graph Theory, Froc. Amer. Math. Soc. 18, 1967, 315319.

Ryser, H., Oral communication, 1965.
Schrijver, A., Short proofs on the matching polyhedron, J. Comb. Theory B, 84, 1983, 104-108.
Schrijver, A., Min-max results in combinatorial optimisation, (A. Bachem, M. Grötschel, B. Korte, eds.), Mathematical Programming - The State of the Art, Springer Verlag, Heidelberg 1983, 439-500.

Schrijver, A., Total dual integrality from directed graphs, crossing families, and sub- and supermodular functions, (W.R. Pulleyblank, ed.), Progress in Combinatorial Optimization, Academic Press, 1984.

Schrijver, A., and P.D. Seymour, A proof of total dual integrality of matching polyhedra, Report 2N79/77, Mathematisch Centrum, Amsterdam 1977.

Scott, S.H., Multiple node colourings of finite graphs, Doctoral Dissertation, Univ. of Reading, England 1975.

Seymour, P.D., On the two-colouring of hypergraphs, Quart. J. Math. Oxford 25, 1974, 303-312.
Stahl, S., n-tuple colorings and associated graphs, J. Comb. Theory B, 20, 1976, 185-207.
Stein, S.K., Two combinatorial covering theorems, J. Comb. Theory A, 16, 1974, 391-397.
Sterboul, F., On the chromatic number of the direct product of hypergraphs, Hypergraph Seminar, (Berge, Ray-Chaudhuri, eds.), Springer Verlag, Lecture Notes in Math. 411, 1972, 165-174.

Sterboul, F., Sur le nombre transversal des hypergraphes uniformes, Discrete Math. 22, 1978, 91-98.
Sterboul, F., A characterization of the graphs in which the transversal number equals the matching number, J. Comb. Theory B, 27, 1979, 228-229.

Sterboul, F., Finite polarized partition relations, J. Comb. Theory B, 34, 1983, 99-103.
Tutte, W.T., The factors of graphs, Canad. J. Math. 4, 1952, 314-328.
Uhry, J.-P., Sur le problème de couplage maximal, R.A.I.R.O. 9, 1975, 3, 19-20.
Zarankiewicz, S., Problem 101, Colloq. Math. 2, 1951, 301.
Znam, S., On a combinatorial problem of K. Zarankiewicz, Coll. Math., 1963, 81-84.

Chapter 4: Colourings

Ahlswede, R., Coloring hypergraphs, a new approach to multi-user source coding, J. Combinatorics, Information, Systems Sciences 4, 1979, 77-115; 5, 1980, 220-268.

Bárány, I., A short proof of Kneser's conjecture, J. Comb. Theory A, 25, 1978, 325-326.
Baranyai, Z., On the factorization of the complete uniform hypergraph, In finite and Finite Sets, (A. Hajnal, R. Rado, V.T. Sós, eds.), Coll. Math. J. Bolyai, 10, Bolyai J. Mat. Társulat, Budapest, North Holland, Amsterdam 1975, 91-108.

Baranyai, Z., Some applications of equalized matrices, preprint, Univ. Eötvös, Budapest 1877.
Baranyai, Z., La coloration des arêtes des hypergraphes complets II, Problèmes Combinatoires et Théorie des Graphes, Coll. C.N.R.S. Orsay 1976, (Bermond, Fournier, Las Vergnas, Sotteau), C.N.R.S., Paris 1878, 19-22.

Baranyai, Z., and A.E. Brouwer, Extensions of colourings of the edges of a complete uniform hypergraphR, Math. Centre Report ZW91/77, Amsterdam 1977.

Berge, C., On the good k-colorings of a hypergraph, Infinite and Finite Sets, Coll. Math. Soc. J. Bolyai, Keszthely, I, 1973, North Holland, Amsterdam 1975, 159-163.

Berge, C., and F. Sterboul, Equipartite colorings in graphs and hypergraphs, J. Comb. Theory B, 22, 1977, 97-113.

Beck, J., On a combinatorial problem of Erdös and Lovász, Discrete Math. 17, 1977, 127, 13.
Beck, J., On 3-chromatic hypergraphs, Discete Math. 24, 1978, 127-137.
Beck, J., and T. Fiala, Integer making problems, Diserete Math. 3, 1981, 1-8.
Bollobás, B., and A.J. Harris, List-colourings of graphs, Graphs and Combinatorics 1, 1985, 115-127.
Borsuk, K., Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20, 1933, 177-190.
Brouwer, A.E., A generalization of Baranyai's theorem, Math. Centre report ZW81/76, Amsterdam 1976.
Brouwer, A.E., and M. Voorhoeve, Turán theory and the lotto problem, Packing and Covering,
(A. Schrijver, ed.), Stichting Math. Centrum, Amsterdam 1978, 89-94.

Brouwer, A.E., and A. Schrijver, Uniform hypergraphs, Packing and Covering (A. Schrijver, ed.), Stichting Math. Centrum, Amsterdam 1978, 35-67.

Chartrand, G., D.P. Geller, and S. Hedetniemi, A generalization of the chromatic number, Proc. Cambridge Phil. Soc. 64, 1968, 265-271.

Christofides, N., An algorithm for the chromatic number of a graph, The Computer J. 14, 1971, 38-39.
Chung, F.R.K., On the Ramsey number $R(3,3, \ldots, 3)$, Discrete Math. 5, 1973, 317-322.
Chvátal, V., Hypergraphs and Ramseyian theorems, Proc. AMS 27, 1971, 434-440.
de Caen, D., Turán's problem for hypergraphs, Ph.D. Thesis, University of Toronto 1982.
de Caen, D., Extensions of a theorem of Moon and Moser on complete subgraphs, Ars Combinatoria 16, 1983, 5-10.
de Caen, D., A note on the probabilistic approach to Turán's problem, J. Comb. Theory B, 34, 1983, 340-349.

Deming, R.W., Acyclic orientation of a graph and chromatic and independent numbers, J. Comb. Theory B, 26, 1979, 101-110.
de Werra, D., On line perfect graphs, Math. Program. 15, 1978, 236-238.
de Werra, D., Regular and canonical colorings, Discrete Math. 27, 1979, 309-316.
de Werra, D., On the use of alternating chains and hypergraphs in edge-coloring, J. Graph Theory 3, 1979, 175-182.
de Werra, D., On the existence of generalized, good, and equitable edge colorings, J. Graph Theory 5, 1981, 247-258.
de Werra, D., Obstructions for regular colorings, J. Comb. Theory B, 32, 1982, 326-316.
de Werra, D., On the use of bichromatic interchanges, Annals Discrete Math. 17, 1983, 639-646.
Erdös, P., On a combinatorial problem, Nordisk. Mat. Tidskr. 3, 1963, 5-10.
Erdös, P., On a combinatorial problem II, Acta Math. Ac. Sc. Hung. 15, 1964, 445-447.
Erdös, P., A problem on independent r-tuples, Ann. Univ. Sci. Budapest 8, 1965, 93-95.
Erdös, P., On a combinatorial problem III, Canad. Math. Bull. 12, 1969, 413-416.
Erdös, P., On some extremal problems on r-graphs, Discrete Math. 1, 1971, 1-6.
Erdös, P., and T. Gallai, On the maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10, 1959, 337-357.

Erdös, P., and A. Hajnal, A property of families of sets, Acta Math. Acad. Sci. Hung. 12, 1961, 87-123.
Erdös, P., and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hung 17, 1966, 61-99.

248 Hypergraphe

Erdös, P., and L. Loviaz, On S-chromatic hypergraphs, Infinite and Finite Sets, Coll. Math. Soc. J. Bolyai 10, North Holland, 1975, 609-627.

Erdös, P., and J.L. Selfridge, On a combinatorial game, J. Comb. Theory B, 14, 1973, 298-301.
Erdös, P., and JL. Spencer, Pobabiliatic Methods in Combinatorics, Academic Press, New York 1974.
Fournier, J.C., Méthode et theorème général de coloration des arêtes d'un multigraphe, J. Math. Puree et Appl. 56, 1977, 437-453.

Fournier, J.C., Coloration des arêtes d'un graphe, Cahiers du C.E.R.O. 15, 1973, 311-314.
Frankl, P., On the chromatic number of the general Kneser graph, J. Graph Theory 9, 1985, 217-220.
Frankl, P., and V. Rödl, Lower bounds for Turan's problem, Graphs and Combinatorics 1, 1985, 213-216.
Gale, D., Neighbouring vertices on a convex polyhedron, Linear inequalities and related systems, (H.W. Kuhn, A.W. Tucker, eds.), Annals of Math. Studies 38, Princeton Univ. Press, Princeton, N.J. 1956, 225-263.

Gerenceér, L., Szinezési Problémakrol, Mat. Lapok 16, 1965, 274-277.
Graham, RL., On edgewise 2-colored graphs with monochromatic triangles containing no complete hexagon, J. Comb. Theory, 4, 1968, 300-301.
Graham, RL., B. Rothschild, and J. Spencer, Ramey Theory, Wiley, New York 1980.
Hajnal, A., and B. Rothschild, A generalization of the Erdö-Ko-Rado theorem on finite set systems, J. Comb. Theory A, 16, 1873, 359-362.
Hales, A.W., and RI. Jewett, Regularity and positional games, Trans. AMS 108, 1963, 222-229.
Hansen, P., Subdegrees and chromatic numbers of hypergraphs, Annale of Diserete Math. 1, 1977, 287-282.

Hansen, P., and M. Lorea, Deux conditions de colorabilité des hypergraphes, Coll. Math. Discrete, Bruxelles 1978, Cahiers du C.E.R.O. 20, 1978, 3-4, 405-410.

Haray, F., A survey of generalized Ramsey theory, Graphs and Combinatorics, Springer Verlag, Berlin 1974, 10-17.

Hedetniemi, S., Disconnected-colorings of graphs, Combinatorial Structures, Gordon and Breach, New York 1970, 163-167.

Herzog, M., and J. Schönheim, The $B_{\boldsymbol{r}}$ property and chromatic numbers of generalized graphs, J. Comb. Theory B, 12, 1972, 41-49.
Hilton, A.J.W., Colouring the edges of a multigraph so that each vertex has at most \boldsymbol{j} or at least \boldsymbol{j} edges of each colour on it, J. London Math. Soc. 2, 1975, 124-128.

Hilton, A.J.W., and D. de Werra, Sufficient conditions for balanced and equitable edge colourings of graphs, O.R.W.F. 82/s, Ecole Polytechnique Fédérale de Lausanne, 1982.

Hilton, A.J.W., and R.P. Jones, Partitioning the edges of a graph, J. Comb. Theory B, 25, 1978, 290-294.
Johnson, D.S., On property $B_{r}, J . C o m b$. Theory B, 20, 1976, 64-66.
Katona, G.O.H., T. Nemets, and M. Simonovits, On a graph-problem of Turán, Mat. Lapok 15, 1964, 228-238 (in Hungarian).

Kleitman, D.J., On a conjecture of Milner on k-graphs with non-disjoint edges, J. Comb. Theory 5, 1968, 153-156.

Kneser, M., Aufgabe 360, Jber. Deutsch. Math.-Verein. 58, 1955/56, 2 Abt., 27.
Lehel, J., Covers in hypergraphs, Combinatorica 2, 1982, 305-309.
Lorea, M., On Turán hypergraphs, Discrete Math. 26, 1978, 281-285.
Lovasz, L., On minimax theorems of combinatorics, Mat. Lapok 26, 1975, 209-261.
Lovász, L., Combinatorial Problems and Exercises, Akad. Kiadó, Budapest 1979.
Lovász, L., On chromatic number of finite set-systems, Acta Math. Ac. Sci. Hung. 19, 1868, 59-67.
Lovász, L., Graphs and set systems, Beiträge zur Graphentheorie, (H. Sachs, H.J. Voss, H. Walther, eds.), Teubner, 1968, 99-106.

Lovász, L., Kneser's conjecture, chromatic number and homotopy, J. Comb. Theory 25, 1978, 319-324.
McDiarmid, C.J.H., The solution of timetabling problem, J. Inst. Math. App. 1972, 9, 23-24.
Meyer, J.C., Quelques problèmes concernant les cliques des hypergraphes h-complets, Hypergraph Seminar, (Berge, Ray-Chaudhuri, eds.), Lecture Notes on Math. 411, Springer Verlag, New York 1974.

Meyer, J.C., On the good colorings II, In finite and Finite Sets, Coll. Math. Soc. J. Bolyai, Keszthely, 1973, III, North Holland, Amsterdam 1975, 1099-1114.

Meyer, J.C., Problèmes de coloration dans les hypergraphes, Thesis, University of Paris XI, June 1976.
Miller, Z., and H. Müller, Chromatic numbers of hypergraphs and coverings of graphs, J. Graph Theory 5, 1981, 297-305.

Motzkin, T.S., Colorings, cocolorings and determinant terms, Theory of Graphs, Rome I.C.C. (P. Rosenstiehl, ed.), Dunod, Paris 1967, 253-254.

Müller, H., Oriented hypergraphs, stability numbers and chromatic numbers, Discrete Math. 84, 1981, 319-320.

Nesetril, J., and P. Hell, k-societies with given semi-group, Combinatorial Structures and Their Applications, Gordon and Breach, New York 1970, 301-392.

Sachs, H., and M. Schäuble, Ober die Konstruktion von Graphen mit gewissen Färbungseigenschaiten, Beiträge Graphentheorie, Teubner, Leipzig 1968, 131-135.

Sauer, N., A generalization of a theorem of Turán, J. Comb. Theory B, 10, 1971, 109-112.

Schmidt, W.M., Ein kombinatorisches Problem von Erdös und Hajnal, Acta Math. Ac. Sc. Hung. 15, 1964, 373-374.

Schönheim, J., On covering, Pacific J. Math. 14, 1964, 1405-1411.
Seymour, P.D., A note on a combinatorial problem of Erdös and Hajnal, J. London Math. Soc. 8, 1974, 373-374.

Sterboul, F., An extremal problem in hypergraph coloring, J. Comb. Theory B, 22, 1977, 159-164.
Sterboul, F., Un problème extrémal pour les graphes et les hypergraphes, Discrete Math. 11, 1975, 71-77.
Sterboul, F., A new combinatorial parameter, Infinite and Finite Sets, III, Coll. Math. Soc. J. Bolyai 10 (Hajnal, Rado, Sós, eds.), North Holland, Amsterdam 1975, 1387-1404.

Sterboul, F., Some Extremal Coloring Problems: A Survey (Aberdeen).
Sterboul, F., and D. Wertheimer, Colorations extrêmes dans les hypergraphes, Combinatorial Mathematics, Annals of Discrete Math. 17, North Holland, Amsterdam 1983, 605-612.

Chapter 5: Hypergraphs generalising bipartite graphs

Acharya, B.D., On Lovász hypergraphs, Private communication, 1983.
Acharya, B.D., and M. las Vergnas, Hypergraphs with cyclomatic number zero, triangulated graphs, and an inequality, J. Comb. Theory $B, 33,1982,52-56$.

Anstee, R.P., Properties of (0,1)-matrices with forbidden configurations, J. Comb. Theory A, 31, 1981, 256-269.

Anstee, R.P., and M. Farber, Characterizations of totally balanced matrics, J. Algorithms 5, 1984, 215-230.

Berge, C., Färbung von Graphen, deren sämtliche bzw deren ungerade Kreise starr sind, Wissenschaftliche Zeitung, Martin Luther Univ. Halle Wittenberg, 1961, 114-115.

Berge, C., Hypergraphs generalizing bipartite graphs, Integer and Non-Linear Programming, Chap. 26, (J. Abadie, ed.), North Holland, Amsterdam 1970, 507-509.

Berge, C., Some classes of perfect graphs, Graph Theory and Theoretical Physics, Chap. 5, (F. Harary, ed.), Academic Press, New York 1967.

Berge, C., The rank of a family of sets and some applications to graph theory, Recent Progress in Combinatorics, (W.T. Tutte, ed.), Academic Press, 1969, 49-57.

Berge, C., Sur certains hypergraphes généralisant les graphes bipartis, Combinatorial Theory and Its Applications, (Erdös, Rényi, Sós, eds.), North Holland, Amsterdam-London 1970, 119-133.

Berge, C., Balanced matrices, Math. Frogr. 2, 1972, 19-31.
Berge, C., On the good k-colorings of a hypergraph, In finite and Finite Sets, (Coll. Math. Soc. J. Bolyai 10, 1973), North Holland, 159-163.

Berge, C., Balanced matrices and property G, Math. Programming Study 12, 1980, 163-175.
Berge, C., Minimax theorems for normal hypergraphs and balanced hypergraphs, Ann. Discrete Math. 21., 1984, 3-19.

Berge, C., C.C. Chen, V. Chvátal, and C.S. Seow, Combinatorial properties of polyominoes, Combinatorica 1, 1981, 3, 1982, 217-224.

Berge, C., and M. las Vergnas, Sur un théorème du type König pour hypergraphes, Annals N.Y. Acad. Sc. 175, New York Academy of Sciences, 1970, 32-40.

Bixby, R.E., Matroids and operations research, 7.3. An algorithm for testing if a matrix is totally unimodular, in Advanced Techniques in the Practice of Operations Research, (H. Greenberg, F. Murphy, S. Schews, eds.), North Holland, Amsterdam 1982, 448-446.

Buneman, P., A characterization of rigid circuit graphs, Discrete Math. 9, 1974, 205-212.
Brouwer, A.E., P. Duchet, and A. Schrijver, Graphs whose neighbourhoods have no special cycle, Discrete Math. 47, 1983, 177-182.

Brualdi, R., Matrices of 0 's and 1's with total support, J. Comb. Theory A, 28, 1980, 249-258.
Camion, P., Matrices totalement unimodulaires et problèmes combinatoires, Thesis, Brussels 1963.
Chandrasekaran, R., and A. Tamir, Polynomially bounded algorithms for locating penters on a tree, Math. Programming 22, 1982, 304-315.

Chang, G.J., and G.L. Nemhauser, The k-domination and k-stability problems on sumfree chordal graphs, SIAM J. Algebraic and Discrete Methods 5, 1984, 332-345.

Chvátal, V., On certain polytopes associated with graphs, J. Comb. Theory B, 18, 1975, 138-154.
Chvátal, V., Linear Programming, Freeman, New York 1983.
Conforti, M., and G. Cornuéjols, An algorithmic framework for the matching problem in some hypergraphs, Networks 17, 1987, 365-386.

Conforti, M., and M.R. Rao, Structural properties and recognition of restricted and strongly unimodular matrices, Math. Programming 38, 1987, 17-27.

Commoner, G.G., A sufficient condition for a matrix to be totally unimodular, Networks 3, 1973, 351-365.
Cook, W., Balanced matrices and minimax theorem for directed graphs, CORR Report 82-7, 1982, University of Waterloo.

Cramar, Y., P.L. Hammer, and T. Ibaraki, Strong unimodularity for matrices and hypergraphs, Discrete Applied Math., 15, 1986, 221-239.

Csima, J., Stochastic functions on hypergraphs, Combinatorial Theory and Its Applications, (Erdös, Rényi, Sós, eds.), North Holland, Amsterdam-London 1970, 247-251.
de Werra, D., Equitable colorations of graphs, Revue Fr. Informatique et R.O., R-3, 1971, 3-8.
Duchet, P., Thesis, University of Paris 6, 1979.
Duchet, P., Tree hypergraphs and their representative trees, preprint 1985.
Duchet, P., Classical perfect graphs, Topies of Perfect Graphs, (C. Berge, V. Chvátal, eds.), Annals of Discrete Math. 21, North Holland 1984, 67-96.

Duchet, P., n^{n-2}, in Algorithme et Ensembles Ordonnés, (M. Habib, ed.), Ecole des Mines, Saint Etienne 1981.

Duchet, P., Propriété de Helly et problèmes de représentation, Problèmes Combinatoires et Théories de Graphes, (Orsay 1876), Edition du C.N.R.S., Paris 1978, 117-118.
Edmonds, J., Submodular functions, matroids and certain polyhedra, Combinatorial Structures and Applications, London 1970, 69-87.

Edmonds, J., Edge disjoint branchings, Combinatorial Algorithms, New York 1973, 91-96.
Edmonds, J., and R. Giles, A min-max relation for submodular functions on graphs, Studies in Integer Frogramming, Annals of Discrete Math. 1, 1977, 185-204.

Edmonds, J., and E.L. Johnson, Matching, Euler tours and the Chinese postman, Math. Programming 5, 1973, 88-124.

Fagin, R., Degrees of acyclicity for hypergraphs and relational database schemes, J. of ACM 30, 1983, 514-550.

Farber, M., Applications of lp duality to problems involving independence and domination, Ph.D. Thesis, Rutgers University 1982.

Farber, M., Domination, independent domination, and duality in strongly chordal graphs, Diserete Appl. Math. 7, 1984, 115-130.

Farber, M., Characterizations of strongly chordal graphs, Discrete Math. 43, 1983, 173-189.
Flament, C., Hypergraphes arborés, Discrete Math. 21, 1978, 223-226.
Fournier, J.-C., and M. las Vergnas, A class of bichromatic hypergraphs, Topics on Perfect Graphs, Annals Discrete Math. 21, 1984, 21-27.
Fulkerson, D.R., Blocking and anti-blocking pairs of polyhedra, Math. Programming i, 1971, 168-194.
Fulkerson, D.R., A.J. Hoffman, and R. Oppenheim, On balanced matrices, Math. Programming Study 1, 1974, 120-132.

Frank, A., Some polynomial algorithms for certain graphs and hypergraphs, Proceedings, 5th British Combinatorial Conference (Aberdeen 1975), Utilitas Math. Publ. Inc., Winnipeg 1976, 211-226.

Frank, A., On a class of balanced hypergraphs, Discrete Math. 20, 1977, 11-20.
Frank, A., Kernel syatems of directed graphs, Acta Sci. Math. (Seeged) 41, 1979, 63-78.
Füredi, Z., and Z. Tusa, Hypergraphs without a large star, Discrete Math. 55, 1985, 317-s21.
Gavril, F., The intersection graphs of subtrees in a tree are exactly the chordal graphs, J. Comb. Theory $B, 18,1974,47-56$.

Gavril, F., A recognition algorihm for the intersection graphs of patbs in trees, Discrete Math. 28, 1978, 211-227.

Ghouila-Houri, A., Characterisation des matrices totalement unimodulaires, C.R. Acad. Sci. Paris 254, 1982, 1192-1183.
Golumbic, M., Algorithmie Graph Theory and Per fect Graphs, Academic Press, New York 1980.
Gupta, R.P., An edge-coloration theorem for bipartite graphs, Discrete Math. 23, 1978, 229-233.
Hansen, P., and M. las Vergas, On a property of hypergraphs with no cycles of length greater than two, Hypergraph Seminar, (C. Berge, D.K. Ray-Chaudhuri, eds.), Lecture Notes in Math. 411, Springer Verlag, Berlin 1974, 89-101.

Hilton, A.J.W., Decomposing regular r-uniform hypergraphs into regular factors, Studia Sei. Math. Hung. 18, 1983, 107-412.

Hoffman, A.J., Some recent applications of the theory of linear inequalities to extremal combinatorial analysis, Aroc. Symposia in Applied Math. 10, 1860, 113-127.

Hofman, A.J., A generalisation of maxflow-mincut, Math. Prog. 8, 1974, 352-359.
Hoffman, A.J., Total unimodularity and combinstorial theoreme, Linear Algebra and Applications 18, 1976, 103-108.

Hoffman, A.J., and J.B. Kruskal, Integral boundary points of convex polyhedra, Ann. of Math. Studies 28, Princeton 1956, 222-246.
Hoffman, A.J., M. Sakarovitch, and A.W.J. Kolen, Totally balanced and greedy matricen, SIAM J. Algebraic and Diacrete Methode, to appear - Report 8293/0 Erasmus University, Rotterdam 1885.
Hoffman, A.J., and D.E. Schwarts, On lattice polyhedra, Proc. 5th Hung. Coll. on Combinatorics, North Holland, Amsterdam 1978, 593-508.

Hu, T.C., Multicommodity network How, Op. Res. 11, $1963,344348$.
Kachian, L.G., A polynomial algorithm in linear programming, Soviet Mathematice Dokiady 20, 1979, 191-194.

Karmarkar, N., A new polynomial time algorithm for linear programming, Froc. Sixteenth Annual ACM Symp. on Theory of Computing, Washington 1984, 302-311.

Kolen, A., Location problems on trees and in the rectilinear plane, Ph.D. Thesis, Math. Centrum, Amsterdam 1882.

Lehel, J., A characterization of totally balanced hypergraphs, Discrete Math. 37, 1985, 49-57.
Lehman, A., On the width length inequality, preprint 1965.
Lewin, M., On the width length inequality, reprint, 1965.
Lewin, M., On hypergraphs without significant cycles, J. Comb. Theory B, 20, 1976, 80-83.
Lewin, M., On intersection multigraphs of hypergraphs, J. Comb. Theory B,, 34, 1983, 228-232.
Li Wei-Xuan, The cycle chromatic number of a hypergraph and an inequality of Lovász, Frogress in Graph Theory, (Waterloo 1982), Academic Press, Toronto 1984, 381-387.
Lovász, L., Graphs and set-systems, Beiträge zur Graphentheorie, Teubner 1968, 99-106.
Lovász, L., Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2, 1972, 253-267.
Lovász, L., On two minimax theorems in graphs, J. Comb. Theory B, 21, 1976, 96-103.
Lovász, L., Certain duality principles in graph theory, Ann. Discrete Math. 1, 1977, 96-103.
Lovász, L., Combinatorial Problems and Exercises, North Holland, Amsterdam, 1979.
Lubiw, A., 「-free matrices, Master's Thesis, University of Waterloo 1982.
Lubiw, A., Doubly lexical orderings of matrices, Proc. 17th A.C.M. Symposium on Theory of Computing, Aesociation for Computing Machinery, 1985, 396-403.

Lucchesi, C.C., and D.H. Younger, A minimax relation for directed graphs, J. London Math. Soc. 17, 1978, 369-374.

Maurras, J.-F., Polytopes à sommets dans [0,1] ${ }^{n}$, Ph.D. Thesis, Paris 7, 1976.
Padberg, M.W., On the facial structure of set packing polyhedra, Math. Programming 5, 1973, 198-215.
Padberg, M.W., Perfect zero-one matrices, Math. Programming 6, 1974, 180-196.
Padberg, M.W., Characterization of totally unimodular, balanced and perfect matrices, in Combinatorial Frogramming Methods and Applications, (B. Roy, ed.), Reidel, Dordrecht 1975, 275-284.

Padberg, M.W., Almost integral polyhedra related to certain combinatorial optimization problems, Linear Algebra and Its Applications 15, 1976, 69-88.

Padberg, M.W., A note on the total unimodularity of matrices, Discrete Math. 14, 1976, 273-278.
Padberg, M.W., Total unimodularity and the Euler subgraph problem, Operations Research Letters 7, 1988, 173-179.
Ryser, H.J., A fundamental matrix equation for finite sets, Proc. Amer. Math. Soc. 34, 1972, 332-336.
Ryser, H.J., Combinatorial Mathematies, Carus Mathematical Monographs 14, Math. Assoc. Amer., Washington D.C. 1963.

Sakarovitch, M., Quasi-balanced matrices, Math. Programming 8, 1975, 382-386.
Sakarovitch, M., Sur quelques problèmes d'optimisation combinatoire, Ph.D. Thesis, Grenoble 1975.

Schrijver, A., Fractional packing and covering, Packing and Covering, Stichting. Math. Centrum Amsterdam 1978, 175-248.

Schrijver, A., Min-max relations for directed graphs, Report AE 21/80.
Schrijver, A., and P.D. Seymour, Solution of two fractional packing problems of Lovász, Discrete Math. 26, 1979, 177-184.

Seymour, P.D., The forbidden minors of binary clutters, J. London Math. Soc. 12, 1976, 356-360.
Seymour, P.D., Discrete Optimiztion, Lecture Notes, Univ. Oxford 1977.
Seymour, P.D., Decomposition of regular matroids, J. Comb. Theory B, 28, 1980, 305-359.
Shearer, J.B., A class of perfect graphs, SIAM J. Alg. Discrete Math. 3, 1982, 281-284.
Slater, P.J., R-domination in graphs, J.A.C.M. 23, 1976, 446-450.
Slater, P.J., A characterization of soft hypergraphs, Canad. Math. Bull. 21, 1978, 335-337.
Tamir, A., A class of balanced matrices arising from location problems, SIAM J. Alg. Discrete Math. 4, 1983, 363-370.

Tamir, A., Totally balanced and totally unimodular matrices defined by center location problems, reprint, New York University 1985.

Tarjan, R.E., and M. Yannakakis, Simple linear time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. of Computing 13, 1984, 566-579.

Trotter, W.T., and J.I. Moore, Characterization problems for graphs, partially ordered sets, lattices and families of sets, Discrete Math. 16, 1976, 361-381.

Tucker, A., A structure theorem for the consecutive l's property, J. Comb. Theory 12, 1972, 361-381.
Veinott, A.F., and G.B. Dantzig, Integral extreme points, SLAM Review 10, 1968, 371-372.
Vidyansankar, K., and D.H. Younger, A minimax equality related to the longest directed path in an acyclic graph, Canad. J. Math. 29, 1975, 348-351.

Wei-Xuan Li, The cycle chromatic number of a bypergraph and an inequality of Lovász, Progress in Graph Theory, (Waterloo 1982), Academic Press, Toronto 1984, 381-387.

Woodall, D.R., Menger and König systems, Theory and Applications of Graphs, Lecture Notes in Math. 642, Springer Verlag 1878, 620-635.

Woodall, D.R., Minimax Theorems in Graph Theory, Chapter 9 of Selected Topics in Graph Theory, (L. Beineke, R.J. Wilson, eds.), Academic Press, London, 1978, 237-269.

Yannakakis, M., On a class of totally unimodular matrices, Math. of Oper. Res. 10, (2), 1985, 280-304.
Zhang Cun-Quan, and Li Wei-Xuan, A class of hypergraphs satisfying an inequality of Lovász, J. Comb. Theory B, 34, 1983, 224-228.
Zykov, AA., Hypergraphs (in Russian), Uspekhi Mat. Nauk 29, 1974, 89-154.

This Page Intentionally Left Blank

[^0]: (1) For the matrix proof, cf. Fulkerson [1081]. If A is a matrix $a_{j}^{i} \geq 0$, a_{j}^{i} real (and not necessarily integer) and such that no column yector is a conyex linear combination of the others, its "blocking" matrix B is a matrix whose column vectors are the extreme points of the polyhedron
 $P=\left\{t \mid \in R^{n}, t \geq 0, A^{*} t \geq 1\right\}$

[^1]: (1) (P. Seymour, J.C.T., B23, 1977, 189-222). For a detailed exposition and for general terminology, we refer the reader to D. Welsh, Matroid Theory, Academic Press, New York 1976; R.E. Bixby, Matroids and Operations Research in H. Greenberg, F. Murphy, S. Shaw, Advanced Techniques, North Holland, Amsterdam, 1982.

