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FOREWORD

For the past forty years, Graph Theory has proved to be an extremely use ful tool
Jor solving combinatorial problems, in areas as diverse as Geometry, Algebra, Number
Theory, Topology, Operations Research and Optimization. It was thus natural to try
and generalise the concept of a graph, in order to attack additional combinatorial
problems.

The tdea of looking at a family of sets from this standpoint took shape around
1960. In regarding each set as a "generalised edge” and in calling the family itself a
"hypergraph", the initial idea was to try to extend certain classical results of Graph
Theory such as the theorems of Turén and Konig. Next, it was noticed that this gen-
eralisation often led to simplification; moreover, one single statement, sometimes
remarkably simple, could unify several theorems on graphs. It is with this motiva-
tion that we have tried in this book to present what has seemed to us to be the most
signi ficant work on hypergraphs.

In addition, the theory of hypergraphs is seen to be a very useful tool for the
solution of integer optimization problems when the mairiz has certatn special proper-
ties. Thus the reader will come across scheduling problems (Chapter 4), location prob-
lems (Chapter 5), etc., which when formulated ¢n terms of hypergraphs, lead to gen-
eral algorithms. In this way specialists in operations research and mathematical
programming have also been kept in mind by emphasizing the applications of the
theory.

For pure mathematicians, we have also included several general resulis on set
systems which do not arise from Graph Theory; graphical concepts nevertheless pro-
vide an elegant framework for such results, which become easier to visualize.

For students in pure or applied mathematics, we have thought it worthwhile to
add at the end of each chapter a collection of related problems. Some are still open
but many are straightforward applications of the theory to combinatorial designs,
directed graphs, matroids, etc., such consequences being too numerous to include in
the text itself.

We wish especially to thank Michel Las Vergnas, and also Dominique de Werra
and Dominique de Caen, for their help in the presentation. We express our thanks
also to the New York University for permission to include certain chapters of this
book which were taught in New York during 1985.

Claude Berge

Note: The longest proofs, and those which are particularly difficult, are indicated in
the text by an asterisk; they can ecasily be skipped on first reading.
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For the notations specific to graphs, see the reference: Graphs (C. Berge, Graphs,
North Holland, 1985).
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Chapter 1

General Concepts

1. Dual Hypergraphs

Let X = {z;,25,....T,} be a finite set. A hypergraph on X is a family
H = (E,Ey,....E,;) of subsets of X such that

(1) Ei #* @ ('L = 1,2,...,771)
(2) G E,‘ = X.
g1

A simple hypergraph (or “Sperner family”) is a hypergraph H = (E,E,,....E,,)
such that

The elements z,,24,...,2, of X are called vertices, and the sets E|,F,,...,.E,, are
the edges of the hypergraph. A simple graph is a simple hypergraph each of whose
edges has cardinality 2; a multigraph (with loops and multiple edges) is a hypergraph
in which each edge has cardinality < 2. Nonetheless we shall not consider isolated
points of a graph to be vertices,

A hypergraph H may be drawn as a set of points representing the vertices. The
edge E; is represented by a continuous curve joining the two elements if [Ej | =2, by
a loop if IE'J| =1, and by a simple closed curve enclosing the elements if lE]] > 3.

One may also define a hypergraph by its incidence matrix A =((a§-)), with
columns representing the edges E,,E,,...F,, and rows representing the vertices
T 13T gyeees Ty, Where a} =0if z; ¢ E;, a;: = 1if z; EE; (cf. Figure 1).
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E, E, Ey E, E5 Eg
0 0 0 0 1 0
0 6 0 t 1 0
{1 0 0 1 0 O
1 0 0 0 0 O
1 1 0 0 0 O
0o 0 t 0 0 O
0 0 | 1 0 1
0 1 1 0 0 0

Figure 1. Representation of a hypergraph H and its incidence matriz

The dual of a hypergraph H = (E,Es...E,) on X is a hypergraph
H* = (X |,X,...,X,) whose vertices ey,e,...,&,,, correspond to the edges of H, and with
edges

H* clearly satisfies both conditions (1) and (2).

It is easily seen that the incidence matrix of H* is the transpose of the incidence
matrix of H and so we have (H*)* = H,

Figure 2. The dual hypergraph of the hypergraph in Figure 1.

As for a graph, the order of H, denoted by n(H), is the number of vertices. The
number of edges will be denoted by m(H). Further the rank is r(H) = max |E;|, the
j

anti-rank is 8(H) = min |E; | if »(H) = s(H) we say that H is a uniform hypergraph;
i
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a simple uniform hypergraph of rank » will also be called r-uniform, and in this case it
will be understood that there is no repeated edge.

For a set J C {1,2,...,m} we call the family
H'=(E;/j€J)
the partial hypergraph generated by the set J. The set of vertices of H' is a nonempty
subset of X.
For a set A C X we call the family

Hy =(E;NA/1<j<m, E;NA+()

the sub-hypergraph induced by the set A. (We define partial sub-hypergraphs etec. in a
similar fashion).

Proposition. The dual of a subhypergraph of H is a partial hypergraph of the dual
hypergraph H*,

In the case of hypergraphs of rank 2 these reduce to the familiar definitions for
graphs. All the concepts of graph theory may thus be generalised to hypergraphs
which will allow us to find stronger theorems, and applications to objects other than
graphs. Further the formulation of a combinatorial problem in terms of hypergraphs
sometimes has the advantage of providing a remarkably simple statement having a

familiar form.

A stronger result may be much easier to prove than the weak result!

2. Degrees

The other definitions from graph theory which may be extended without ambi-
guity to a hypergraph H are the following:

For z €X, define the star H{z) with centre z to be the partial hypergraph
formed by the edges containing x. Define the degree dy(z) of = to be the number of
edges of H(z), so dg(x) = m(H(z)).

The maximum degree of the hypergraph H will always be denoted by

A(H) = ngy(m).

A hypergraph in which all vertices have the same degree is said to be regular.
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Note that A(H) = r(H?*), and that the dual of a regular hypergraph is uniform.

For a hypergraph H of order n, the degrees dy(z;) = d; in decreasing order form
an n-tuple dy > dy 2> - > d, whose properties can be characterised if H is a sim-
ple graph (Erdds, Gallai [1960], cf. Graphs, Ch. 6, Th. 6). In general

Proposition 1. An n-tuple d, > dy, > + -+ >d, is the degree sequence of a uni-
form hypergraph of rank r and order n (possibly with repeated edges) if and only if
n

3. d; is a multiple of r and d, > 1.

f=1

Proof. Given such an n-tuple dy >dy > *++ > d,, we wish to construct the edges
of a hypergraph H one by one on the set {z,%g,...,z, }

In the first step, associate with each vertex z; a weight d} = d; and form the first
edge E, by taking the r vertices of greatest weight. In the second step, associate with

vertex z; the weight

d} itz ¢ E,

d|2= 1 .
d,‘ —1 if T EEI

Form E, by taking the r vertices of greatest weight, ete. If Xd; = mr we obtain H
with the edges E|,E,,....E,,, and dy(z;) = d; for ¢ = 1,2,...,n.

A hypergraph is connecied if the Intersection graph of the edges is connected.
Then we have

Proposition 2 (Tusyadej [1978]). An n-tuple dy >dy > -+ > d, is the degree
sequence of a connected uniform hypergraph of rank r if and only if

1) Zn: d; ©s a multiple of r,
i=1
(2) d; 21 (i =12,..n),

3 L r(n—1
() Zdlz—!;:)-y

§ml
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Xd;
() dy<m = t

(For extensions to non-uniform hypergraphs, cf. Boonyasombat [1984]).

Theorem 1 (Gale [1957], Ryser [1957]). Given m integers ry,r'o..,ry, and an n-tuple
of integers dy > dy > +*+ 2> d,, there exists a hypergraph H = (E,E,,....E,) on a
set X = {z1,Tg,.,T, } Such that dy(z;) =d; for i <n and lE'j|= ri for § <m if
and only i f

(1) S min{rj,k} > di+dpttd, (b <n)
J=1
m

(2) Z TJ' = d1+d2+...+dn .
J=1

Proof. We deduce this immediately from the theory of network flows (corollary to
theorem 3, Ch.5 in Graphs). Indeed, construct a network flow with vertices the points

J = 12,...m and z,,%,,...,Z,, with a source ¢ and a sink z. The arcs are
- all ares (a,j) with capacity r;
- all ares (x;,2) with capacity d;
- all ares (j,x;) with capacity 1.
It suffices to show that there exists an integer flow satisfying the capacities,

saturating each of the ares (7,z) entering the sink z, that is to say that the maximum

flow which can enter set {z; /7 €} is always greater than or equal to the sum ¥ d;, for
i€l

all 7 C{1,2,...,n}. (Further, we note that thanks to the network flow theorem we may

always suppose that such a flow never leaves empty an ‘“‘entry’” arc or an “‘exit” arc.)

Open Problem. Find a necessary and sufficient condition for an m-tuple (r;) and
an n-tuple (d;) to be respectively the |E;| and the dy(x;) of a simple hypergraph H.

Let r,n be integers, 1 <r < n. We define the r-uniform complete hypergraph of
order n (or the r-complete hypergraph) to be a hypergraph denoted K consisting of
all the r-subsets of a set X of cardinality n. We may now state in a complete form
the celebrated Sperner’s theorem [1926]; in fact the inequality (1), which allows for a
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simple proof was discovered (independently) much later by Yamamoto, Meshalkin,
Lubell and Bollob4s.

Theorem 2 (Sperner [1928]; proof by Yamamoto, Meshalkin, Lubell, Bollobas). Every
simple hypergraph H of order n satisfies

oz

Ee

Further, the number of edges m(H) satisfies

For n = 2h even, equality in (2) is attatned if and only if H is the hypergraph
Kﬁ. For n = 2h—1 odd, equality in (2) is attained if and only if H is the hypergraph
K} or the hypergraph K1,

Proof. Let X be a finite set of cardinality n. Consider a directed graph G with ver-
tices the subsets of X, and with an arc from A CX to BCX if ACB and
al= Bl

Let E € H, the number of paths in the graph G from the vertex (JJ to the vertex

E is |[E], thus the total number of paths from Fto X is n! > 3 (|E|(n—|E])! (as
EeH
H is a simple hypergraph, a path passing through E cannot pass through E’' €H,

E' # E). We thus deduce inequality (1).

For the second part,

(80) < ()

12 2 (5) 2 non(0)

We immediately deduce inequality {2}

whence

Let H be a hypergraph satisfying equality in (2). Then for all E € H,
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@ () = ()

If n =2k is even, (3) implies that H is h-uniform, and since m(H) = (2) we have
H = K,',', and the proof is achieved.
If n =2h+1, (3) implies that h < [E|<h+1 for all E €H. Let X be the set

of vertices in @ which represent edges of H with cardinality k; the set X U X),,,is 2
stable set of G, and m(H) = X, UX,,, ]

The number of arcs of G leaving X, is equal to IX,, kn—h); the number of arcs
entering the image ['X), of X}, is |I'X}, [(A+1). Thus
[CX, [h+1) = X, kn—h),

or

2h+1—h
rx, | > ——— =
o, | > 22 o gy )
If X, is non-empty and is not the set P,(X) of all h-subsets of X, the above ine-
quality is strict (because the bipartite subgraph of G generated by the h-subsets and

(h +1)—subsets is connected), whence

= X, K X1 | < X H P41 (X)-TXG |

< IXh I+ h+1 thl h+1)

Thus, equality in (2) is possible only if X, = (J or X} = P,(X), i.e. if H = K,': or
KB+,

Q.E.D.

For extensions of Theorem 2 see: Erdds [1945], Kleitman {1968], Meshalkin [1963],
Kleitman [1985], Greene, Kleitman [1976], Katona [1966], Hochberg, Hirsch [1970],
Erdds, Frankl, Katona [1084].

To generalise graphs without ‘“‘pendent’ vertices, we consider the following class
of hypergraphs; a hypergraph H is said to be separable if for every vertex x, the inter-
section of the edges containing z is the singleton {z}i.e.if N E = {z}.

E€H(z)

Corollary. If on n-tuple dy > dy > -+ - 2d, of positive integers is the degree
sequence of a separable hypergraph H = (E,,....E,,) then
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SO L

i=1 "'
Essentially H is separable if and only if its dual H* is a simple hypergraph, which
implies, by Theorem 2,

Sl <

Q.ED.

To generalise simple graphs, we say that a hypergraph H = (Ey,E,,...,E,) is
linear if IE;{“IEJ-| <1 for ¢ # j. For example, the hypergraphs of Figures 1,2 are

linear.

We have immediately

Proposition 3. The dual of a linear hypergraph is also linear.

Indeed, if H is linear, two edges X; and X, in H* cannot intersect in two distinct
points e,,ey, as then, in H, By D {z,,2,}, E; D {#,,}, contradicting [EiNE,| <1.

Theorem 3. For every linear hypergraph H of order n, we have

v s(E)<p

EeH

If in addition, H is r-uniform, then the number of edges satis fies

(2 m(H) < n(n—1)

r(r—1) "

The bound in (2) 18 attained «f and only if H is a Steiner system S(2,r,n).
For, the number of pairs z,y which are contained in a same edge of H is

= (&)<

EeH

whence we have (1). If H is r-uniform, (2) follows.

A Steiner system S(2,r,n) is an r-uniform hypergraph on X, with IX|=n, in
which every pair of vertices is contained in exactly one edge. A necessary and suffi-
cient condition for the existence of an §(2,3,n) system, due to T.P. Kirkman [1847], is
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that n =1 or 3 (mod 6).

To exclude some values of r it is easily seen that the following are necessary con-

ditions for the existence of S(2,r,n) systems:
-1

(1) (g)(g) is an integer;

®)] (n—1)(r—1)"" is an integer.

These conditions are necessary and sufficient for r = 3,4 (Hanani). For r =6
these conditions are sufficient with a single exception: no 5(2,6,21) system exists. Wil-
son [1972] has further shown that if » is a prime power and if n is sufficiently large
then (1) and (2) are necessary and sufficient.

For all questions on existence and enumeration of S(2,r,n) systems, see Lindner
and Rosa [1980]. We give here a list of §(2,r,n) systems known for small values of r

and of n:

5(2,3,7)
5(2,3,9)  De Pasquale [1899], Brunel [1901], Cole [1913]
(

S(2,4,13) De Pasquale [1899], Brunel {1901], Cole [1913]
$(2,3,15)  Cole [1917], White [1919], Fischer [1940]
S(2,4,16)  Witt [1938]

)
)
)
5(2,3,19) Deherder [1976]
$(2,3,21) Wilson [1974]
5(2,5,21)  Witt [1938]
5(2,3,25) Wilson [1974]
$(2,4,25)  Brouwer, Rokowska [1977]
S(2,5,25) Mclnnes [1977)
5(2,3,27)  Mclnnes [1977]
S(2,4,28) Rokowska [1977]

We deduce that the bound in (2) of Theorem 3 is the best possible for n =7,

r=3;orforn =9, r =3;etc.
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3. Intersecting Families

Given a hypergraph H, we define an ¢ntersecting family to be a set of edges hav-
ing non-empty pairwise intersection. For example, for every vertex z of H, the star
H(z)={E/E€H, z€E} is an intersecting family of /. The maximum cardinality of
an intersecting family, which we denote Ag(H), thus satisfies

A(H) 2 max [H(2) | = AEH).

In a multigraph, the intersecting families are just the stars and the triangles (perhaps
with multiple edges).

Theorem 4. Every hypergraph H of order n wilh no repeated edge satisfies
Ag(H) < 2"

Further, every maximal intersecting family of the hypergraph of subsets of an n-set
has cardinality 2" 1.

Proof. Let A4 be a maximal intersecting family of the hypergraph of subsets of X,
where |X | = n.

If B; ¢ A then there exists in A a set A; disjoint from B; (by the maximality of
A); thus X — By D A,, whence, for every A €A, (X—B;) N A # (. By virtue of the
maximality of A, we deduce that (X—B;) €A. Conversely, if (X—B;) € A, we have
B, ¢ A. Hence B — X —B is a bijection between P(X) — A and A, whence

1 n—
1= L)) =2

Lemma (Greene, Katona, Kleitman [1975], anticipated by Bollobds). Let z,7,...,%,
be points in that order on a circle and let A = (A, Ag,...,A,,) be a family of circular
intervals of points such that

1) |A,~|§§—foralli_§m;

(@) A NA;# D foralli,j ,i+#7;

(3) At ¢A] fOT all 1’;.7 ) 1 # j‘
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Then
(4) m < min|4; |
b

® S

i=1

Equality 1s attained tn (5)if and only <f A 178 a family of circular intervals of cardi-
nality m each having a potnt in common.

(*) Proof. Let A; be a set of minimum cardinality in 4. From (2), A; N A; # (J for
1 % 1; and from (3), these A; N A; are intervals with one and only one of their ends
coinciding with an end of A;. From (3) these intervals A, N A; are all different. Thus
the number of possible intervals of this form is < 2(|4, |-1). From (1) and (2) two sets
Ay N A; and A; NA; with @ # 7, ¢ 51, j # 1 cannot constitute a partition of A;
thus only half of these possible intervals can occur, which gives us m—1 < |4, |-1.
Thus, for all ¢, |4; | > |A,| > m, so we have (4) and (5).
Finally, equality in (5) implies
moo1 m
1= — <+7<1
2 AT STl
So we have |A;| = [A;] =m, for 1 <¢ <m. Thus the A; are intervals of length
m whose initial end-points are m successive points on the circle. Conversely if the A;

satisfy (1), (2), (3) and are all intervals of length m, then clearly we have equality in

(5)-

Theorem 5 (Erdds, Chao-Ko, Rado [1961], proof by Greene, Katona, Kleitman [1976]).
Let H be a simple intersecting hypergraph of order n and of rank r < n/2; then

O g R

EeH

(2) m(H) < (22}).

Further we have equality in (2) when H is a star of KJ, (and only then if r < %)
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Proof. Let X = {z,,%4,...,7,} be the vertex set of H. For any permutation 7 of
1,2,...,n, denote by H, the set of edges of H which are intervals for the circular
SEqUENCE Ty(1)yTr(2)r-sTr(npTr(1) FOT E €H, put

= I{W/E EH”} I
From the lemmas,
(3) N =<1
E€H, I

We then have

(4) BE) _

5t 5 R B S
Let Ey be an edge of H, with cardinality |E0| = h, and let zy be an element of Ey.
Since Ey is also an edge of the hypergraph K,';(:::O) = H, and since from the lemma we
have equality in (3) for H', we have equality in (4) for H', and

AlEo) 1 BE) _ _n!  _ _
Bl = m) gy 1~ m) "‘(lEol—)‘

E'eH’

We may thus write, using (4),
!
s (g )-ts 4B cn
EGH n!

Thus we have (1).

Finally, every E € H satisfies [E|<r < %, S0
1y 1
men(271) <3 ( Fl- )" <1,
r—1 BeH I,EI 1

(2) follows.
QED.

For extensions to Theorem 5 see Schénheim [1968], Hilton and Milner [1967], Hil-
ton [1979], Erdds, Chao-Ko, Rado [1961], Bollobds [1874], Frankl [1975], Frankl [1976].
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If no restriction is made on the rank, then by analogous methods we obtain:

Generalisation (Greene, Kleitman, Katona [1976]). Let H be a simple hypergraph of
order n. If H 1is intersecting, then

O 5 () + E§H(IE|)"S1-

EeH
Bl B>

[+
Further, equality is attained in (2) for H = K,*

Remark. Theorem 5 shows that

Cpir<y
B(KR) =1 n
(r) if r > ry

More precisely, we shall show that in the r-complete hypergraph K, the maximum

intersecting families are: for r < %, the stars of the form K} (z); for r = %, the maxi-

mal intersecting families; for » > -g—, the set of edges of K7,.

For r < % the proof of Theorem 5 implies that the only maximum intersecting
families are stars.
" For r= %, let Hy, be a maximal intersecting family of K3,: if E €H, then

X-E ¢ H,.
If E ¢ Hy then there exists an edge E; € Hy which does not meet E (by maximal-

ity of Hy) thus X—F = E; € Hy. Thus e, | = %m(Kg,.). Hence all maximal

intersecting families have the same cardinality.
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Theorem 8 (Bollobéds [1965]). Let H = (E),E,,....E,, ,F1,Fy,....,F,) be a hypergraph of
order n with 2m edges such that E; N F; = ifand onlyif ¢ = j. Then

o e

i=1

Further, we have equality in (1) if for some integers r,s with r+s = n, we have

(E1,EgyeisEm) = K&y (FiyFgyeenF) = K&

{*) Proof. Inspired by an idea of Katona, we may prove the result as follows. Let X
be the vertex set of H, and let Y be the set of pairs (§;,T;) with §;,T; CX,
$;T; # &, S;N Tj = (5. Form a graph G on Y as follows: two vertices (8;,T;) and
(8,Ty) are adjacent if S; N Ty = (J or Sy N T; = (J. Given a permutation 7 on X
and a set S CX, demote by S the smallest interval of the sequence
o = (m(1),7(2), . . . ,m(n)) which contains the set S, and put

Y(7) = {(S,T)/(S,T)EY; SNT=; S is before T in o}.
If the vertices (S;,T;) and (S;,T;) of Y(m) are non-adjacent then S’_jﬂ Tj=@,

SNT, =@, §J NT. +@ S N T] # () which is a contradiction. Thus Y(m) is a
clique of G.

Note that if in a graph G on a set Y we consider P cliques Cy,C,,...,.C, and 2
stable set S CY we obtain, by counting in two different ways the number of pairs
(y,C;) withy €S and y €C;,

T l/vec} = 3 loins| <»
yEes fm=l
As the (E'j,Fj) for j = 1,...,m constitute a stable set of G we have

(@) 3 K /u(m) (B F)}| < !

j=1
Further, for two disjoint sets E,F C X

/Py erm} = (gl n—IEUF It IR =
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(-
This equality, together with (2} gives us relation (1) which was what we had to

prove.

4. The coloured edge property and Chvdtal’s Conjecture
Let H = (E,...,.E,;) be a hypergraph. The chromatic index of H is the least

number of colours necessary to colour the edges of H such that two intersecting edges
are always coloured differently. This number ¢(H) has been extensively studied for
graphs.

If Ay(H) = k, then at least k distinet colours are needed to colour the edges of a
family of &k intersecting edges; thus

9(H) 2 Ay(H) 2 A(H).

We say that H has the coloured edge property if ¢(H) = A(H), i.e. it is possible to
legally colour the edges of H with A(H) colours.

Example 1. Let X be a set of individuals; suppose that certain individuals wish to
have meetings during the day, each meeting being defined by a subset E; of X. We
suppose that each individual wishes to attend k¥ meetings. Then we can complete all
the reunions in k days if and only if the hypergraph H = (E,,E,,...,E,,)} has the
coloured edge property {each colour of an optimal colouring allows us to define the
meetings of a day).

Example 2: Bipartite graphs. Let H be a bipartite multigraph defined by a parti-
tion (X,X,) of X and some edges E with [ENX,|=1, [ENX,|=1. A well known
theorem of Konig states that H has the coloured edge property.

Example 3: Graphs. Let G be a simple graph, and let G be the multigraph obtained
from G by adjoining a loop to each vertex. Vizing’s theorem says that
q(G) < A(G)+1 = A(G). Then we may colour the edges of G with A(G) colours: this
is the coloured edge property.



16 Hypergraphs

Example 4: r-complete hypergraphs of order a multiple of r. All complete
graphs Ko, of order 2p even have the coloured edge property; this is an old theorem of
Lucas [1892] which he formulated in the following way: a residence of 2p girls go for a
walk every day in rows of two. Each girl refuses to find herself twice with the same
partner. Can you organise the walks for 2p—1 days? Each of these walks is deter-
mined by a colour of the edges of the complete graph Kj,. Place the vertices
0,1,...,n—1 on a circle as in Figure 3, the first colour being determined by the segments
of this figure, the others obtained by rotation of the segments about the centre 0. In
1936 in Berlin, a student of Schur, R. Peltesohn, submitted a thesis showing that a
school of 3p girls can walk every day in rows of 3, that is to say the complete hyper-
graph Kgp has the coloured edge property.

1

n—1 pam P~y 2
7 ~
n—2 ;\\3

Figure 3

For p = 3 this result had been discovered 40 years earlier by Walecki, who had
obtained the 28 walks for 9 girls P,Q,a,b,c,d,e,f,g by decomposing the 7 tables shown
in Figure 4. Finally, in 1975, Baranyai put a final point on this area of research by
showing clearly and simply that K], has the coloured edge property if and only if n is a
multiple of r. (For a proof, see §5, Chapter 4).
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Pab, cd@Q, efg
Pab Pce, ad f, bQg
cd@=1pgg cfb, eaQ
efyg bde, Q fP, gac

Pbe Pcd Pde Pef Pfyg Pga
deQlilefQL:i|fag@|i|aa@]i|ab@Q];|bec@].
fga gab abe bed cde de f

Figure 4. The seven tables determining the coloring of the edges of Kg.

Example 5. An interval hypergraph is a hypergraph whose vertices are points on a
line, and each edge is a set of points in an interval. It is easy to see that such a hyper-
graph has the coloured edge property. This result is also a special cage of a more gen-
eral theorem which we shall prove in Chapter 5.

Let H = (E\,E,,...,E,,) be a simple hypergraph on X: its hereditary closure His
the hypergraph on X whose edge set is the set of all non-empty subsets FF C X such
that F C E; for at least one index <.

All families (F;/j€J) of non-empty subsets of X such that FF C F; = F = Fy for
some k are called hereditary: clearly we may write this in a unique way as the heredi-
tary closure of a simple hypergraph H.

Not all hereditary hypergraphs satisfy the coloured edge property (e.g. 135,3, 1%;,
K3). Nonetheless, in 1974 Chv4tal made the important conjecture:

Chvital’'s Conjecture. Every hereditary hypergraph H satisfies Ag(H) = A(H).

In other words, in every hereditary hypergraph there is always a star amongst
maximum intersecting families. We shall show various cases of this conjecture.

Theorem 7 (Berge [1976]). Let H be a star. Then H has the coloured edge property.

Proof. Let H be a simple hypergraph on X, all of whose edges contain a vertex z.
Assume the theorem to be true for all hypergraphs having fewer than m(fl) edges. Let
A be a maximal subset of X of the form A = E U F with E,F € H. By the maximal-

ity of A, we have z, €EA. Set
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B = {E/E€H,EUF=A for some FEH}
1. Observe that B consists of the sets Fy € B with xy € E and of the sets of the

form A—E,; thus we can colour B with dg(z;) colours, using the same colour for
E, €B as for A—FE). Thus if H = B we obtain a colouring of H in a number of
colours equal to the degree of zy in B and we are done.

2. Suppose H +# B: we shall show that H—B is an hereditary hypergraph.

Let E €0 — B and E' C E. Since E' € H it suffices to show that E' ¢ B. Oth-
erwise, E' U F' = A for an F! € H. By maximality of A, we have E U F' = A; thus
E € B, a contradiction.

3. We now show that the maximal edges of H — B contain z, For, otherwise
there exists some E €maz(H—B) with zyg E. Since H is a star,
E U {zg} = Eo €H. Thus Eo¢ H — B (by maximality of E); thus E, €8, thus
EoU Fy = A for some Fy €H. Thus E U (FyU{zo}) = A and E € B: contradiction.

4. By the induction hypothesis, the edges of H — B can be coloured with dyg_glxo)

colours so, by using part 1 above, we may write:
A(H) < q(H) < dgg_g(o) + dp(o) = dyglwo) < A(H)
Thus equality holds throughout. This shows that z; is a vertex of maximum degree in
H and that ¢(H) = A(H).
Q.E.D.

The colouring of the edges of the hereditary closure of K7, is related to a well
known problem in Operations Research, the “‘cutting-stock problem”, which was solved
by Gilmore and Gomory in [1961]; in this problem we wish to cut, from a stock of rods
of length n, k; poles of length 1, k, of length 2, ...k, of length », and to minimise the
total number of rods.

Theorem 8 (Baranyai). Let r < n be integers. K; has the coloured edge property if

and only if 1t s possible to solve without waste the cutting stock problem with
k; = (7;) for v = 1,2,...r, that is to say, there exists an integer solution (x;) to the sys-
tem

zj 20,

:v; ts the number of i-subsets to colour with j,
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r .
3 odzi=n (5=12..)

i=1

e = (1) «

It is clear that this condition is necessary; it is also sufficient, as we shall show

f
—
g

5
.y

later (Corollary to Baranyai's Theorem, §5, Chapter 4).

Just as the r-complete hypergraph K, generalises the complete graph, we may
generalise the complete Dbipartite graph by the r-partite complete hypergraph
K} n,.n, defined as follows: let X',X%...,X" be disjoint sets with |X'|=mn; for
1 =12,.,r.

The vertices are the elements of X' U X2 U -+ - U X", and the edges are all sets
of the form {z',z%....z"} with =' € X!, z* eXx?,..,z" €x’.

Theorem 9 (Berge, Johnson {1977]). The r-partite complete hypergraph Ky ,. .

and its hereditary closure have the coloured edge property.

Proof.
1.Let H=Kj ;. a, With1<n, <ng -+ <mn, r>2. We shall show that
we can colour the edges of H with A(H) = nyng...n, colours. We denote the elements
of X* by ¥ = 0,@"2c - 1,...,:1:5,‘ = n,—1. As usual, denote by [p]; the integer < k-1
congruent to pmodulo k. Associate with each edge T = z'x%...z" of H the (r—1)-tuple
47) = ([o®+2'|nplz*+2 ]y - - - [2"+2]s,)

If two distinct edges T = z'z%...2" and 7 = y'y°...y" intersect, then one of the two fol-

lowing cases occurs:

(i) ='=y' and then there is an ¢ > 2 with ' # y', so
[z' +2'],, # [¥' +u'],, and §F) + §9);

(i) z! # y! and then there is an ¢ > 2 with zt = yi, 50
[z'+2!],, # [ +1'],, and §7) # 7).

We may consider the map ¥ — §Z) as a colouring of the edges, and the number

of distinet colours used is at most ngng * * * n, = AKy .. ).
Q.E.D.
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2. We shall show that H can be coloured with A(ﬁ) colours. For ¢ = 1,2,...,n,
consider an additional vertex a", and put Y* = XU {ai}; consider the hypergraph

»»»»»

For each edge E of H there is an edge F of H' defined by
F=EU{d/EnX =}

Thus there is a bijection between the edges of H and those of H'. As we have
shown that the r-partite complete hypergraph has the coloured edge property, we can
colour the edges of H' with

A(H") = (ng+1)(ng+1)...(n,+1)

colours. If we colour each edge E of H with the colour of the corresponding edge F of
H', it is clear that two edges of H which intersect have different colours. Hence

~ ~ -

q(H) < q(H') = A(H') = A(H) < ¢(H).
Thus q(ﬁ) = A(ﬁ) and the hypergraph H has the coloured edge property.
Q.E.D.

The main hypergraphs H for which it has been shown that Ay(H) = A(H) are the

following:

1. H 48 a star (Schdnheim [1973]). In this case, Theorem 7 shows that H has a
stronger property, the coloured edge property.

2. H is 2-uni form (Vizing).

3. H is 3-uniform (Sterboul [1974]). In this case it can also be shown that the
maximum intersecting families of I have one of the following structures:

- H(a) (star);

- {ab,ac,bc,abc};

- {ab,ac,ad,abc,abd,acd, bed}

- {abz,,abz,,...abz,, aczy,...acz,, bexy,.bex,, ab,ac,be,abe}.
4. H 18 linear.

If H is uniform, see Sterboul [1974];
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For all H, see Stein [1983].

5. H is of degree A{H) = 2 (Stein, Schénheim [1978], Wang and Wang [1983]).

6. H is an r-partite complete hypergraph. In this case Theorem 9 shows that "
has the stronger coloured edge property.

7. H is the complete hypergraph K} withr < % {from Theorem 5).

Example 4 suggests the following conjecture:

Conjecture. If H is linear then H has the coloured edge property.
This conjecture is true if H is a graph (Vizing); if H is a projective plane on 7
points 1,2,..,7, we can colour the edges of H with A(H’) = 10 colours in the following

way:

colour 1: 123, 45, 6,7  colour 6: 345, 12, 67
colour 2: 147, 56, 23 colour 7: 367, 14, 25
colour 3: 156, 34, 27 colour 8: 17, 36, 24, 5
colour 4: 246, 37, 15 colour 9: 16, 35, 47, 2
colour 5: 257, 13, 46 colour 10: 57, 26, 1, 3, 4.

5. The Helly property
Let H = (E,Es,...,E,,) be a simple hypergraph. We say that H has the Helly
property if every intersecting family of H is a star, i.e. for J C {1,2,...,m},
E;NE + (4,k €J)
implies
JQJE 5 #
Hence a graph has the Helly property if and only if its is triangle-free; hyper-

graphs with the Helly property have also other properties which generalise those of tri-

angle free graphs.

Example 1. Let H be an interval hypergraph: its vertices are points on a line, and its
edges are intervals of points. A theorem of Helly shows that H has the Helly property.

Example 2 (Algebra). Let (X,<) be a lattice, i.e. an ordered set such that for each
pair (a,b) there exists a least upper bound a V b and a greatest lower bound a A b.
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Let H be a family of intervals of the form
E(ab) = {z/a<z<b}.

Then it can be shown that H has the Helly property. If X is the set of natural
numbers, and if the edges of H are arithmetic progressions, the Helly property is
known as the “Chinese Remainder Theorem” (cf. Ore [1952]).

We shall say that a hypergraph H = (E|,E,,...,.E,,) is k-Helly if for every set
J C {1,2,...,m}, the following two conditions are equivalent:

(Dy) IcCJ, || <k, implies _nIE,. # O
1€

D E;

) jQJ i* 0

Clearly if J satisfies (D) then it also satisfies (Dy); if H is not k-Helly there are
also sets J which satisfy (D;) but not (D).

Clearly, a hypergraph i3 2-Helly if and only <f it satisfies the Helly property.
Note also that if a hypergraph is k-Helly, we have (Dy,;) = (Dy) = (D); thus a
(k+1)-Helly hypergraph is also k-Helly.

Example. Let H be a hypergraph such that if each vertex is a point of R? and each
edge is the set of points contained in a convex set: an interval hypergraph corresponds
to the case d = 1. A theorem of Helly states that such a hypergraph in R%is (d+1)-
Helly.

Theorem 10 (Berge, Duchet [1975]). A hypergraph H is k-Helly if and only if for
every set A of vertices with |A|= k+1, the intersection of the edges E; with
IE;nA | > k is non-empty.

Proof.
1. Let H be a k-Helly hypergraph on X; let A be a subset of X with |4 | = k+1.
Set
J = {j/IE;nA|>k}.
We shall show that nJE o J%]
j€E
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Case 1. |[J]|<k. We have ﬂJE]- # (7§ since otherwise the bipartite incidence graph
JE
G of the vertices of A versus the edges (E,/j€J) satisfies

[Tk < EJda(j) =m(@) < (VI = (I |-1)(k+1)
J€

which implies |J| > k+1: a contradiction.

Case 2. [J|>k+1. In this case each set ] C J with |[[| <k satisfies nIEi #* ()
1€
(from Case 1); thus J satisfies (Dy) and hence (D). Thus
B .
jQJ 17 J

2. Let H = (E,E,,....E,) be a hypergraph such that for each A C X with
|4 | = k+1, the family (E,;/|E;N A |>k) has a non-empty intersection. We shall show
that H is k-Helly, that is for every J C {1,2,...,m}, (D}) = (D).

The proof is by induction on |J| Clearly this is true for |J| <k, so assume
[T | > k; let 1,525eersJics1 be distinet elements of J. Then the condition (Dy) implies

(VI CJ—{iLI<k): NE; + %]

By the induction hypothesis this implies

E; + O

J'EJQ(J'A)
Let ay be an element in this intersection. The elements ay,as,...,a;4; are different
(otherwise we are done). For A = {a,ag,..,0111}s

E;nAlZk  (G€J)
whence

E; X
:‘Q} i+ QD
Q.E.D.
Corollary. A hypergraph H has the Helly property if and only if for any three ver-

tices ap,aq,a3, the family of edges containing at least two of the vertices a; has a

non-empty intersection.

Application: Family of subtrees of a tree. Let G be an acyclic connected graph
on X, i.e. G is a tree. Consider a family H of subsets of X which induce a subtree of
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G. We shall show, with the help of the preceding corollary, that H has the Helly pro-
perty. To see this, consider three vertices a, b, ¢ of G. If u[z,y] denotes the unique
path in the tree G connecting the vertices z and y it is easy to see that the three
paths pla,b)], plb,e] and ple,a] have a common vertex x, (otherwise G would have a
cycle). This vertex , belongs to every edge of H containing two of the points a,b,c.
Thus H has the Helly property.

(Note that if G is a path P, we obtain Helly’s Theorem).

Theorem 11 (Tuza [1984]). Let H = (E,E,,...,E,,) be a simple k-Helly hypergraph
of order n. If min|E; | > k+1 then
J

£ (i) =

=
(*) Proof.
1. We shall show first that every edge E; contains a vertex a; such that E]-—{aj}

is not contained in any edge other than E. Indeed, if this is not the case, there exists
an edge EO = {a,,a,..na,} With r >k+1, such that, say, Eq—{e;} CE; for

i =1.2,.,r. Since H is a simple hypergraph, we have E,N E; = Eq—{a;} for
7 = 1,2,...,7'. Thus

T

JQOE] = ).

However, the intersection of r—1 of the sets Ey,E|,...,E, is non-empty. Since r—1 >k,

and since H is k-Helly, we have also:
r
J=1
A contradiction follows.
2. Thus every edge E; contains a vertex a; such that
Ei—{a; )N (X—-E;)#J forall ¢ #j
Set
Ej = Ej—{a;}
f
F,=X-E;.

Thus we have
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EiNF,=¢
EiNF#Q i i+]

We may now apply Theorem 6 and
n (=B, 1+ ;|1
£ (F i) <
F=AN !

The theorem follows.

Corollary (Bollobds, Duchet [1979]). Let H be a simple k-Helly hypergraph of order
n with min |E;| > k+2 and max |[E; | = r £ % Then

j j
(1) m(H) < (7))

r—1

Proof. Every E € H satisfies:

(g#) <(20)

mn(r2 ) < 5 (p7h) <t

EeH

Hence

Inequality (1) follows.
For a hypergraph H with the Helly property, more precise results can be proved:
Theorem 13 (Bollobds, Duchet [1983]). Let H be a simple hypergraph of rank r > 3,

r< %, with the Helly property. Then

(1) m(H) < ("))

Further, equality holds in (1) if and only if H is a star of K.

Theorem 14 (Bollobds, Duchet [1983]). Let H be a simple hypergraph of order n 25
with the Helly property. Then
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Further, equality holds in (1') if and only if one of the following is true:
(i) n = 2h is even and H is a star of K};
(ii) n =2h+14s odd > 7 and H is a star ofK,':"'l;

(ili) » =5 and H ¢s a star of Kg, or is the bipartite complete graph K, with one

class of 2 vertices and one of 3 vertices.

8. Section of a hypergraph and the Kruskal-Katona Theorem

Let H be a simple hypergraph on X of rank r, and let £ < r be a positive integer.
Define the k-section of H to be a hypergraph [H], whose edges are the sets F C X
satisfying either |F| =k, and F C E for some E €H;or |F| <k and F = E for some
E eH.

Observe that [H], is a simple hypergraph on X. Further its rank is k.

For k = 2, the 2-section [H], is thus a graph; if H contains no loops then [H], is a
simple graph which is obtained by joining two vertices of X if they belong to the same
edge of H. If H is a simple r-uniform hypergraph with m edges, what can we say
about the number of edges of [H],_,?

The best possible lower bounds for all m were obtained independently by Kruskal
[1963] and Katona [1968]). The proof was simplified by Daykin [1976], and that which
we now give, shorter still, is due to Frankl [1984]. We need two preliminary lemmas.

Lemma 1. Let m and r be positive integers. Then there exist integers G,,a,_,...,a,
such that

1) (ar) (ar—l) (as)
m=\r + r—1 +roct 8
(2) G >a > " >a, 28> 1.

Further the a;’s are defined uniquely by (1) and (2). In pariicular, a, is the largest
integer such that
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ar)
m —(r >o0.

(*) Proof (by induction on r). For r =1, we have 1 =r >s2>1so s =1 and
a, = m; thus the decomposition (1) exists and is unique. Assume now the existence

and uniqueness of decomposition (1) for r—1. Let a, be the largest integer such that

m—(arr) > 0. Then by the induction hypothesis,

W)=C)e -+ (%)
m_(r)_ r—1) T T s
a,_1>a,_2>"'>a323.

We must have a, > a,_, since otherwise we could write

7+ 0220+ () =)
mZ(r+r—12r+r—l_r'
This contradicts the definition of a,. Hence the existence of decomposition (1) is pro-

ven.

To show uniqueness, suppose there exist two distinet decompositions of m:

we (@) e ()= (%)

Observe that

n<(D)+ 63+ (77)=(77)

If @, <b, then

m <(a,+1) <(b,) <m
Sy /S

a,+1

This implies m = ( ) contradicting the definition of r.

a b
Hence a, = b,, and as the decomposition of m — (rr) =m — (;) is unique

(induction hypothesis} the two decompositions of m are identical.

Lemma 2 (Frankl [1984]). Let H be an r-uniform hypergraph on X and let x; €X.
There exists an r-uniform hypergraph H' on X with m(H') = m(H),
m([H',—1) < m([H],-,) and satis ying
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FEH-H'(zy),.; = FU/{z}€H"

(*) Proof. For a vertex x # z,, put

(E—~{zhU {z,} fz €E, 2, ¢ E
%2 = \E otherwise

Put 0,H = {0,E/E€H}. Tt is easy to see that [0,H|,_; C 0,[H|,_;. By repeating

the operation o, on 0,H as many times as necessary we get a hypergraph H' with

m(H") = m(H), m([H'|,_, £m([H),), and o, H' = H' for all x # z,.
Theorem 14 (Kruskal, Katona). Let H be an r-untform hypergraph with
=m=(7)+ (55)+ o+ (%)
m(H)—m—(r R s
G >a_;1 > D>a,2s > 1.
Then

m_) > () + () + -+ (%)

(*) Proof (by induction on r and m).

1. We may assume that H satisfies
1) Fe€[H-H(zy)l-y = FU{z}€H

(simply by replacing H by the hypergraph H' defined in Lemma 2). Set
H, = (E—{z,}/E €H(z,)). Then

(2) m([H],—1) 2 m(H,) + m([H,],_).

2. The theorem holds trivially for » = 1 or m = 1; proceed now by induction on r
and on m.

Suppose first

D manz(7) -+ (55
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By applying the induction hypothesis to the hypergraph H, (less some edges if the ine-

quality is strict), we obtain

mH ) 2 (7 )+ o+ (2
Thus, from (2),
m([H],_1) 2 m(H,) + m([H,],_)

a,—l) o (as—l) (a,—l) o (aa——l
Z(r—l + + s—1 + r—2 + + s—2

= (r‘:) oot (sa—s-l)

which is what we had to show.

Suppose now that

U < (M) 4 () ()
As a consequence we can write
m(t=H(e) = m(E@)-m() > (7) + -+ (%) < () = - (%)

! (a,_l—l) o (as—l)
- (r—l T/t + 3
From (1), and applying the induction hypothesis on m to H—H(x,),
a,—1 ap_1—1 a,—1
mH) Zm(H-H@)-) 2\, )+ 7 )+ + 1,

which contradicts (4).

Corollary. Let H be an r-uniform hypergraph and let k be an integer with
r >k 2>2. If ais the largest inleger such that m(H) > (i) then

m((He) > (%)

Proof. Let H,; be a partial hypergraph of H with m(H,) = (ﬁ) From Theorem 14,
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m([Hl]r—l) 2 (ril)

Let H, be a partial hypergraph of [H,],_, with m(H,) = (r(—l-l)' By Theorem 14,

m ([HQ]r—Q) Z (7- 12)!

ete. Finally, m([H,_]x) = (z) Since [H], D [H,_i]r we also have

m({Hle) = (-

Q.E.D.

7. Conformal Hypergraphs

We say that a hypergraph H is conformal if all the maximal cliques of the graph
[H], are edges of H. If H is simple, it is conformal if and only if the edges of H are

the maximal cliques of a graph.

More generally, consider an integer k > 2. Every edge A of a hypergraph H satis-
fies the property: the edges of [H], contained in A constitute a k-complete hyper-
graph. If every set A C X maximal with this property is an edge of H the hypergraph
is said to be k-conformal. Hence a hypergraph is conformal if and only if it is 2-con-
formal.

Proposition. A hypergraph H is k-conformal if and only if for every set A CX
the following two conditions are equivalent:

(Cy) every S C A with |S| < k is contained in some edge of H,
() the set A is contained in an edge of H.
Observe that (C) always implies (Cy).

Lemma. A hypergraph is k-conformal if and only 1f its dual 78 k-Helly.
Proof. In the hypergraph H = (E\,E,,...,.E,,) the set A = {mj/jEJ} satisfies the con-

dition (C}) if and only if in the dual hypergraph H* = (X, X,,...,.X,,) the set J satis-
fies

(DY) I CJ, JI| <k implies ﬂIX; #*
1€
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Similarly, the set A satisfies Condition (C) if and only if in the dual hypergraph H*,
the set J satifies

(D) NX; #J.
jes
Thus (C}) is equivalent to (C) if and only if (D, ) is equivalent to (D).

Theorem 15. A simple hypergraph H is k-conformal if and only if for each partial
hypergraph H' C H having k+1 edges, the set {x/x €X,dy(z)>k} is contained in an
edge of H.

Proof. From Theorem 10, the dual hypergraph H* = (X,,X,, . ..,X,,) is k-Helly if
and only if for a set F = {e_,-/jEJ} with |J| = k41, the intersection of the X; with
[X;NJ >k is non-empty. Or, again, for each H' = {E;/j€F} with [J| = k+1 there
exists an edge of H which contains the set

e /dg(2) 2k,
Corollary (Gilmore’s Theorem). A necessary and sufficient condition for a hyper-
graph H to be conformal is that for any three edges E|,E,,Eg, the hypergraph H has
an edge containing the set

(E1NE3) U (E1NER) U (E;NEy)

It suffices to put k¥ = 2 in the statement of Theorem 15.

8. Representative Graphs

Given a hypergraph H = (E,E,,...,E,;) on X, its representative graph, or line-
graph L{H) is a graph whose vertices are points e,eg,...,¢,,, representing the edges of
H, the vertices ¢;,¢; being adjacent if and only if E; N E; # .

Example 1. The representative graph of a simple graph G was characterised by
Beineke [1968]: a graph is an L(G) if and only if it does not contain as an induced sub-
graph any of the graphs G{,G,,...,Gg shown in Figure 5.

Example 2. The representative graph of a multigraph G was characterised by Ber-
mond and Meyer [1973]: a graph is an L(G) if and only if it does not contain any of
the graphs G},G},...,G5 shown in Figure 6.
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Figure 5. The 9 forbidden configurations for the representative graph of a simple

graph.

Example 3. The representative graph of a multigraph without triangles or loops is

characterised by: each vertex appears in at most 2 maximal cliques.

Example 4. The representative graph of a bipartite multigraph is characterised by:
each vertex appears in at most two maximal cliques, and every elementary odd cycle
contains two sides of a triangle.

Example 5. If H is a family of intervals on a line, there is a characterisation of L(H)
due to Gilmore and Hoffman (cf. Graphs, Chapter 16, Theorem 12) : it is a triangu-
lated complement of a comparability graph. This concept has a simple interpretation:
if m individuals were present during various intervals of time in a meeting room, a
detective who demands of each person whom he has met can trace the “‘graph of meet-
ings’": if nobody lies, the graph represents a family of intervals.

We do not know any similar characterisation for the representative graph of a
family of convex sets in the plane, but we do know that every graph represents convex
sets in the 3-dimensional space (Wegner [1885]).
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G, G, G,

G, G

Figure 6. The 7 forbidden configurations for the representative graph of a multi-
graph.

Proposition 1. The representative graph of a hypergraph H is the 2-section [H¥|,.
Further, the following two properties are equivalent:
(i) H satisfies the Helly property and G is the representative graph of H;
(ii) the mazimal edges of H* are ihe maximal cliques of G.

Clearly the graph [H*], is isomorphic to L{H ), but [H*], can have loops if H* has
loops.

For the other part, if H has the Helly property, H* is conformal; thus (i) implies
that G = [H*]; has as cliques the maximal edges of H*. Similarly (ii) implies (i).

Observe that if G = L(H) and if H does not satisfy the Helly property it can
happen that H* does not contain the maximal cliques of L{H). For example, if H is
the hypergraph H, in Figure 8, L(H) is the graph G in Figure 8; the maximal cliques
of G are not the edges of H*.
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Proposition 2. Every graph is the representative graph of a linear hypergraph.

A simple graph G on {z,,...,z, } is the representative graph of a linear hypergraph
(X (,X g5, X, ) if we take for X; the set of edges of G adjacent to the vertex z;.

Proposition 3. A graph G is the representative graph of an r-uniform hypergraph
if and only if G contains a family C of cliques with the following properties:

(TTg) each clique of C 18 of cardinality > 2;

Iy every edge of G is contained in at least one clique of C;

(ILy) each vertex of G appears tn at most r cliques of C;

(113) for each verier x which is covered by exactly cligues of C, the intersection

of these cliques is {z}.
Indeed, consider the r-regular hypergraph C' obtained from € by adjoining loops,
which is always possible because of (I;). Let H be the dual of the hypergraph C'. By
(I1,) we have L(H) = [H*], =[C] = G. By (Il) the hypergraph H has no repeated
edges: it is thus an r-uniform hypergraph.

Proposition 4. A graph G is the representative graph of a linear r-uniform hyper-
graph i f and only if, in G there exists a family C of cliques satisfying (Ily), I1,) and

(11} each edge is contained in exactly one clique of C.

Let €’ be the r-regular hypergraph obtained from € by adding loops, which is
possible from (II,). Let H be the dual hypergraph of €’. From (II}), L(H) = G, the
hypergraph C is linear and hence its dual H is linear (Proposition 3, §3).

One can ask if it is possible to characterise L(H) by a finite family of forbidden
subgraphs in the case r # 2. In fact, Nickel, then Gardner, then Bermond, Germa,
Sotteau [1977] exhibited an infinite family of forbidden configurations for a representa-
tive graph of a 3-uniform hypergraph.

The graphs G,{t), Go(t), Ga(t) of Figure 7 constitute infinite families of minimal
excluded configurations for the representative graph of a 3-uniform linear hypergraph.

Nonetheless, it can be shown that

Theorem 18 (Naik, Rao, Shrikhande, Singhi [1982]). There exists a finite family ¥
of graphs such that every graph G with minimum degree 2> 69 1s the representative
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graph of a linear 8-uniform hypergraph if and only if G contains no member of ¥,

as an induced subgraph.

More generally, they show the existence of a cubic polynomial f(k) with the pro-
perty that for each k there exists a finite family ¥, of forbidden graphs such that
every graph G of minimum degree > f(k) is the representative graph of a linear
k-uniform hypergraph if and only if G does not contain a member of ¥, as an induced
subgraph.

By way of example, we can check the preceding propositions on the graph G of
Figure 8 which is, at one and the same time, the representative graph of the hyper-
graphs H,, Hy and Hj of Figure 8.

H,

a G 5 a abc
B,
¢ G d
b D H,
d e
cde E e
Figure 8

We shall denote by f1(G) the minimum order of those hypergraphs H with
G = L(H); for example, for the graph G in Figure 8, {}(G) = 2 since G = L(H,).

The determination of {)(G) brings us back to the determination of the chromatic
number by the following result.

Lemma. Let G be a graph on {z,2q,...,z, } without isolated vertices, and let G be the
graph whose vertices correspond to the edges of G, the vertices corresponding to the
edges [a,b] and [z,y] of G being adjacent if and only if {a,b,x,y} is not a clique in G
(i.e. at least one of az,ay,bz,by is not an edge of G ). Then the minimum order {1(G)
of the hypergraphs for which G is the representative graph ts equal to the chromatic
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number of G.

Proof.

1. We shall show that to each g-colouring (5, . . . ,.S-:(,) of the vertices of G with ¢
colours we may associate a hypergraph H = (X,X,,...X,) of order ¢ such that
G = L(H).

Indeed, the set 5-’, of vertices of G coloured with colour 7 is stable; if [a,b] is an
edge of G belonging to §,~, the vertex a is adjacent to each end of any edge in §, The
ends of the edges of g‘, thus generate a clique E; of G. The hypergraph
C = (E,Ey,...,E,) is such that each edge and each vertex of G is covered by at least
one of the E;. Thus the dual hypergraph H = (X,X,,....X,,) of C satisfies
L(H)=|[C], =G, and H is of order g.

2. We shall show that to each hypergraph H = (X},..,X,,) of order g for which
G = L(H), we may associate a g-colouring ($,,55,...,5,) of the vertices of G. Indeed,
denote by E* the set of vertices of H which belong to exactly k& of the sets X;. We
have

¢=IE"+ [E*|+ B I+ - -
To each e € E!, which belongs to exactly one set Xi(e) associate the I-clique {xi(e)}; to
each ¢ €E? which belongs to exactly two sets Xi(e) and Xj), associate the 2-clique
{:v,-(e),a:j(e)} of G; to each e of E® belonging to exactly three sets Xitey Xjey Xi(e) as80-
ciate the 3-clique {x,-(,),xj(e),xk(e)} of the graph G; ete.

We have thus defined in G a family (E,E,,....E,) of ¢ cliques and it is evident
that each edge [z;,2;] of G belong to at least one of these (since X; NX; contains a
point of H). Denote by S, the set of edges of G contained in the clique E,, by S; the
set of edges of G contained in E, which are not already contained in E;; etc. The
family (§1,.§2, AN ,5_"1) is then a g-colouring the vertices of G.

It follows from points 1 and 2 that the chromatic number of G is equal to the
least order of a hypergraph H such that G = L(H).

Theorem 17. Let G be a simple graph without isolated vertices, without triangles,
with m edges; the minimum order of the hypergraphs for which G ts the representa-
tive graph i3 (U(G) = m.
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Indeed, the graph G defined in the lemma is the clique K,,; the minimum order
(@) is thus m, the chromatic number of G.

Theorem 18 (Erdds, Goodman, Pdsa [1966]). Let G be a graph of order n without
isolated points; then

(1) UG) < [n?/4].
Further, for each n, this bound is the best possible.

Proof.

1. Indeed, we know (cf. Graphs, Theorem 5, Chapter 1) that we can always cover
the edges and the vertices of a graph G by a family of 2-cliques and 3-cliques

2
C = (E|,Eqy....E;) with £ < [nT], since G = [C], is the representative graph of the
dual of the hypergraph C, and since this dual is of order k, we have
n?
ne) <k <71,

which gives us (1).
2. We show that for every n, we can have equality in (1).

If n =2k is even, take for G the complete bipartite graph K ;; since it has no
triangles or isolated vertices we have, from Theorem 17

2 2
QK i) =k = 1;— = [14']-

If n = 2k+1 is odd, take for the G bipartite complete graph K ;. which gives

_ n 2_
UK jesr) = k(k+1) = an llL-zH) - o 1
n2

Thus we can have equality in (1).
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Exercises on Chapter 1
Exercise 1 (§1)

Give conditions that a simple graph must satisfy in order that is dual is also a

simple graph.

Exercise 2 (§1)

Define an ‘‘interval hypergraph” to be a hypergraph whose vertices can be
represented by points on a line in such a way that the edges are intervals of the line.
Show that if an interval hypergraph is simple then its dual is also an interval hyper-
graph. Show that a subhypergraph of an interval hypergraph is an interval hyper-
graph.

Exercise 3 (§1)

For two integers n >+ > 2 the r-uniform complete hypergraph of order n is the
hypergraph K, whose vertex set is a set X of cardinality »n, and whose edges are all
the r-subsets of X. What is the rank of K7, and of its dual (K})*?

Exercise 4 (§3)

Let H be an intersecting family of order n, of rank r = max IE; | and anti-rank
1
s = min|E; | Hilton [1975] showed that
3

r

m(H) < 2 (7).

§=g

Show that this result generalises the Erdds, Chao-Ko, Rado Theorem.

Exercise 5 (§3)

Show how Theorem 8 implies relation (1) of Sperner's Theorem (Theorem 2).

Exercise 8 (§3)
Let H = {E,Ey,...E,, } be a hypergraph satisfying

E;¢E, (j#k)
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EjﬂEk#Q
E;UE, # X.

Show that H' = (E|,Eq...,Ep,X—E,...X—E,,) is a simple hypergraph. Deduce the
following inequality (Schdnheim [1968]):

1
m(H) < 5 (o)

and this bound is best possible.

Exercise 7 (§3)
Show as in the lemma:

Let A = (A},Ay,...,Ay,) be a family of m circular intervals on a circle of n points
with
(i) I4; 1> n /2
(i) AANA+0 (B#7)
)  Ada; (9
Then we have m < n, with equality if 4 is the family A, of distinct circular intervals

having fixed cardinality & > %

Exercise 8 (§3)

Let A be a family of circular intervals satisfying conditions {2) and (3) of Exercise
7, and for A € 4, put:

p(A)=lﬂl§|L+i it Wl<s

=Hfm>%

Show that Xp(A) < n.

Exercise 9 (§3) (Open Problem)

Let H be a hypergraph on X of order n, let k > 2 and t < n be integers. Erdds
and Frankl [1979] conjectured that

Ic{1,2,.m}, [[|=k

implies
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[UE; | <n—t
iel
and if m is the maximum with this condition then H = {F/FCX,|FNY|<s} for an
integer s and for a set Y of cardinality t+ks.
Katona showed that the conjecture is true if £ = 2, t % 1. Frank! [1979] showed
k2*

that the conjecture is true for £ > 2,t < 150"

Exercise 10 (§4)
Show, using the methods of proof of Theorem 7, that if H is an hereditary hyper-

graph, the graph L{H) (complement of the representative graph) admits a matching
covering every vertex, except at most one in each connected component of odd order
(Berge [1976]).

Exercise 11 (§5)
Show, using Theorem 5, that the dual of an interval hypergraph has the Helly pro-
perty.

Exercise 12 (§5)

Consider integers a; < my,a9 < my,...,a; < my. Show that the system
z =a; mod m; for ¢ =1.2,..k
has a solution z if and only if every pair (¢,7) with 1 <17 < 7 < k satisfies
a; = aj mod lem (m;,m;).

(Use Corollary to Theorem 10).

Exercise 13 (§5)
Show that for & > 3, every simple graph is k-Helly.

Exercise 14 (§86)

Using Frankl's lemma (Lemma 2 of Theorem 14), prove the following result, due
to Lovdsz (which generalises the corollary to Theorem 14):

Let H be an r-uniform hypergraph and let £ be a positive real number such that
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m(H) = x(m—l)#—rﬂ)

Then

z({z—1)...{z—r+2
m([H]r—l) Z (T—-l)l

Exercise 15 (§8)

Let d(m) be the minimum cardinality of a set X having the property that every
graph of order m is the representative graph of at least m distinct subsets of X. Show
(by induction on m) that

d2) =2
d@8) =3

d(m) = [-7%2-] it m>4

(Erdds, Goodman, Pdsa [1966]).
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Transversal Sets and Matchings

1. Transversal hypergraphs
Let H = (E,...,E,,) be a hypergraph on a set X. Aset T C X is a transversal of
H if it meets all the edges, that is to say:

TAE +Q (i =12..,m)

The family of minimal transversals of H constitutes a simple hypergraph on X
called the transversal hypergraph of H, and denoted by Tr H.

Example 1. If the hypergraph is a simple graph G, a set S is stable if it contains no
edge, that is, if its complement X —S meets all the edges of G. Thus,

TrG = {X—S /S is a maximal stable set of G}.

Example 2. The complete r-uniform hypergraph K] on X admits as minimal
transversals all the subsets of X with n—r+1 elements. Thus

Tr(KL) = KP—rH!

Example 3. Let us consider the complete r-partite hypergraph Krrn,nz.--
the set of vertices is XU X?U --- U X" and the edges are the r-tuples
{£},2%, ... ,2"} with z! € X',2? € X?...,2" €X7. Clearly X!, X?.., X" are all minimal
transversals. If there existed a minimal transversal T # X1, X?%,... X", there would exist
for every ¢ a vertex g; €X' — T. The set {al,ag,...,a,} would not meet T, and since it
is an edge of the hypergraph, we have a contradiction. Therefore there are no other

n, i which
ater

minimal transversals besides X1,X%,..., X7, and cousequently:

Tr(Kpong. ) = (X1L,X%,.,X7).

Example 4. Let G be a transport network, i.e. a directed graph with a “source’” a
and a “sink” z (cf. Graphs, Chap. 6). An edge of H would be a set of arcs of G mak-
ing up an elementary path from a to z. Clearly, H is a simple hypergraph, and Tr H
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is the set of minimal “cuts’’ between ¢ and z.

Generalizing the ‘‘arc-colouring lemma’’ which has proved its effectiveness in the
study of transport networks (example 4), we can state:

Vertex-colouring lemma. Let H = (E,E,,...) and H' = (F|,F,,...) be two simple
hypergraphs on a set X. Then H'=TrH if and only if every pair (A,B) with
ABCX,AUB=X,AN B = (), satifies:

(i) there exists either an E € H contained in A or an F € H' contained in B;

(i1} these two cases cannot happen stmultaneously.

Proof.

1. Let H'=TrH, and consider a bipartition (A4,B) of X. If A contains an
E €H, we have {i). If not, then X—A = B is a transversal of H and therefore con-
tains a minimum transversal T € Tr H. Thus T is an edge F of H' and F D B; we

therefore again have (i). Moreover (i1} is obvious.

2. Let H' and H" be two simple hypergraphs such that every pair (A,B) satisfies
(i) and (ii) with H and H’ on the one hand, and H and H" on the other. We show
that this implies H' = H". (As we have (i) and (ii) with H and H" = Tr H from (1),
this certainly shows that H' = Tr H).

If not, there exists a set F/ € H' — H". As the pair (X—F',F') satisfies (ii) with
H, H’, there is no edge E € H contained in X—F"; and as the pair (X —F",F") satisfies
(i) with H, H", there exists an F” € H" such that F” C F'. On the other hand X—F"
does mot contain an edge E €H, (as above); since the pair (X —F",F") satisfies (i)
with H and H’, there exists a F} € H' with F| C F".

Thus, F; C F” C F'; and as H' is a simple hypergraph F} = F', thus F' € H": a
contradiction. By symmetry there cannot exist a set F” € H" — H' either.
Therefore H' = H",

If we take for H" the hypergraph Tr H, which is possible from (1), we get
H' = Tr H, which gives the proof.

Corollary 1. Let H and H' be two simple hypergraphs. Then H' = Tr H if and only
ifH=TrH.
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Indeed H' = Tr H if and only if every pair (A,B) satisfies (i) and (i) with H,H’;
that is every pair (B,A) satisfies (i) and (1i) with H',H; that is H = Tr H'.

Corollary 2. Let H be a simple hypergraph. Then Tr(TrH) = H.
(From Corollary 1).

Application: Problem of the keys of the safe. An administrative council is com-
posed of a set X of individuals. Each of them carries a certain weight in decisions, and
it is required that every set E C X carrying a total weight greater than some threshold
fixed in advance, should have access to documents kept in a safe with multiple locks.
The minimal “coalitions’” which can open the safe constitute a simple hypergraph H.
The problem consists in determining the number of locks necessary so that by giving
one or more keys to every individual, the safe can be opened if and only if at least one

of the coalitions of H is present.

If TrH = (F,Fy...,F,;), and if the key to the i-th lock is given to all the
members of Fj, it is clear that every coalition E € H would be able to open the safe;
on the other hand, if A C X does not contain any edge of H, the individuals making
up the set A will not be able to open the safe, since A is not a transversal of Tr H
{Corollary 2). The minimum number of locks that are necessary is therefore m(Tr H).
In particular if all the n members of the administrative council have the same weight,
and if the presence of r individuals is necessary in order to open the safe, the number
of locks necessary is

m(K3 ) = (, ", )

We now propose to study the transversal hypergraph of an intersecting hyper-
graph. If H and H' are two simple hypergraphs on X, we write H C H' if every edge
of H is also an edge of H'; we write H = H' if H C H' and H' C H. We write H < H'
if every edge of H contains an edge of H’. Therefore:

HCH = H<H'

Finally we denote by a x(H) the chromatiec number of H, that is to say the smal-
lest number of colours necessary to ‘“‘colour” the vertices of A such that no edge of
cardinality > 1 is monochromatic,

Lemma 1. If H and H' are simple hypergraphs on X, then
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H<H
H<g |=7H= H,
Indeed, since H < H', every edge E; of H contains an edge F of H'; since H' < H,
the edge F of H' contains an edge E; of H. Hence

E,' OF DEJ'.

Since H is a simple hypergraph, i = j, and hence every edge of H is an edge of
H'. By symmetry, H = H',

Lemma 2. A simple hypergraph H without loops satisfies x(H) > 2 if and only if
TrH < H.

Indeed, if x(H) > 2, we have Tr H < H. Otherwise there exists a T € Tr H con-
taining no edge of H. But then the bipartition (T,X—T) is such that no edge of H is
contained in a single class; it is therefore a bicolouring of H, and that contradicts
x(H) >2.

Conversely, if Tr H < H, we have x(H) > 2. Otherwise there exists a bicolouring
(A,B) of the vertices of H. From the vertex colouring lemma, B contains a set
T €Tr H, and since Tr H < H, we have also B D FE for an E € H, which contradicts
the fact that (A,B) is a bicolouring of H.

Lemma 3. A hypergraph H is intersecting if and only {f H < Tr H,

For if H is intersecting, every E € H is a transversal of H, and therefore E con-
tains a minimal transversal T € Tr H,so H < Tr H.

Conversely, if H < Tr H, every E € H contains a transversal of H, and therefore
meets all the edges of H, that is, H is intersecting.

Theorem 1. A simple hypergraph H without loops satisfies H = TrH if and only
if:

@) X(H) > 2;

(i) H 1is intersecting.

This is obvious from Lemmas 1, 2 and 3.

Corollary. Let H be a simple intersecting hypergraph without loops. Then either
X(H) = 2, or x(H) = 3 and every hypergraph H' obtained from H by replacing an edge
E by a new edge of the form E U {z} with x €X — E is bicolourable.
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For if x{(H) > 2, we have H = Tr H from Theorem 1. As E is a transversal set of
H, and hence of H', we have E U{x} ¢ Tr H' so that H' # Tr H' and hence x(H') = 2,
from Theorem 1.

A 3-colouration of H can be obtained from a bicolouring of H' by replacing the

colour of a y €E by a third colour not already used. Therefore x(H) = 3.

We give a few examples of hypergraphs H for which H = Tr H.
Example 1. The complete r-uniform hypergraph Kj, _; satisfies Tr(K5, ) = K5,_;.
Example 2. The finite projective plane P; on 7 points satisfies Tr(P;) = P, for it is
an intersecting family and non-bicolourable: If one wanted to colour the vertices with

two colours + and -, the last vertex to be coloured could not be given either + or - (cf.

Figure 1). 9

AN

+ : -
+ F
P, ’

Figure 1. Figure 2.

Example 3. The “fan” of rank » is a hypergraph F, having r edges of cardinality 2
and one edge of cardinality r, arranged as in Figure 2. It is an intersecting family and
non-bicolourable; therefore Tr(F,) = F,.

Example 4. Lovasz's hypergraph L, is a hypergraph defined by r sets of vertices
X!'= {1}, X? = {2}, 23}, X% = {2l 2§23}, - -+, X" = {z],2},...,2]}, and having as
edges all the sets of the form

XU {oit el e b

Clearly, L, is an intersecting family. Moreover x(L,) > 2. Otherwise there exists a
bicolouring (A,B), and at least one of the sets X* is monochromatic (in particular X?,
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which has cardinality 1); let ¢ be the largest integer such that X' is monochromatic.
Then there exists a monochromatic edge of the form X* U {z,‘;?'l,...,m,’c"}, which con-

tradicts the fact that (A,B) is a bicolouring of L,.
Therefore, by virtue of Theorem 1, Tr(L,) = L,.

Example 5. In the same way, using Theorem 1, we show that the hypergraph
ES = (X—E/E € L,) satisfies TrIZ= [,_3

Example 6. The “‘generalised fan’ is a hypergraph H having as edges r distinct sets
Ey, Ey, ..., E, with E; N E; = {zo} for i # j and 2 = |E;| < |E,| < - < |E, ] to
which are added the edges of the complete r-partite hypergraph on (E; — {z¢},
Ey — {zo}, * -+, E, — {zy}). We show in the same way that Tr H = H.

We shall represent by a diagram the different envisaged properties which general-

ise, for a hypergraph H, the relation H = Tr H. We shall prove those implications in
this diagram which have not already been proved by the preceding propositions.

Proposition 1. For a simple hypergraph H, the following two conditions are

equivalent:
(i) H has no loops and x(H) > 2;
(i) Tr H is intersecting and is not a star.

For if (7) holds, then Tr H < H (from Lemma 2), and the hypergraph H' = Tr H is
not a star. Thus H' = TrH <« H = Tr H' and hence H' is intersecting (from Lemma
3). The converse is proved in the same way.

Proposition 2. Every hypergraph H with property (7) satisfies property (8).

We note that if H satisfies property (7) it has no loops and is simple.

Since x(H—FE) = 2, there exists a bicolouring (4,B) of H—E, and E is mono-
chromatic in this bicolouring. Suppose for example that E C A. If we change the

colour of an arbitrary point z of E, a new edge E' € H will become coloured B,
whence E N E' = {z}. From this (8) follows.

Proposition 3. Every simple hypergraph H without loops having property (2) satis-
fies property (8).
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) H=TrHl
/

2 HcTrH 3 TrH<H 4 xH)>2
(VEeH) (Vx€E):
Y(H=—E)U(Eu{x}))=2

(5 H<TrH ©® TeH< H M xm@m>2
(VEeH): y(H—E)=2

H is intersecting H) > 2 / X

(8) (VEeH)(VxeE)3IE'eH): ) (¥x)3E.eH(x):
EnE ={x} (E./x€X) hasall edges
distinct
m(H) > n(H)
Figure 3.

(H simple and without loops)

Since every E € H is a minimal transversal of H, the set E—{z} is disjoint with
some edge E' € H, whence E M E' = {z}. From this (8) follows.

Proposition 4 (Seymour [1974]). Let H be a hypergraph on X with property (7) and
let A C X; then there {3 no bipartition (A,,A,) of A into two transversal sets of H,.

We note that since H satisfies property (7), it has no loops and is simple. Sup-
pose that such a bipartition (A;,A,;) exists and consider the partial hypergraph
H'=(E/EE€EH.ENA=()). We have H' # (), for if not then (4,,4,) would extend to
a bicolouring of H. We have H' # H, since A # (J. Thus from property (7), the
hypergraph H’ has a bicolouring (B,,B,) and B; U B, C X—A. Since H has no loops,
E € H! implies
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ENB, #+J, ENBy + (.
Furthermore E € H—H' implies
ENA+0, ENAy#+ .
Thus (A;UB;,4,U B,) generates a bicolouring of H, which contradicts (7).

Proposition 5 (Seymour [1974]). Let H be a hypergraph on X with property (7).
Buvery A C X meets at least |A| edges of H, with equality possible only if A = (Jf or
A=X.

(*) Proof. We consider three cases.
Case 1. A = (); the result is trivial.

Case 2. A = X; the incidence matrix M of H defines a system of m(H) = m linear
equations: M*z = 0. If m < |[X|=n, we have m linear equations with n > m unk-

nowns, and hence there exists a solution (z,29,...,2,) # 0.

Let A = {z; /z; #0}, AY = {z; /2, >0}, A~ = {z; /z; <0}.

Clearly (A*,A7) is a bipartition of A into two transversal sets of H,, which con-
tradicts Proposition 4. Hence m 2> n, and the result follows.

Case 3. A # X, A # . We put
H' ={E/E€H,ECA}
H" = {E/EEH,ENA=C}).

Since A # X, A %, we have H' #+ H, H" #H. Thus there exists, from (7), a
bicolouring (A,A,) of H' and a bicolouring (B;,B,) of H”. Since {A;UB;,A,UB,)
cannot define a bicolouring of H (since x(H) > 2) we have

H # HI U HII
Thus there is an edge £y € H — (H'UH") that is to say with:

(1) Eg¢a
EoN A # (.
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Suppose that the set A does not meet more than A | edges of H. We see as in
Case 2 that there exists on A a real function z{(z), not identically zero, such that

Y zz)=0 (E€H-E,)
z€EENA

Put z(z) = z(z)if €A and Z(z) =0if z ¢ A. Then
S Z(z)=0 (E€H-E,).

z€E
We cannot have 37 Z(z) =0, since the sets AT = {z /z(z)>0} and A~ = {z /z(z) <0}
z€E,
would contradict Proposition 4. Suppose for example that
3, #Z(x)>o0.
z€E,

We then have, by virtue of Proposition 4, E, N A~ = (.

The hypergraph H, ={E/E€H, ECX—(ATUA™)} is bicolourable (since
H, # H), and admits a bicolouring (B,B,).

The set AT U B, is a transversal of H; for we have either E €H, or
E N At # (. Since Tr H C H, there exists an edge E, € H contained in A* U B,.

If E, C By, then E, € H), which contradicts the fact that (B,B,) is a bicolouring
of H,. Hence B, N A* # (¥, and consequently

S ZHx)>0.

z€E,
Thus E, = E,, and consequently
(2) E,CA* U B,.
By the same arguments we obtain
(3) E,CA* U B,.
As B, and B, are disjoint, (2) and (3) give E; C At C A, which contradicts (1).

Proposition 8. Every hypergraph H with property (7) satis fies property (9).
For the preceding proposition shows that the bipartite graph G = (X,FI;T) of the

vertex-edge incidence of a hypergraph H with property (7) satisfies T4 | > |A] for
every A C X. From Koénig's Theorem, this condition implies that to c¢very ¢ €X we
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can make correspond an edge E, € H(z) such that the E, are distinct edges. Then (7)
implies the condition (9).

We deduce that m(H) > n(H). The case where m(H) = n(H) is characterised
by the following theorem.

Theorem 2 (Seymour [1974]). Let H be a hypergraph with property (7), and with
m(H) = n(H). Consider for every = €X an edge E, € H(z) such that the E, for
x €X are distinct edges. Then the directed graph G defined on X by making an arc
from z to y if y EE,, is strongly connected and has no even elementary circuits.
Conversely, if G = (X,I') is a directed graph on X which is strongly connected and
without even elementary circuits, the hypergraph Hg = ({z}UTz/z €X) is o hyper-
graph on X with property (7) and with m(Hg) = n(Hg).

The proof arises from the previous propositions (cf. Seymour [1974]).

Corollary. If H satisfies property (7) with m(H) = n(H), then its dual H* also
satisfies property (7) with m(H*) = n(H¥*).

For in this case the maximum matching of the bipartite vertex-edge incidence
graph establishes a bijection between the set of vertices of H and the set of edges of
H. The graphs Gy and G+ therefore have the same properties.

Algorithm to determine TrH. If H = (E,E,,...,.E,;) and H' = (F|,Fy,...,F,,1) are
two hypergraphs, put:

H U H' = (Ey,Egyee,Epy F1,FgesFiy)
Min H = (E/E€HyNFEH ,FCE): F=E)

Hence we have
1) Tr(HUH") = Min(Tr HvTr H')

Indeed, T, is a transversal of H U H' if and only if T, is a transversal of H and a

transversal of H', i.e.
ToDTUT, TETrH, T"E€TrH.

Or, equivalently:
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T, €TrH v TrH'.

The formula (1) follows.

No polynomial algorithm for determining 7+ H is known (it belongs to the class of
NP-complete problems). Nevertheless, for hypergraphs with a few vertices we have at
hand many methods that are sufficiently effective (Maghout [1966], Lawler [1966], Roy

[1970], ete.). We could use formula (1) in the following manner:
Put H = (E|,Ey,....E,;,) and H; = (E,E,,...,E;). Determine successively Tr H, Tr Ho,
-Tr H;,..., by the formulas:

TrH, = ({z}/z €E))

TrHy = Tr{H\U{E,}) = Min(Tr H, v ({{z}/z €E;))

Tr H; = Min Tr(H;_{U{E;})

= Min(TrH;,_ |V ({z}/z €E};))
ete. ..

Finally we obtain Tr H,, = Tr H.

2. The coefficients 7 and 7'.

For a hypergraph H we denote by 7(H) the transversal number, that is to say,
the smallest cardinality of a transversal; similarly, we denote by 7/(H) the largest car-

dinality of a minimal transversal. Clearly:

H)= min |T|< = 7'(H).
7(H) = min | |< max IT|=7'(H)

Example 1: The finite projective plane of rank r. By definition, a projective
plane of rank r is a hypergraph having #2 — r + 1 vertices (‘“points’), and P—r+1

edges (“lines), satisfying the following axioms:

(1) every point belongs to exactly r lines;

(2) every line contains exactly r points;

(8) two distinet points are on one and only one line;

(4) two distinet lines have exactly one point in common.

Projective planes do not exist for every value of r (for example, if » = 7), but it is
known that if r = p® + 1, with p prime, p 2> 2, @ > 1, there exists a projective plane
of rank r denoted PG(2,p®) built on a field of p* elements. For example, the projec-
tive plane with seven points (“Fano configuration’) is PG(2,2).
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It is clear that in a projective plane every line is a minimal transversal set of H.
In the projective plane of seven points there are no others because H = Tr H (given
that any two edges meet and that the chromatic number of this hypergraph is > 2).
For the projective planes of rank r >3, we have 7(H) =r, but there exist other
minimal transversals which are all of cardinality > r + 2 (Pelikan [1971]). Hence
T(H)>r + 2.

On the other hand, Bruen [1971)], has proved that every projective plane H of
rank r satisfies 7/(H) 2> r + Vr—1.

Indeed, the minimal cardinality of a transversal T which is not a line is given by

the following table for the different known projective planes of rank r < 9.

r 3 4 5 6 - 8 9
n 7 13 21 31 - 57 73
min|l} |- 6 7 9 - 12 ?

Example 2: The affine plane of rank k.

By an affine plane is meant the subhypergraph H of rank k& obtained from a finite
projective plane of rank k+1 by suppressing the points of a given line. Every edge of
H is called a line, and two lines of H which have an empty intersection are said to be

parallel.
Thus an affine plane of rank k satisfies the following properties:

Every line contains k points;

Every point belongs to k+1 lines;

There are k? points and &% + & lines;

Two distinct points have one and only one line in common;

Two distinct lines have either no points in common (*‘parallel’), or a common
point (“‘secant”);

Parallelism is an equivalence relation which partitions the set of lines into k+1
classes of & edges each;

Through every point not belonging to a given line, there passes one and only one

line parallel to the given line.

Bruen and Resmini [1983] showed that for an affine plane H of order g, we have
7(H) <29 — 1, and Brouwer and Schrijver [1976] showed that for the affine plane H
constructed on a field of ¢ elements, we have 7(H) = 2¢ — 1. Finally Jamison [1977]
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has shown that for the hypergraph H on the vector space with a base e,e,, ... ,e,
constructed on a fleld K of ¢ elements and having as edges the planes
{Xz;e; /La;z;=b} we have 7(H) = n(g—1) + 1. This cardinality is obtained with the
obvious transversal T = {ke;/k€K,{ = 1,2,...,n}, but it is shown that we cannot do
better than that.

Example 3: The (n,k,\)-configuration. This is by definition a k-uniform hyper-
graph H of order n such that every pair of vertices is contained in exactly A edges.
From this definition we easily deduce that

(i) H is regular and of degree A(H) = X Py

(i) H has m(H) = X %((%))- edges.

For certain known (n,k,\) configurations, the transversal number 7 is given by the fol-

lowing table.

(n,k,)\) | (13,3,1) (104,2) (9,4,3) (11,3,3) (12,4,3)

|7 4 4 7 6

Theorem 3. Let H = (E\,E,,...,.E,;) be a hypergraph on X with 7'(H) =1t, and let k
be an integer > 1. If k < |[E1| < |ER] < -+ - < |E, |, and if every k-tuple of X is
contained in at most \ edges of H, then

ESEG

=1

Proof. Let T be a minimal transversal of H. For every z €T, there exists an edge E,
such that E, N T = {z}. Since E, # E, for z # y, the family H' = (E,/z€T) is a
partial hypergraph of H.

By counting in two different ways the pairs (4,E) where E € H' and where A is a
k-tuple of X — T contained in E, we obtain
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S z(wﬁ{”}')= > E/B. D4}

z€T ACX-T
=&

from whence, a fortiori,

5 (M) ()

J=1

Corollary 1. Let H be a hypergraph of order n with no loops, and put s = min iE; |

nA

- / _ns
and & = N(H). Then T'(H) < Atool

. Furthermore, this bound is the best pos-

stble for s = 2.

Indeed, Theorem 3 with & = 1 gives

() 2o(77).

Whence 7/(H) =1t < #AI For s = 2, the equality is obtained with the Turan
g—

graph,

Corollary 2. Let H be a linear hypergraph of order n with min|E; | = s > 2. Then

T(H) <n + %(32—3s+1) — %\/471(32—3s+2)+(32—3s+1)2.

Proof. Theorem 3 with & = 2 and X\ = 1 gives
s—1 n—i
t( 2 ) < ( 2 )
that is to say

t? — t(s*—3a+2n41) + (n?—n) >0.

Equality gives a quadratic equation which has two solutions ¢/ and t”, and we note
that t! <n <t". Since 7/(H) < n, we have also 7/(H) <t!. The result follows.

Corollary 3 (ErdSs, Hajnal [1966]). Let H be a linear S-uniform hypergraph of order

n; then
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TH)<n — \/217.+l + =y
4 2
This follows from Corollary 2 with s = 3.

Theorem 4 (Meyer [1975]). Let H be a hypergraph with min IB;|=8 >1, and sup-
pose that the vertices of X are labelled in such a way that

dy(z)) S dylzg) < -+ <dy(wn).

Then the number T/(H) =t satisfies

zt} [du(z:)H+s—1] < Xn) dy(z;)-

=1 el
Proof. Using formula (1) of the proof of Theorem 3 with k& = 1, we obtain

(1) Y (B~ Y dulo).
z€T TeX-T
This implies: t(s—1) < zn: dy(z;). The stated inequality follows easily.
{=t4+1

We note that Theorem 4 generalises Corollary 1, and, in the case of graphs, gen-
eralises the theorem of Zarankiewicz (Graphs, chapter 13). (For an independent proof
by induction, see Hansen, Lorea [1976]).

Theorem 5 (Berge, Duchet [1975]). Let H = (E,E,,...,E,,) be a hypergraph on X.
L_et Ez iX —EJ-_. We have 1 (H)<k <f and only if the hypergraph
H=(E\,E,, ...,E,) s k-conformal.

Proof. To say that H is k-conformal, is to say that for every A C X the following

two conditions are equivalent:
(Ck) (VS CA, |SI<k)3E; €H): E; DS.
() (@E; €H): E; DA.

Let us consider the negations of these conditions, that is:
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(Ch) (35 C 4, IS|<k)(VE; €H): E;n S +
() (VE;€H):E;NA+ Q.

To say that H is k-conformal is to say that (C;) is equivalent to (C). On the other
hand, to say that 7/(H) <k, is equivalent to saying that every transversal A contains
a transversal § with |S| < k; that is to say: (C) = (Cy).

Since we have always (C;) = (C), we have 7/(H) < k if and only if (C;) is equivalent
to (5), that is to say if and only if H is a k-conformal hypergraph.

Corollary 1. Let H be a simple hypergraph on X and let k be an integer > 2. We
have T(H) <k if and only ¢f for every partial hypergraph H' C H with k+1 edges
there exists an edge E € H contained in the set {z /dy(z) > 1}.

Proof. From Theorem 15 (Chapter 1), the k-conformity of H is equivalent to saying
that for every H' C H with k+1 edges, the set

A= {z/z€X, dg(z)>k}.
is contained in an edge F of H. Since

dgle) = '] = dalz) = (k1) — dg(z)
this condition is also equivalent to:

{z/x€X, dy(z) <1} = A CE.

From this the stated result follows.

Corollary 2. Let H be a simple hypergraph with 7(H) =1 > 2. The hypergraph
TrH is uniform if and only if for every hypergraph H' C H of t+1 edges, there
exists an edge E € H contained in

{z/z€X, dylz) > 1}
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3. r-critical hypergraphs
We say that a hypergraph H = (E,E,,...,E,,) is T-critical if the deletion of any
edge decreases the transversal number, that is to say, if
T(H=E;)<t(H) (J=12,.,m)

Since we cannot have 7(H—E;} <7(H)-1, this is equivalent to saying that if H Is
T-critical with 7(H) = t41, then 7(H—E) =t for every E €H.

Example 1. The hypergraph K[, is 7-critical, since 7(K7,,) = t+1 and if E is an
edge of K{,,, the hypergraph K{ ,—F has a transversal X —F of cardinality ¢,

Example 2. Consider the family A of all the (r—1)-tuples of a set X with t4r—1 ele-

ments; with every A € A, let us associate a new point y,, these points forming a set Y
with cardinality (t _::Tl) Consider the hypergraph H = (AU{y4}/A€A) on X U Y.
Clearly, 7(H) = t+1; since H—(AU{y4}) has a transversal X—A of cardinality ¢, the

hypergraph H is 7-critical.

For r = 2, the concept of a 7-critical graph is due to Zykov in 1949. The sys-
tematic study started in 1961 with an article by Erdds and Gallai, who showed that a
T-critical graph G without isolated vertices satisfies 27(G )—n(G) > 0.

Examples of 7-critical graphs are shown in Figures 4 and 5.

=4 1T=95
2t—n=2 21—n=3

Figure 4 Figure 5
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Proposition 1. Every 7-¢ritical hypergraph is simple.

For if H = (Ey,...,E,,) is 7-critical and not simple, there exist two indices ¢ and j
with E; CE;. An optimal transversal of H—E; has 7(H)—1 vertices, and since it
meets E; it also meets E;. Therefore 7(H) < 7(H)—1, a contradiction.

Proposition 2. Every hypergraph H with 7(H) = t+1 has as a partial hypergraph, a
T-critical hypergraph H' with v(H') = t+1.

Indeed, to obtain H' it is enough to remove from H as many edges as one can

without changing the transversal number.

In a hypergraph H a vertex z is said to be eritical if
(1) 7(H-H(z)) <T1(H).
We note that (1) is equivalent to:
(2) T(H—H(z)) = 7{(H)—1.
Indeed, if (1) holds then the hypergraph H, = H—H(x) has a transversal Ty of cardi-
nality 7(H#)—1. The set T, U {z} is a transversal of H and, since its cardinality is

7(H), it is a minimum transversal. From this we obtain (2).

Conversely, if (2) holds, let T be a minimum transversal of H containing z. Then
T—{z}is a transversal of H—H(z) of cardinality 7(H)—1, from which (1) follows.

Proposition 3. FEvery vertex of a T-critical hypergraph is critical.
Let H be a 7-critical hypergraph and let  be one of its vertices. Since z is con-
tained in an edge, E say,
T(H—H(z)) < 1(H-E) < 7(H).

Thus z is a critical vertex.

Example 1. Let us consider a simple graph G = (X ,E), connected and without
bridges. Let H be the hypergraph whose vertices are the edges of G and whose edges
are the elementary cycles of G. Through every edge of a graph without bridges there
passes a cycle; hence H is a simple hypergraph on E.

For ¢y € F there exists a maximal tree (X,F) with ey € F which spans G; we have
7(H) = m(G)—n(G)}+1, and every co-tree of G is a transversal of H. Therefore E—F
is a minimum transversal of H containing e;. Thus every vertex of H is eritical.
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Example 2. The analogous situation holds also for a strongly connected digraph Gy,.

Let H be the hypergraph whose vertices are the ares of G and the edges are the ele-

mentary circuits of G (for example, take Gy to be the Mdbius ladder represented in

Figure 8).

Here the edges of H are: ¢ d
E, = {ab,bd dc,ca}

Ey = {ab,bf,fe,ea}

a b
E3 = {ab,bf,fe,ed,dc,ac}
E, = {ab,bd,dec,cf,fe,ea}
E; = {cf,fe,ed,dc} € ~ i)
Figure 6

It is easy to see that 7(H) = 2 and that every vertex of H belongs to a transversal of
cardinality 2. Hence every vertex of H is critical. By way of an exercise the reader
can verify Proposition 4 with this example.

Theorem 6 (Tuza [1984]). Let H = (E\,E,,...,E,) be a T-critical hypergraph with
7(H) =t+1. Then

5 ( IE,-tI+t)_1 <1

j=1

Proof. For every edge E; there exists a set T} ETT(H—E]') of cardinality t. Clearly
E;NT; = @ if and only if ¢ = j; thus from Theorem 6, Chapter 1,

N+ s
z"':(lEJlg'll j 5—1 <1
=1 I

The stated inequality follows.

Corollary 1 (Bollobas [1965]; Jaeger, Payan [1971]). Let H be a 7-critical hypergraph
of rank r, with 7(H) = t+1; then the number of its edges satis fies:
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t
m(H) (7.
Moreover this bound is attained with the hypergraph Ki,,.
Proof. Let E €H. Since |[E| <r we have

(7F)<(7).

mu < g (B <

EeH

Thus

The stated inequality follows.
We verify immediately that equality holds for H = K7 ,,.

Corollary 2 (Theorem of Erdds, Hajnal and Moore). If G is a stmple graph of order
n with ofG) = k and G —E;) = k+1 for every edge E;, then

m(G) < ("THT.

Since every maximum stable set of G is the complement of a minimal transversal
G and vice versa, we have 7(G) = n—k, 7(G—E;) = n—k—1 for every j. The stated
inequality then follows from Corollary 1.

The following result is a theorem of Gyarfas, Lehel, Tuza [1980], which extends a
theorem of Hajnal (Graphs, Theorem 8, Chapter 13).

Theorem 7. Let H be a 7-critical hypergraph on X with 1(H) =t+1. Let A be the
set of subsets A of X such that AZ¢ H and AU {z}E€H for some = €X. For
r€EX andY CX, put

I'z = {A/A€A,AU{x}EH}

IY=ulxr
z€Y

Then every set S C X such that |S N E| <1 for all E €H satisfies |['S|> |S].

(*) Proof. Let § be the family of § C X such that |SN E|<1 for every E €H.
We shall suppose that there exists in § a set S which satisfies [I'S| < |S], and which
is minimal with respect to this property. We shall then deduce a contradiction.
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From the Kdnig-Hall theorem (Graphs, Theorem 5, Chapter 7) this means that
the bipartite graph G = (X,4;[') has no matching of S into A, but for every y €8
there exists a matching of S — {y} into A. Since in G the degree of a point of X is
> 1, and since [['S| < |S], there exists a set Ay €T'S and two distinet points Y¥p €S
such that

AgU{y,}=E, €H, y €S
AgU{y}=E, €EH, y,€S.

Since 7(H—E}) = t, let T) be a transversal set of the hypergraph H—E| having cardi-
nality t. Since Ty N E, = (JJ, we have y; ¢ T, and consequently

'NA#J (A€ly, A#A)

® clement of T1
e A(y)

. .
® .
°
N e —
X A
Figure 7

Because of the minimality of S, we have [[Y|> [¥| for every Y C S — {y,}, and
hence there exists a matching of § — {y,} into I'S. This matching makes correspond
to every y €S — {y,} a set A(y) €T'y; and, since [['S|= || — 1, every A €IS is the
image of some y €85 — {y,}.

Consider a set T, obtained from T, by replacing every vertex y €S — {y,} which
belongs to T by a vertex chosen arbitrarily from the set A(y).
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We note that if an A €'S satisfies T; N A = (JJ, then all the points y €5 — {y,}

joined to A in G are elements of T;. Hence
ToNA#*Y (A€lS).

Since S € § this implies that
T,NE <+ (EEH.ENS#Y)).

It follows that T, is a transversal of H, and since [T, | < IT| =t we have a con-

tradiction.

4. The Koénig property

A matching in a hypergraph H is a family of pairwise disjoint edges, and the max-
imum cardinality of a matching is denoted v(H).

A matching can also be defined as a partial hypergraph H, with A(Hy) = 1.
We note that for every transversal T and for every matching Hy,
ITNnE|>1 (E€H,)
Thus |[Hy| < [T], from whence
V(H) = max |Hy | < 7(H).
We say that H has the Kdnig property if v(H) = 7(H).

A covering of H will be a family of edges which covers all the vertices of H, that
is to say a partial hypergraph H, with §(H,) = mei;} dyf(z) > 1. We write
z
p(H) = min|H, |

Finally, a strongly stable set of H is by definition a set S C X such that
IS N E,| <1 for every E € H, and we write

o(H) = maz |S].

It is seen immediately that p(H) = 7(H*), o{H) = v(H*); for this reason we say
that H has the dual Konig property if p(H) = oH).

Example 1: The r-partite complete hypergraph. If n, <n, < - -+ <mn,, the
hypergraph Ky ,. . has the Kénig property since 7 = n; and v = n;. It also has

the dual Kénig property since p = n, and & = n,.

Example 2: Semi-convex polyominoes. A polyomino P is a finite set of unit
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squares in the plane arranged like a chesshoard with some of its squares cut out. With
every polyomino P one can associate a hypergraph whose vertices are the unit squares

of P and whose edges are the maximal rectangles contained in P.
It is easy to see that this hypergraph P has the Helly property and is conformal.
Moreover, if P is “‘semi-convex’’, that is to say if every horizontal line of the plane
intersects P in an interval, the hypergraph P has the Kdnig property (Berge, Chen,
Chvatal, Seow [1981]) and the dual Konig property (Gydri [1984]). The smallest
polyomino P with v(P) # 7(P) is shown in Figure 8.

O
X
O
X
O
X X X
@)
X
N .
O
X

O

Figure 8. Figure 9.

Polyomino with v =6 and 7 = 7. Polyomino with p =8 and = 17.

O

Figure 10. Semi-convex polyomino withv =7 =3, p =a=1.
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Example 3: Paving with bricks. Consider the integers ¢ <&, p <gq, and a rec-
tangular chessboard of dimensions p X ¢, which is to be paved with bricks of dimen-
sions ¢ X b. What is the maximum number of bricks that one can place on the chess-
board?

We can consider the hypergraph H whose vertices are the unit squares and whose
edges are all the rectangles of dimension a X b; the answer to the problem is then
v(H). Brualdi and Foregger [1974] have proved that H has the Kdnig property for
every (p,g) if and only if a is a divisor of b. For example, for a = 2, b = 3, there
exists a chessboard of dimensions 9 X 68 which determines a hypergraph H with
v(H) =9, 7(H) = 10, thus not satisfying the Kénig property (Figure 11).

t(H)=10
X X x |
X X
q=64
X X
X X X
- -— - /
p=9

Figure 11. The squares marked with a cross represent an optimal transversal of H.

If one wishes to pave with bricks of dimension a X b a “truncated” chessboard,
we have, in general, neither the KSnig property nor the dual Kénig property; neverthe-
less, the truncated chessboard of 24 squares represented in Figures 12 and 13 satisfies
these two properties with bricks of dimensions 1 X 4, as the reader can easily verify.
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& &)

Figure 12. Figure 13.
The squares marked with a cross constitute The squares marked wsth a circle constitute
a transversal of H and consequently a strongly stable set and consequently
this matching is ia optimal. this covering is optimal.

Example 4: Hypergraph of subtrees of a tree. Let G be a tree on
X = {z,,29sTp }, and let H = (E,Ey,...,.E,,) be a family of subsets of X which
induce a subtree. We have seen that H has the Helly property. It follows from the
theory of perfect graphs that H also has the Kdnig property.

Let us give a proof by induction on 7(H) = ¢ for the equality v =7. If t =1, it
is clear that vr=r71. So, we may assume that H has an optimal transversal
T = {z,,29,.,%; } With t > 2.

Let S C X be a minimal set such that the subgraph Gg is a tree containing 7.
Furthermore, let us choose T such that |S]is minimum. A pendent vertex z; of the
tree Gg is therefore in T.

Since T is a2 minimal transversal of H, the partial hypergraph
H, =(E/E€H,ENT={z,}) is non-empty; there exists an edge £, €H, such that
E, N (S—{z,}) = & (by the minimality of [S]).

The hypergraph H' = H—H(xz,) has a transversal of cardinality t—1. Thus
v(H') = t—1 (by the induction hypothesis). An optimal matching of H' augmented by
the edge E|, forms a matching of H with cardinality ¢, and hence (H) >t = 7(H).
We therefore have v{H) = 7{H).

Example 5: Bipartite multigraphs. A famous theorem of Koénig states that a



68 Hypergraphs

bipartite multigraph has the Konig property, and also the dual K&nig property.

For non-bipartite graphs, those having the Konig property have been character-

ised by Sterboul and this result will be proved later on (Chapter 4, Theorem 6).

Example 6: Interval hypergraphs. A theorem of Gallai states that an interval
hypergraph has the Kénig properyy. This follows also from Example 2 or Example 4
above. We shall see later on that % also has the dual Konig property.

Example 7: The hypergraph of circuits of a digraph. Let G, be a strongly con-
nected digraph, and let H be the hypergraph whose vertices are the arcs of Gy and
whose edges are the elementary circuits of Gy.

If G, is planar, a theorem of Lucchesi and Younger in [1978] shows that the
hypergraph H has the Konig property. If G is non-planar, the hypergraph H does not
in general have the Konig property: for the graph Gy of Figure 6 we find that
v(H) =1 and 7(H) = 2. Younger has also conjectured that if G is planar, the hyper-
graph Tr H has the Konig property; Kahn [1984] has shown that for G planar the
hypergraph H; of minimal length circuits of Gy has its transversal hypergraph Tr H,
with the Konig property.

Theorem 8 (Seymour [1982]). A linear hypergraph H with n(H) vertices and m(H)
edges without repeated loops satisfies

m(H)
v(H) > (i)

(*) Proof. Let H be a linear hypergraph with m(H) = m, n(H) =n. Let p(H)=1p

be the least integer > %. Thus

(1) p >
n
(2) r—1 < =,
n

We show that V(H) > p. As this is trivial for p = 1, we may assume that p(H) >2
and prove the result by induction on m.
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1.  We can suppose that for every E € H, there are at least (p—2)|E [+n+1 edges of
H which meet E.

For if not, the hypergraph H{ = (F/F €H ,FNE ={) satisfies
m—m(H,) < (p—2)|E Hn+1

Hence, from (2),
m(Hy) > n(p—1)+1—(p—=2) & I-n—1 = (n—|E [)(p—2).

In this case

= p—2.

m(E) | (e[ p2)
n(H,) — n—|E|

By virtue of the induction hypothesis the hypergraph H,, which is linear, satisfies
v(H,) > p—1. By adjoining E to a matching of H; with p—1 edges we obtain a
matching of H with p edges, and the theorem is proved.

2. IfSCX, |S|<p—1, there exists an edge E €EH with EN S = .

Let z €X. The sets E—{z} with E € H(z) are pairwise disjoint (by the linearity of
H); since their union has at most n—1 points, and only one of them can be empty, we
have |H(x)| < n. Thus the maximum degree of H is A(H) < n.

Using (2) we see that the partial hypergraph H' = (E/E €H ,E N S #()) satisfies
m(H") < ISIAH) < (p—1)n <m = m(H)
Thus there is anedge E €H — H',and EN S = .

3. We shall define progressively distinct edges Fy,Fy,...,F, and distinct vertices
21,54y by the following rules:

(I) F, is an edge of maximum cardinality; z; is a point of F| with the smallest
degree. .
(I1) For ¢ > 1, F; is an edge such that F; N {z;,24,...7;_;} = (J with the smallest
cardinality (from assertion 2 above such an edge exists); x; is a vertex of F; for which

dy(z) is maximum.

Put

IF ] = s
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H; = (E/E EH!En{xlim2!""zi}={wi})
HY = (E/E€H;, [E|=/;)
We note that f; < f, < +*+ < f, and that Fy €H?. We show that

(3) H 2 i n 1+ 3 (£,-1)

Jek
where

Ji = N <i<i; E}.
i ={N<i<i €Y, }

We note that if j €J; there exists a unique edge E € H, which satisfies z; EF and
that this edge E has at least f; elements. Thus
n=12 % (Eh1) = P (IEI*1)+Z ¥ (Bl

zZ,€E J<i EeH;
:.EE

23 fi=Y +X (-

EeH; EeH} jek

= f; IH; FIH? |+ X (F;-1)

jed;
From this (3) follows.
4. We show
(4) fi Hil=n > fi(p—1=; .

From assertion 1 above the number of edges of H which meet F; is at least
(p—2)f;+n+1. For z €F;,

H(z)] < H(=:)).
Thus

(pP—2)fi+n+1 < fi(lH; H 1 -1+
From this (4) follows.

5. We show that
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(5) HP > p—i+X (/1)

j<i

From (3) and (4) we obtain
B = 1+ i —1= 1 D+ X (7;-1)

i€k
=1+fi(p—1-l; D=3 (/;~D)+ X (f;-1)
]J;}J i<i

However,

filp—1—1; - Sy 2 filp—1=17; D-E7;
7
—fa(p_l |'] | fl 1_1 |J I)_ f: _1) Zp_i-

From this (5) follows.

6. We shall define a sequence of edges Ey,E,,...,E, one by one; if E\,Ey, ... ,E;_

have been defined, we take E; € H? so that E; N Z; = (J, where

Z; = {z1,%p0 s 1} U U _{31})
i<i

Such an edge E; exists, for the sets (E—{z; }/E €HY) are pairwise disjoint and there are
at least 1+ |Z; | of them from (5); thus at least one of them is disjoint from Z;.

Every edge E; with j <1 is disjoint from the edge E; since z; € E; (because
E; EH) CH;),and (E;~{z;) N E; C Z; N E; = (.

Thus (E,Ey,....E,) is & matching, and hence v(H) < p.

QE.D.

Corollary (Theorem of DeBruijn and Erdds, completed by Ryser [1970]). Let
H = (E,Ey,....E;;,) be a family of distinct subsets of X, where IX| = n, such that
IE; N E'_,»l =1 fori # j. Then m <n. Furthermore, if m = n, we have one of the
following cases:

@) H i3 a projective plane of rank r > 3;

(ii) H = ({1}L,{,2}{1,3}...,n}), n 21



72 Hypergraphs

(iii) H = ({1,25{1,3}, . . . , {{,n},{2.3,...n}), n >3.

Inequality m < n is obvious since, from Theorem 8,
m
vH)=12>2—
(=121
We note that by using this result, Seymour has also shown that if H is a linear
hypergraph H and satisfies v(H) = -T—:-, then we have either (i), (ii), (iii) or

(iv) H = K, where n is odd and > 5.

Exercises on Chapter 2.
Exercise 1 (§2)
Show that if H has the Helly property and if we put

H; = {E/E€H,ECX—E;}
then 7(H) < max m(H;).

Exercise 2 (§2)

Let H be an r-uniform hypergraph of maximum degree A = 2. The upper bound
for 7(H) has been determined by Sterboul [1970]:

if r is even, it is [[2—71]3 H
r |3

an 4n
or
[3r +1

3r+1
Try to construct hypergraphs for which this bound is obtained.

if r is odd, it is

Exercise 3 (§2)

If H is a 3-uniform regular of degree A = 3, then
H) < |2
Show that this bound is the best possible. (Henderson, Dean [1974]).

Exercise 4 (§2) Let H be a hypergraph without loops on X. For every Y C X, define
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H/Y = (E;/E;€H, E;CY).
Put 7(H) =0 if H is “empty” (having no edges), and suppose that

ram <l vex

Show that for every maximal transversal T = {r,,2,,...,7;}, there exist distinct ele-
ments Yp,¥gseny; of § = X—T sceh that |z,y1],[zevs), « « + ,[#,u:] are the edges of the
graph [H];. (Lehel [1982]).

Hint: Consider the bipartite graph G = (T,S;T) formed by the edges of [H],. The par-
tial hypergraph H, = (E; /E; €H,E; CAUT;A) has a transversal T} with

1
Inl< 5 laulcal

To =T, U (T—A) is a transversal of H and |Ty|> |T| implies that [TgA|> 4|,
from which the theorem follows.

Exercise 5 (§4)

Show that the hypergraph P defined by a polyomino (Example 2, § 4) is confor-
mal. Show that there exists a vertex of degree 1. Show that there exist distinct ver-

tices z,,Zy,...,Z,, such that z; €E; for ¢ = 1,2,...,m.

Exercise 6 (§4)

Show that the hypergraph P defined by a semi-convex polyomino (Example 2, § 4)
has a set § C X which is a transversal and is strongly stable.

Exercise 7 (§4)

Use the results of Seymour to prove the ‘friendship theorem” (Erdds): if in a set
of n individuals, any two of them have exactly one friend in common, then there exists
someone who is a friend of all the others.
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Fractional Transversals

1. Fractional transversal number

Let s be a positive integer. An s—matching of a hypergraph H on X is a func-
tion ¢ on the edges of H such that for each edge E, ¢{(E) €{0,1,2,...,s}, and for each
vertex z,

Y q(E)<s.
E€H(z)

The value of an s-matching is Y ¢(E); we denote by v,(H) = max 3, ¢(E) the
EeH 9 EeH

maximum value of the s-matchings of the hypergraph H. Clearly, for s =1, an
s-matching is a matching and vy(H) = v(H).
A fractional matching is a real-valued function ¢ such that
(1) 0<q(E)<1 (E€H)
@2 Y «dFE)L1 (z€X)
EeH(z)
We denote the mazimum value of a fractional matching of H by:
v¥H)=max Y, q(E).
! EeH
Example: Consider a truncated checkerboard, for example that of Figure 1 which has
27 squares. We wish to place a number of rectangular cards of dimension 2 X 3 on the
board so that each card covers exactly 6 squares (or ‘‘polyominoes’ of shape 2 X 3).
What is the maximum number of polyominoes which we may place on the board so
that no two of them overlap? If we let H be the hypergraph on the set of squares of
the board whose edges are the sets of squares which may be covered by a polyomino,
the answer is Y(H). Here v(H) = 3, and a matching of value 3 is shown in Figure 1.
More difficult is the following problem: What is the maximum number of polyominos
which may be placed on the board in such a way that no square is covered more than
twice? The answer is vo(H). Here vy(H) =7, and a 2-matching of value 7 is shown in

Figure 2, A more detailed study shows further that v¥(H) = %



Fractional Transversals 75

[
A, _
A R
L/ // ? V \ % ORI
is A / < \ ar
v(H) =3 va(H) =7
Figure 1 Figure 2

For an integer k > 1 we define a k—transversal of H to be a function p on X
such that for each vertex z, p(z) €{0,1,2,....,k} (the “weights’) and
S ple)>k (B €H).
z€E

The value of a k-transversal p is 3, p(z), and we shall denote by 7,(H) the
z€X
minimum value of the k-transversals of H. Clearly, for k =1 a k-transversal is a

transversal and 7,(H) = 7(H).
A fractional transversal of H is a real function p(z) such that
1) 0<p(=)<1 (zE€X)
() ¥ r(=)21 (E€H)
2€E
The fractional transversal number of H is the minimum value 7 *(H) of the frac-
tional transversals of H; this number will be our principal subject of study in this

chapter.

Example. If H is the graph C;g (a cycle of length 5) we see immediately that p(z) =1
is a 2-transversal, and 74(H) = 5. Further p(z) =0.5 is a fractional transversal, and
T*(H) = 2.5. Further, v \(H) = 2, vy(H) = 5, v*(H) = 2.5.

Remark: Let H = (Ey,Es,...E,) be a hypergraph on X = {z,,2y,...,7,} and let
A = ((a})) be the incidence matrix of H:
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' Oif z; ¢ E;
ay = {1 if 7; €E;
A fractional matching may be interpreted as a vector q = (¢,,gg,.-,qy,) Of the
polyhedron:
Q = {a/aek™, a4 >0, Aq <1}

This polyhedron in m-dimensional space is thus called the matching polytope of H,
and a matching is a vector of Q whose coordinates are either 0 or 1. Similarly, a frac-
tional transversal may be interpreted as a vector p = (p,pa,...,p, ) of the polytope:

P={p/pER", p >0, A*p >1}.

This polyhedron is called the transversal polytope.

Theorem 1 (Berge, Lovdsz, Simonovits). Every hypergraph H satisfies:

v, (H G v,(H
o )Smax m(H') < ma o(H)
a>1 8 HCcH A(H') s>1 8

= v*(H)

7 (H) jal T(H)
=7%* H) = mi < i < = H).
THH) = min S s i gy SR Ty~ @)

These inequalities are called the “*fundamental inequalities’’; the expressions “max’ (or
“min”) imply that the upper (or lower) bound is attained.

vs(H)
Proof. 1. v{H) = min P

If H' is a matching of size ¥(H), the hypergraph sH' obtained from H by repeat-
ing each edge s times is an s-matching: thus v,(H) > sv(H). The equality is satisfied

ve(H)
for s = 1, so indeed min e v(H).
. Va(H) m(H')
2. min < max A

Let H” be a maximum matching of H; we have
" r
_ m(H") < max m(H"
A(H") — w'cH A(H')
vo(H)

v(H)

¥
3. max%(}%)l < sup
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!
" mHEy o mE)
Let H” C H be such tha AH™ H/é)lc{ A

m(H’b _m H" < Vs(H) <sup VS(H)
S

If we set s = A(H"), then

max

AHY  AHM T s T s
4. sup UB(SH) = max E%{l = y(H).

. . . ]
Letz = (21,22,...,37") be a maximum s-matching of H. Since > € Q, we have

v,(H 2z
1) L =3 — < v¥H).
8 8
Conversely, let ¢ be a fractional matching with £ ¢; = v*(H). Since such a ¢ will
be an extremal point of a polyhedron @ defined by linear inequalities with integer coef-

ficients, we may assume that the g;'s are rational. Let z be a vector such that

2
1 .

Qi = = 8,71,%gy.e012y, iDtegers >0
8

Since z = (21,2,:2,,) =0 and Az = A(sq) = sAq <s.1, the vector z is an

s-matching, whence

m v.(H
sy =L § o, < L)
s ) s
vs(H)
Consequently, from (1), P v*(H), and
v (H v (H
sup 8i ) = max 8£ ) = v*(H).

5. v¥(H) =1 *H).
This is an immediate result of the duality theorem in linear programming:

min ¥ p; = max X g;.
peP 9€EQ

Tp(H) in T (H)
ko ko
Let p be a fractional transversal with ¥ p; = 7 *(H). We may assume that the

6. 7*H) = min

coordinates of p are rational (since the extremal points of the polyhedron P have
rational coordinates). Let t = (},£,,...,¢,,) be such that
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t.

L3

= i Lptase-sly integers 2> 0.

Since A*p > 1 we have A*t > k: thus t is a k-transversal, whence
3t Tp(H)
* = —— D ———
rHH) = = > T

H)

Conversely, every integer k satisfies > 7 *(H) and consequently

7. min "u(H) < mi 4} .

Let A be a set of vertices of H. Put
s = s(H,)=min |[E;NAJ
]

Then the characteristic function of the set A is an s-transversal, whence 7,(H) < |4 |
and consequently

T(H T(H
min ) (T o Ja]
k k. — s = s(Hy)
Since this is true for all A C X,
7 (H) la]
. < mi )
e S
7 (H)
< _
s(Hy) =™ Tk
Let T be a minimum transversal of H; we have

WL Ly T )

min SHy) S (H)

8. min

1
T(H
9. max ki ) = 7(H).
Let T be a minimum transversal and let ¢(z) be its characteristic function:
lifz €T
t@) =itz gr

For each integer k, the function kt(z) is a k-transversal; thus
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T(H) < Y k() = kIT|
TEX

whence:

7(H)
k

max < |It|=r(H).

Corollary 1. A hypergraph H with the Konig property conlains k disjoint edges if
the only if

ks(Hg) < 4] (4 CX)

Indeed, for a hypergraph H satisfying v(H) = 7(H) we have v(H) = };nér;( ;J(?TIT'
A

Hence V(H) > k, which is equivalent to the condition stated.

Corollary 2. A hypergraph H having the Konig property contains a set of k vertices
which meet every edge +f and only i f

EAH) >m(H') (H' CH).

{Similar proof).

Corollary 3. Every r-uniform regular hypergraph has p(z) El as an optimal
r
fractional transversal.
Indeed, consider a regular r-uniform hypergraph H of order n. By counting the
number of edges in the bipartite edge-vertex incidence graph in two different ways we
see that m(H)r = A(H)n. Thus, from Theorem 1,

_ m(H) mH) Al o n
= A Sm}%x AT <r (H)Sm/;n o (H) < e

|3

Thus 7 ¥(H) = % and consequently p(z) = % is optimal.
For example, for the complete hypergraph K, Corollary 3 gives
ri) = 1,
and we have

UKR) = (3] S7HKD) = 2 Sr(iG) = nr+L.

As another example, for the cycle Cj5, Corollary 3 gives
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5
o) = 2
T ¥(C5) 9’
and we have
UOs) =2 <7¥(C) = = = 7(Cs) = 3.
Theorem 1 may equally well be applied to the dual hypergraph H*; it then has a

totally different interpretation.

For an integer k > 1, a strongly k-stable function is a function f which assigns to
each vertex z of H an integer f(z) € {0,1,2,...,t’c} such that

Y fl=)<k (E€H)
z€E

We denote by & (H) the maximum value of ¥, f(z) for the strongly k-stable func-
z€X
tions of H. It is clear that, for k = 1, a strongly k-stable function may be identified

with a stable set, and &(H) = &(H).

Proposition 1. If H* {s the dual of H then
qy(H) = v (H¥).

Indeed, a strongly k-stable function on H defines a k-matching of H*, and vice

versa.

Proposition 2. Let H be an r-uniform hypergraph of order n, and let N\k,k' be
integers with k+k' = Xr. Then

ak(H) = >\n = Tkl(.H).
Indeed, f is a k-stable function if

S f@) <k (E€H)
z€F

This is equivalent to saying that the function p(z) = A—f(z) satisfies

S pE)=x =Y fl@)2 —k=Fk.
z€FE rzelR

This means that p is a £~transversal of 7. Further
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3 f(@)=> -3 p(z)
z€X

reX
Thus

G (H) = max ¥ f(zr)=Xn —min 3} p(z) = n — 7 (H).
z€X z€X

Observe that if the hypergraph is a graph G, we may set A = k = k' = 1 to obtain the

well known equality
oAG) + 7(G) = n.

For an integer s 2> 1, an s-covering of H is a function g which assigns to each edge E
an integer g(E) €{0,1,2,...,8} such that

Y, 9(E)2s (z€X)
E€H(z)

We denote by p,(H) the minimum value of an s-covering of H.

Proposition 3. If H* is the dual of the hypergraph H, then
pr(H) = 7, (H*).

Indeed, an s-covering of H corresponds in H* to an s-transversal, and vice-versa.

Proposition 4. Let H be a regular hypergraph with A(H) =k, and let \s,t be
integers such that s+t = Mh. Then

po(H) = Im — v,(H)
Indeed, the hypergraph H* is h-uniform, and from Propositions 1, 2 and 3,
po(H) = 7,(HY) = \m — G(H*) = \m — v,(H).

By duality we obtain:

Theorem 1. Every hypergraph H satisfies:
o.(H
. (H) < max A

< max akEcH) = oa*{H)

aH) = min —— < max r(Hy) ~ k21

Pr(H) m(H') Pi(H)
=mi < mi < = p(H).
T S B s S )

Corollary. The edges of a hypergraph H with the dual Konig property are coverable
with k edges if and only i f
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kr(Hg) 2 Al (4 CX)
Indeed, if H) = p(H) we have

A
= <k.
f{nga;(( T(HA) -

p(H)

This is equivalent to the stated condition.

Example: Consider the celebrated problem of Gauss: what is the maximum number of
queens which may be placed on an 8 X 8 chessboard such that no two lie in the same
row, column or diagonal. If we consider diagram A we see that it is possible to place 8
queens in such a manner, and 8 is clearly the maximum. In other words, the hyper-
graph H on the set of squares, whose edges are the rows, columns and diagonals of the
chessboard, satisfies &{H) = 8. Clearly p(H) = 8, since the 8 columns constitute a
covering, and the hypergraph H has the dual Kénig property: &{H) = p(H).

More difficult is the following problem: what is the minimum number of queens
necessary to cover every row, column and diagonal at least once? Clearly v(H) = 14,
since we may form a matching with the 7 white diagonals parallel to the leading white
diagonal and the 7 black diagonals parallel to the leading black diagonal, Further, we
also have 7(H) = 14, a transversal of 14 elements being represented in diagram B.
Hence v(H) = 7(H), and the hypergraph H satisfies the Kdnig property.

Note that this is not the same as the domination problem: what is the minimum
number of queens necessary to dominate all the squares? The answer is 5, and the
solution of diagram C corresponds to a maximal strongly stable set of minimum weight:
thus &/(H) = 5.

We may also ask the question: is it possible to place 16 queens in such a way that
each row, column and diagonal contains at most two queens?  Since
Oy(H) = 2a(H) = 16 this is clearly possible if we allow two queens to occupy the same
square. However, diagram D gives as a solution a 0-1 vector, that is to say an optimal
strongly 2-stable ‘“‘set”,

Finally, we may consider the problem: does there exists a 2-transversal which is a
set of 28 queens, all placed on different squares? An optimal 2-transversal with 0-1

coordinates is represented in diagram E.
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T;(H)=28

E
Figure 3

2. Fractional matchings of a graph

We now suppose that the hypergraph is a simple graph denoted by G = (X ,E).
From Theorem 1, we have
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7¢(G) 74(G)
< max
k>1 k £>1 k

=(6)

Theorem 2. Every graph G satisfies
vo(G)  To(G)

2 2

TH@G) =

Further, there exzists a marimum 2-matching, H C 2G whose connected com-

ponents are 18olated vertices, pairs of parallel edges, and odd cycles.
For such a 2-matching H, there exists a minimum fractional transversal t such

that t{z) =01if = i3 an isolated vertex of H; t(z) =0, t(y) =1 (or t{z) = t(y) = %)

if ¢ and y are the endpoints of a pair of parallel edges of H; t(z) = % if z belongs
to an odd cycle of H.

Proof: Let H C2G be a 2-matching with m(H) maximum. Each connected com-
ponent of H which is a path of even length or an even cycle may be replaced by pairs
of parallel edges without changing m(H). No component of H is a path of odd length,
since we could then augment m(H) by replacing it by pairs of parallel edges. We may
thus suppose that H is of the indicated type.

We now label each vertex of G with a0, a 1 or a %, step by step, according to
the following rules:
(1) an isolated vertex of H is labelled 0;
(2) a vertex which is adjacent ¢n G to a vertex labelled 0 is labelled 1;

(3) a vertex which is adjacent in H to a vertex labelled 1 is labelled 0;
(4) each vertex which cannot be labelled by rules 1, 2, 3 is labelled %

Observe that an odd path starting at an isolated vertex of H followed alternately
by edges of G—H and double edges of H cannot terminate in an isolated vertex of H:
otherwise, by replacing in H the double edges of this path by the path itself we obtain
a 2-matching H' with m(H') = m(H)+1, contradicting the maximality of H. Simi-
larly, an odd path of this type cannot terminate in an odd cycle of H. Finally an odd
path of this type cannot contain any other vertex labelled 0.

Hence a single label t(z) may be given to each vertex = and ¢ indeed takes the
values given in the statement. From rule 2, the function ¢(z) is a fractional transversal
of G, and, by Theorem 1, we obtain:
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m(H) _ »(G) <HE) < Y t(e) = L)

2 2 sex 2

Thus we have equality throughout, which shows that ¢(z) is a maximum fractional

transversal of G, and that

Theorem 3 (Lovasz [1975]). Every graph G satisfies

74(6) < S (UG (G).

Proof: Let T be a minimum transversal of the graph G = (X,E); the set § = X—-T'is
then a maximum stable set. Let k£ be the maximum number of disjoint edges having
an end in . From Konig's Theorem on maximum matchings in bipartite graphs (ef.
Graphs, chapter 7), there exists a subset Ay of S such that

[S—Aol+ ITg Aol = min (Is—A+TgA]) = k.
Put

0if z €A
tiz)= N1ifz €lzA,

% if £ €X—(A,UTgAy)

Clearly, ¢t(z) is a fractional transversal of G; whence:

2r¥(G) <23 t(z) = IT[H+TgAs+S—40|
z€X

=7(Q)+k <7(G) + V(G)

from which we deduce the result.

Corollary. For a graph G the following conditions are equivalent:
1) XG)=7(G)
@) vG)=r1(G)

Proof: Since, from the fundamental inequalities, (2) implies (1), it suffices to show that
(1) implies (2). Let G be a graph satisfying (1); from Theorem 3,
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7(G) = 7¥(6) < FWGHT(G) <

N =

(TG (G))-

We thus have equality throughout, which implies (2).

Remark: It is not true that 7*(G) = v(G) implies v(G)=7(G). For example,
7K ,) = V(K,) = 2, but 7(K,) = 3.

An optimal 2-matching H of the form given in Theorem 2 determines an optimal
fractional matching ¢; the set of edges e of G with g(e) # O defines a partial subgraph
of G whose connected components are: isolated vertices, isolated edges and odd cycles.
Such an optimal fractional matching is said to be canonical. Balinski [1970] showed
that the canonical matching are the extreme points of the matching polytope. We

have:

Theorem 4 (Uhry {1875]). Let G = (X,E) be a graph, and let ¢ be a canonical frac-
tional matching such that the set of edges e with q(e) = —;— 13 minimal with respect

to inclusion. Then we obtain a mazimum matching M of G on taking the union of
My = {e/q(e) = 1} and all the M;’s where M; denotes a mazimum matching of the
odd cycle p; of {¢ /e EE; ¢(E)+#0}.

(*) Proof: Let py,uy,... be the odd cycles formed by those edges e with g(e) = —;—;
denote by X; the set of vertices of u; and set Xg = X — L>J X;.
i>1

Clearly M, is a maximum matching of the subgraph Gx,. We shall show that
M=M,UM,UM;U - is a maximum matching of G.

Suppose that the matching M is not maximum. From the alternating path lemma
(cf. Graphs, chapter 7 §1), there exists an alternating path u[a,b] between two vertices
a and b unsaturated by M. In the subgraph of G induced by X, the edges of M form
a maximum matching, and consequently the chain p[a,b] meets at least one of the X;’s,
say X,. Further, since the subgraph of G induced by X, contains a single unsaturated
vertex by M, one of the ends of yfa,b] is in X—X,, say b. Let a’ be the last point of
the path pla,b] which is in X;.

Since no edge of M joins X; and X—X, we may suppose perhaps after modifying
the maximum matching M; of X, that a' is unsaturated: in other words we may sup-
pose that a’ = a.
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Case 1: ¢ €X, b €X,.

N —— ula, b]

Figure 4

For every set F C E, denote the characteristic function of F by ¢p(e) and let

1—q(e) if ¢ Enfo ]
¢M,(e) if e €y
)= 1pufe) e €mo

g(e)  otherwise
Clearly ¢'(e) is a fractional matching of H. Since
Eq'(e) = Zq(e)s
¢' is also an optimal fractional matching. As ¢’ has fewer edges weighted -;— than ¢,

this contradicts the definition of g¢.

Case 2:a €X,, b €X,.
Let

1—q(e) if e € pfa,b]
q'(e) = 1Pme) ife €Em

g(e)  otherwise

Clearly ¢' is a fractional matching H, and
Sql(e) — Sqle) = 1 — -i)— >o0.

This contradicts the optimality of ¢.
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In each case we obtain a contradiction, which shows that the matching M is max-

imum, as required.

The following theorem may be used to characterise those graphs G for which
V(G) =71*G). Let M be a maximum matching of the graph G = (X ,E). A cycle u
of G is said to be isolated by M is no edge of M joins p and X —pu. Let s(M) be the
maximum number of pairwise disjoint odd cycles of G isolated by M.

Theorem 5 (Balas [1981]). Every graph G satisfies:
1
oY = =
TXHG)=v(@)+ 5 max s(M)

Proof: Let ¢ be a canonical fractional matching having a minimal set of edges e with
g(e) = %; let p,40, . . . 4, be the odd cycles generated by these edges. The match-

ing M obtained from ¢ as in the statement of Theorem 4 satisfies

r¥G) —UG) = Ba(e) — M| = 5 < 5 max s(1)

(since M isolates the cycles py,py, . . . ,1,).

Further, suppose there exists a matching M’ with |M|= [M'| and s(B) > s;
then M' may be obtained from a canonical fractional matching ¢, and

D) = IM 1+ 5 s(M) > IM]+ 5 = Tge).

This contradicts the optimality of ¢. Thus s = maxs(M) and the stated equality fol-
lows.

To illustrate this result, consider the graph of Figure 5. It has a maximum match-
ing M| which does not isolate the pentagon, but also a maximum matching M, which

does. Thus, max s(M) =1, and we may thus find a fractional matching g(e} of value
v(G) 4+ % = % (see Figure 5).

Corollary 1. A graph G satisfies V(G) = 7 ¥(Q) if and only i f no mazimum match-
ing tsolates an odd cyele.
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M, M, q(e)

Figure 5

Indeed, in this case, max s(M)=0.

Corollary 2 (Lovdsz (1975]). Every greph G satisfies

(1) %6 <5 v©)

Equality holds in (1) if and only if G is the union of pairwise disjoint triangles.

3

Proof: It is clear that if G consists of p vertex-disjoint triangles, then 7 *(G) = >

and (@) = p, giving equality in (1).

If G is not of this type, let M be 2 maximum matching of G which maximizes
8(M). Each of the 8(M) odd cycles isolated by M contains at least one edge of M, so

T¥G) = U(G) + %.;(M) <UG) +51G) = %I/(G)

Equality in (1) implies that each odd cyele is a triangle and contains exactly one
edge of M. These triangles are disjoint since any extra edge would create an alternat-
ing path between two unsaturated vertices in distinct triangles, contradicting the maxi-
mality of M.

We will now prove a result which gives a characterisation of graphs G with
7¥G) = 7(G).



90 Hypergraphs

Let M be a maximum matching of G; an odd cycle of length 2k+1 containing &
edges of M is called a lentil; its base is the vertex which is not adjacent to any of
these k edges.

A monocle is the disjoint sum u; + uy of a lentil 1y and an alternating path u, of
even length joining a vertex unsaturated by M to the base of the lentil y, (cf. Figure
6).

unsaturated

unsaturated

Figure 6. Monocles

If two (not necessarily disjoint) lentils ; and gy are joined at the bases by an odd
alternating path g, their sum p, + p, + s is called a binocle (cf. Figure 7).

Figure 7. Binocles
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Recall that an alternating path (relative to M) is a sequence of distinet edges
alternately from M (the "thick” edges) and from E—M (the "thin" edges).

For every maximum matching M, we say that a vertex is thin if may be reached
by an odd alternating path from an unsaturated vertex (and not by an even path). We
say it is thick if it may be reached by an even alternating path from an unsaturated
vertex (and not by an odd path). We say that it is mized if it may be reached by an
even alternating path and by an odd alternating path. We say that it is tnaccessible if
it cannot be reached by an alternating path from an unsaturated vertex. Thus an
unsaturated vertex is thick or mixed; if there are no unsaturated points then all the

vertices of the graph are inaccessible.

The following lemmas are, in fact, in a weaker form, general properties of match-
ings (Gallai [1950], Berge [1967]).

Lemma 1: Let G be a graph without inaccessible points with respect to a maximum
matching M. Then there is a mized point if and only i f G has a monocle.

Indeed, the first mixed point reached by an alternating path starting at an unsa-
turated point is always the base of a monocle.

Lemma 2: If G contains nothing but thick or thin points relative to a maximum
matching M, the set T of the thin vertices constitutes a mintmum itransversal;
further |T| = v(G).

Indeed, each vertex adjacent to a thick vertex is thin, thus the set T is a transver-
sal; each edge of the matching contains a thick vertex and a thin vertex, and the unsa-
turated vertices are all thick. Thus |T]|= |M|= v(G).

Lemma 3: Let C be a connected component of the subgraph of G generated by the
inaccessible points relative to a matching M; then no edge of M joins C to X ~C,
and each vertex of X —C adjacent to C is a thin vertex.

(Clear).

Theorem 6 (Sterboul [1978]; Deming [1979]). For a graph G, the following conditions
are equivalent:
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1) v@)=r(G)
(2) For every mazimum matching M, the graph G has no monocle or binocle;

(3) There exists a mazimum matching M for which G has no monocle or binocle.

(*) Proof:

(1) implies (2). Suppose that ¥(G) = 7(G). Let M be a maximum matching for
which the graph G has a monocle u; + pg where u; is a lentil with base a and
Up = it[a,b] the alternating path joining point a to an unsaturated point b. In the
matching M —(MNpg) + (#g—M) which is also maximum, the odd cycle g, is isolated,
hence max s(M) > 1. Thus, from Theorem 5, v(G) # 7*(G), which contradicts
v(G) =1(G).

Now let M be a maximum matching for which the graph G has a binocle
My + iy + pja,b] where pfa,b] is the aliernating path joining the two bases of the len-
tiles y; and py.

- If a vertex of the binocle is joined by an alternating path to an unsaturated vertex z,
we may obtain, by interchanging the thick edges and the thin edges along an alternat-
ing path starting at z, s maximum matching which isolates one of the lentils, which
contradicts V(@) = 7(G).

- Otherwise, let T be a minimum transversal of G, and let = be a vertex of ula,b]
which belongs to 7. In the graph G’ obtained from G by adjoining a vertex z, and the
edge [zg,x], the matching M is still maximum (since no alternating path joins z, to
another isolated vertex), and T is stil a minimum transversal. Thus
VY(G') = |M]|= |T]=7(G'). By interchanging the thick edges with the thin edges
along sn alternating path [zq,z] + u[z,b] we create an odd cycle p, isolated by a max-
imum matching M’; thus s(M") 21 and ¥(G') # 7 *(G'): contradiction.

(2) implies (3). Obvious.
{(3) implies (1). Indeed, let G be a connected graph with ¥(G) % 7(G) and let M be
a maximum matching for which G contains no monocle or binocle; suppose that G is of

minimum order with these conditions: we now deduce a contradiction

Case 1: G has an unsaturated point relative to M.
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If the set of inaccessible points is A C X, we have |A | # |X]. From lemma 1, G
contains no mixed points, and hence the subgraph G induced by X—A has only thick
or thin vertices. The matching M given by the restriction of M to G is 2 maximum
matching of G (since no alternating path joins two distinct unsaturated points). From
lemma 2, the set T of thin vertices of G is a transversal with IT| = ¥ l; moreover T
meets each edge joining A and X —A.

The subgraph G = G, admits as a maximum matching the restriction M of M
(since G= contains no unsaturated vertices) and contains no monocle or binocle; thus,
by the induction hypothesis it has a transversal T with l; | = !27 . Theset TU Tisa
transversal of G, and |T-U;l = |1\_4U]\=/I| = ||, contradicting the assumption that
UG) # 7(G).

Case 2: G has no unsaturated vertices relative to M. Let G’ be the graph formed by
adjoining to G a vertex zy and an edge [zy,2,] joining %o and a vertex z, in a minimum
transversal T of G. Since G’ has only one unsaturated point, we know, from the alter-
nating path lemma, that M is also a maximum matching of G'. Further, T is also a
minimum transversal of G'. Thus ¥(G') = M| < |T'| = 7{G").

The graph G’ has mixed points (since otherwise we would see as in case 1 that
V(G') = 7(G"), a contradiction). From lemma 1 we deduce that G contains a monocle.
Let g be its lentil, and &, its base. We have &, % =z, (since &, is of degree > 2).

Let G" be the graph obtained from the original graph G by adjoining a vertex yq
and the edge [yo,b,). If G" contains no mixed points we see as above that
v(G"} = 7(G") which implies (G) = 7(G): contradiction.

If G" contains a mixed point, the first mixed point along an alternating path from
Yo i3 the base of a lentil uy; clearly u, forms a binocle of G with p;, which gives a con-
tradiction.

3. Fractional transversal number of a regularisable hypergraph

Let H = (E,,E,,...,E,,) be a hypergraph on X. For an integer k& > 0, multiplying
the edge E; by k consists of replacing the edge E; in H by k identical copies of E;. If
k = 0, this operation becomes deletion of the edge Ej.
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A hypergraph H is regular if all the vertices have the same degree; H is regularis-
able if a regular hypergraph may be obtained from H by multiplying each edge E; by
an integer k; > 1. Finally, H is quasi-regularisable if a regular hypergraph may be
obtained by multiplying each edge E; by an integer k; = 0; note that this regular
hypergraph H' cannot contain a vertex of degree 0, since this is incompatible with the
definition of “hypergraph’.

Some examples of graphs with these properties are given in Figure 8.

a b
v =2
t =:; *=y=1=3 *=yvy=1=2
™ =_
2
regular regularisable quasi-regularisable non quasi-regularisable

Figure 8

Clearly we have: regular = regularisable = quasi-regularisable.

Theorem 7: For an r-uniform hypergraph H = (E{,Eq,....E,;;) on X, X =n, the

following properties are equivalent:

(1) H is quasi-regularisable;

(2) THH)= %

Proof.

(1) implies (2). If the hypergraph H is quasi-regularisable, there exists a regular
s-matching H' C sH; by counting the edges of the incidence graph of the edges of H'

in two different ways, we obtain ns = rm(H'). Thus

¥
n_mH <7*(H)_<_-7i
r 8 r

. 1. .
(since t(z) = — is a fractional transversal of H).
r
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Thus we have equality throughout, and consequently

) =
rH(H) = 2
(2) implies (1). Let s be the integer > 1 such that
Ve(H) vi(H)
= max ———
s k21 k

Let H' C sH be an s-matching such that m(H') = v,(H). From (2),
r v(H
m(H) = _‘i_)_ =7*H) = L:_

8 38

Thus rm(H') = nA(H'), which shows that the hypergraph H’ is regular, thus H’

is quasi-regularisable.

Remark: Hence, in Figure 8, G5 is quasi-regularisable because the matching [1,2], (3,8],
{4,5] is perfect; the graph G, is not, since the function t(z) =1 for z €{a,b} and

t(z) =0for x €X —{a,b}is a fractional transversal with value 2 < % = —Z—

When the hypergraph is a graph we can refine Theorem 7 as follows:

Theorem 8. For a graph G of order n, the following conditions are equivalent:

(1) G is quasi-regularisable;

(2) 74G) =3

(8) @ admits a partial graph H whose components consist of 2-cliques and odd

cycles;

(4) |TeS|> 1IS] for every stable set S of G.

Proof.
(1) implies (2).
If the graph G of order n satisfies (1), then there exists a regular multigraph
H C kG of degree k. By counting the edges of the incidence graph of H in two dif-
ferent ways, we obtain:
kn = 2m(H).
Thus
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r
2

since ¢(z) =1 is always a 2-transversal of G.

Thus we bave equality throughout, and ¢(z) =1 is an optimal 2-transversal.

(2) implies (3).
Let G be a graph satisfying (2). Then, from Theorem 2

v(G) Moy T
g~ @)=y

Thus v5(G ) = n, whence (3) holds.

(3) implies (4).
Indeed, for every stable set § of G,
Fes1> [TyS1> 1S |
(4) implies (1).
Indeed, let G be a graph satisfying (4); let t(z) be a 2-transversal of G, The set
S = {z /t(x)=0} is stable, and ['¢§ C {z/t(z)=2}. Thus
St@)=n +3 (tz)-1) 2n + [S|— 5|2 n.
z z

Thus the 2-transversal t/(z) =1 is optimal, whence, from Theorem 2,
vy(G) 7o(G) n

2 2 2

Thus v5(G) = n, which shows that G is quasi-regularisble.

Theorem 9. (Fulkerson-McAndrew-Hoffman Theorem). Let G be a connected graph
of even order such that every pair of disjoint odd cycles are joined by an edge. Then
a necessary and sufficient condition for G to have a perfect matching is that every
stable set S satisfy [[gS|> |5

Proof: The condition is clearly necessary. It is also sufficient since this is condition (4)
of Theorem 8, which implies that G admits a partial graph whose components are just
isolated edges and odd cycles. The cycle components may be grouped in pairs (since n
is even) and each group of two odd cycles joined by an edge is replaceable by a perfect
matching. We thus have the result.
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For regularisable bipartite graphs we may easily find analogous conditions to those
of Theorem 8. The following characterises regularisable graphs by the uniqueness of
the optimal 2-transversal. Other characterisations exist, notably due to Pulleyblank
(1980], [1981].

Theorem 10 (Berge [1978]). For a connected graph G of order n, the following con-
ditions are equivalent:

(1) G 1is regularisable and not bipartite;
@ 7%G)= % and t(z) =1 is the unique optimal 2-transversal;

(3) [TgS 1> IS| for every stable set S of G;
(4) [FgA|> |A| foreveryset ACX, A+, A+ X.

Proof.

(1) implies (2). If G satisfies (1), there exists a regular multigraph H obtained from G
by multiplication of edges; the 2-transversal ¢t(z) =1 is optimal for G from condition
(2) of Theorem 8 (since regularisability implies quasi-regularisability).

Suppose that there exists another optimal 2-transversal ¢'(z), that satisfy
t'(X) = n; we deduce a contradiction. The set Ay = {r/t'(x)=0} is stable, and has
the same cardinality as Ay = {r /t'(z)=2} (since t'(X) = n). Further, [gA4, C A,.
Since H is regular, we have

A(H) Ao = 2 my(z,A9) = %A my(z,40) < A(H) A, | = AH) |4, ]

We thus have equality throughout, so every edge with one end in A, has its other
end in Ag; the subgraph G 4 4, is thus equal to G (since G is connected) and this is a

bipartite graph with 2 classes of the same cardinality: contradiction.

(2) implies (3).

Let S be a stable set in G; there exists a multigraph H C 2G corresponding to a
canonical 2-matching of the form indicated in Theorem 2. Since v4(G) = n, no com-
ponents of G is an isolated point. Thus

s> Mys|2 I5)

We cannot have [[;S|= |S]|since this would imply the existence of another transver-
sal ¢/ defined by
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0ifze€S
tz)=12 ifz €S
1ifzgSUIGS;

t' is also optimal (since t/(X) = n), and this contradicts the uniqueness of the optimal

2-transversal. Thus

Ces)> ISt

(3) implies (4).

Let A be a set of vertices, A # (J,X. Let S be the set of isolated vertices in the
subgraph G4. If § = (%, we have mg(A,X —A) # 0 (since G is connected); thus I'zA
contains 4 and at least one point of X—A; thus [TgA|> A ]

If S # (¢, we have [[gS|> |$]|from (3), so
Ceal> Fes|+ lA-s|> Is|+ |a-s|= la|
(4) implies (1).

Let H be the bipartite graph obtained by taking two copies X and X of the set of
vertices of G, and joining * € X to § €X if and only if [z,y] is an edge of G. Every
set A C X with A # (3,X satisfies [[gA|= [TgA|> A}

It suffices to show that an edge [a,b_] of H appears in at least one perfect match-

ing of H (since such a matching defines a 2-matching Gy, of G containing the edge

{a,6], and ¥ G,y is & regular multigraph, which shows that G is regularisable).
ab

Indeed, in the subgraph H' of H induced by XU)?—{a,b—}, every set
A C X — {a} satisfies

CpAl= TgA_{6}| > Cgal -1 2 Al

Hence H' has a perfect matching (from Kdnig's theorem), so H has a perfect matching
which contains the edge [a,b].

Theorem 11 (Jaeger, Payan [1978]). Let G be a connected graph not containing a
K| 3 as an induced subgraph. Then G is regularisable if and only if it has no “hang-
ing”’ vertez, (that is to say a vertex of degree 1} and is nol vsomorphic to the graph
G, consisting of an even cycle of the form [0,1,2,....2p—1,0] with a non-empty set of
chords of the form [21,2¢+2].
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Proof: Observe first that the graph G above is Ky g-free. Since the set § = {1,3,5,...}
satisfies |FGIS| = |S| and as G, is non-bipartite, it is clear that G, is non-
regularisable from condition (3) of Theorem 10.

Let G be a connected graph without K, 3 which is not isomorphic to G;. Suppose
further that G has a stable set with [[gS|< |S) If « €S the number of edges
between z and ['gS is mg(z,[;S) > 2 (since G has no hanging vertices); if y €3S
we have mg(y,S) < 2 (since G has no K 3). Thus

2[leS| <28 < ¥ mg(aTe8) = 3 me(v,5) <2[TeS|.
z€ES y€lgS
We thus have equality throughout, and consequently
Is|= [Ts]

The equalities show further that for every z €S and every y €I4S5,
m{z,[a8) = ma(y,S) = 2; thus the edges of G between S and Iz S form an even
eyele. The only possible additional edges join two vertices of I';.S and are triangular
chords of the cycle (otherwise G contains a K, 3).

Hence G is isomorphic to G, which contradicts the hypothesis.

Thus we have shown that [[zS|> |S| and, from Theorem 10, the graph G is
regularisable and non-bipartite.

4. Greedy transversal number

Let H be a simple hypergraph; for a vertex = we denote by H(z) the set of edges
of H which contain z. To obtain a transversal of small cardinality, we may use the
greedy algorithm:

1. choose a vertex x, of maximum degree in H, = H;

2. choose a vertex zy of maximum degree in Hy = H{—H(z,);
3. choose a vertex =3 of maximum degree in Hy = Hy—Hy(x,);
4. etc,

We stop when the hypergraph Hy,, has all its vertices of degree O; the set
T = {z,,2,,...,7; } is then a transversal of H. The maximum cardinality of a transver-
sal obtained by a greedy algorithm is called the greedy transversal number, and is
denoted by 7(H).
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The following theorem, in a slightly improved form, is a result found indepen-
dently by Stein [1974] and by Lovasz [1975].

Theorem 12. For a hypergraph H of mazimum degree A,

r(H) <FH) < (1+%+ e +—i—) max %(%)l < (1+log A)r *(H)

Proof: Let T be a transversal of H with |T'| = 7(H) which has been obtained by the
greedy algorithm; let ¢, be the number of steps taken to choose a vertex of degree .

If H has maximum degree A, we have

F(H) = |T| = ty+tgt - Htapt - Ha.
For A <A, put tp+ta_+ -« +tyyy = k. The (k+1)th step consists of finding a
vertex ., of maximum degree in the partial hypergraph H; ., and we observe that

A(Hp,1) < X By counting the number of remaining edges that all the following steps

will remove, we obtain:

m(Hy,) m(H')
My + (A1)t + +2p+ty = m(Hpyy) <A m < II{I[]E)I({ AH)

We may rewrite this as:

1l _ 1 - 1 m(H)
()‘ " Nt +2t4+ +2ty) < N max AH)
These inequalities are satisfied for A = 1,2,...,A—1 and we obtain a system of inequali-
ties:
1, o1 m(H)
(1 2)t1 < 2 max A(H')
1 m(H'
— < =
( )(t1+2t2) =3 max A(Hl)
11 1 m(H)
(3 P )(tl+2t2+3t3) S 1 max A(H')
_1 1 e (A 1 m(H")
(A—l A)(tl+2t2+ +(A l)tA—l) S A max A(HI)
1 m(H) m(H'
——(ty+t AL = <
A( 1+t +At,) AH) S max AU

A
Summing the respective sides of these inequalities, we obtain on the left ¥, t,, and on
A=1
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the right,

3
&

(145 +1) max < (1+log A)r ¥(H),

A

2
T

)
whence, finally,
A
TH)= Y, t) <(1+logd) 7 *(H).
A=1
Application: Fractional chromatic index of a graph.

Consider a multigraph G without loops. The chromatic index ¢(G) is the least
number of colours necessary to colour the edges of G such that two edges of the same
colour are never adjacent. The fractional chromatic index is defined to be

@) = min Z*C)
7%(@) min =
Clearly ¢*(G) 2 A(G).

For the Petersen graph P;, we see that g¢(2P,)) =6 (cf. Figure 9), so

B g(2Py)
a*(Pro) = 2 =3 = A(Pyy). For the odd cycle C5; we have ¢(2C;5) =35, so

g¥(Cs) = % (cf. Figure 10); more generally, g*(Cppyq) = 2 + % > A(G).

1-5 34
PIO Cs

Figure 9 Figure 10
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To obtain upper and lower bounds for g¢*(G@), consider a hypergraph
H = (E_I,E_Q, . .,E_m) whose vertices are the maximal matchings (with respect to
inclusion) M;,M,,... of G, and where E'" is the set of matchings M containing the edge
E{ of G.

Thus E; N E; = (J if and only if E—', n E'J # (7. A minimum transversal T of H
defines an optimal colouring of the edges of G, each point of T defining a matching of
G in which we colour the edges with the same colour. A minimum k-transversal t(M)
of H defines an optimal colouring of kG with Xi(M;) colours, each matching M;
corresponding to a set of ¢(M;) distinct colours. Thus

m(H) = m(G)
T(H) = ¢(G)
T (H) = q(kG)
T*H) = ¢*(G)
A(H) = v(G)

If we further denote by Ay(G) the maximum number of pairwise intersecting edges of

G (constituting either a ‘‘star” or a “multiple triangle’”) we also have
VH) = L(G)
Theorems 1 and 12 yield:

8 < max T <0%(6) Sa(6) < (1-+108M(G))e(G).

These inequalities may be made more precise by studying the family A of subsets A of
X with [A] >3 and |4 ] odd. Indeed, for every A € 4 we have

. m(G) _ m(Ga) m(Ga)
q (G) 2 max n = 2
6'ce Y(G) = v(G,) %(|A|—1)

Moreover,
7*(G) 2 AlG) 2 AG)
We thus have

" 2m(G’A)
(1) ¢*(G) 2 max JA(G); DX T
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It can be shown (Seymour {1978]) that we have equality in (1) for every multi-
graph G.

5. Ryser’s Conjecture

We now complete our study of the relationship between the coefficients 7 *(H),
v(H) and 7(H). In the case r = 2, Corollary 3 of Theorem 5 can be reformulated as

follows:

Theorem 13: Let G be an r-uniform hypergraph with r = 2, Then

2_
++1 V(@)

© re)<sue =1
Further we have equality in (0)if and only if G is the union of pairwise disjoint tri-
angles.

In the case r > 2 we have an analogous result:

Theorem 14 (Furedi [1981]). Let H be an r-uniform hypergraph, r 2> 3. Then

+1

1) oo < T ),

Equality in (1) is attained if and only if H is the union of pairwise disjoint projec-
tive planes of rank r. Further, {f H does not contain p+1 patruise disjotnt projec-
tive planes of rank r then

(@) rE) <(r-)uE) + &

Observe first that if H is the union of & projective planes P, of rank r, we have
n(Pr) ri—r+1
, SO

V(H) = k; from Theorem 7, 7 *(P,) = . r

ri—r+1 k= ri—r41
r r

7HH) = Y(H)

Observe also that for » =2, the statement equivalent to (2) is not valid, since
T *(05) = 2.5 # (T—l) V(C5).

Corollary 1. Let H be an tntersecting r-uniform hypergraph. Then
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() AH) 25—

— m(H).

Equality holds in (4) if and only if H is the graph K3 or a projective plane of rank
r >3

Proof: Since v(H) = 1 we have, from theorems 13 and 14,
m(H) <1 ¥H) < ri—r+1
A STTH ST

If H is a K4 or a projective plane of rank r > 3 we have, from Theorem 7,

% _n _m(H
==

whence

m(H) _ r’-r+1
AHY r

In every other case, the inequality in (4) is strict (from Theorems 13 and 14).

Corollary 2. If H is a regular r-uniform hypergraph of order n then

n

(5) v(H)2 pray

Equality holds in (5) if and only if H is the union of V(H) disjoint projective planes

of rank r (if r > 3) or V(H) disjoint triangles (if r = 2).

Proof. From Theorem 7, we have
* =1
rH(H) = 2

and the result follows directly from theorems 13 and 14. Corollary 2 was conjectured
by Bollob4s-Erdds, proved in the case r = 2 by Bollobds-Eldridge [1976].

Corollary 3. Let H be an r-uniform hypergraph, r 2> 3, which contains no projec-
tive plane of rank r as a partial subhypergraph. Then

T ¥(H) < (r—1)v(H)

This inequality is satisfied in particular for those values of r such that no projec-
tive plane of rank r exists (e.g. r = 7).
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Corollary 4. Let H be an r-untform hypergraph whose vertex set is the disjoint
union of sets X',X2,...X", and whose edges E satisfy IEnXi f=1 for all ¢ (“r-
partite hypergraph’’). Then

7HH) < (r—1)v(H)
Proof. For r = 2, H is a bipartite graph, which implies

TXH) = r(H) = y(H) = (r—1)v/(H)
For r >3 we have H C Ky .. ... p; it is easy to check that the complete r-partite
hypergraph contains no projective plane of rank r, thus the same is true of H, and
corollary 3 gives

TXH) < (r-1)v(H)

Observe that for a bipartite graph G, Kdnig's theorem implies the stronger ine-

quality

7(G) < (r—1)¥(G).

This observation prompted Ryser {1970] to conjecture the following:

Ryser’s Conjecture. Every r-partite hypergraph H satisfies
T(H) < (r—1)v(H).
Remark: Theorems 13 and 14 were used by Frankl and Firedi [1983] to give an upper

bound for as a function of r, and hence to generalise a theorem of Chvdtal and

m(H)
A(H)
Hansen [1976) (case r = 2) and a theorem of Bollobds [1977] (case r = 3).

8. Transversal Number of Product Hypergraphs

Given a hypergraph H = (E,,Es,..,E,) on a set X and a hypergraph
H' = (F\,Fy,...,F,)) on a set Y, define their product to be the hypergraph H X H'
whose vertices are the elements of the cartesian product X X Y, and whose edges are
the sets E; X F; with 1<¢<m, 1<j<m! The order of HXH s
n(HXH') = n(H)n(H'), the rank is r(H XH') = r(H)r(H').

Numerous combinatorial problems arise concerning the coefficients v, 7 or x of

product hypergraphs.

Example 1: Polarised partitions (ErdSs, Rado [1956]). Consider the set of points (z,y)
in the plane with integer coordinates 1 <z <p, 1 <y <g. What is the largest
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integer P(p,q,r,8) such that in every colouring of these points with P(p,q,r,s) colours
there exist rs points lying in r columns and 8 rows, each having the same colour? If
Ky denotes the complete r-uniform hypergraph on p points, P(p,q,r,8) is just
x(KpXKj)—1 where x(H) is the chromatic number of H (cf. chapter 4). For example,
x(Kf )(Kg) = 2, and a 2-colouring of the hypergraph with colours 0 and 1 is given in
the following figure:

O~ O
- O =
OO
-0 = O
O = = O
--0 O

There is no 2 X 2 submatrix whose entries are all equal.
Thus P(6,4,2,2) = x(KZXK3)—1 =2-1 = 1.

The numbers x(KyXKj;) have been studied notably by ErdSs and Rado [1856],
Chvital [1969], Reiman [1958] and Sterboul [1972] [1983].

Example 2: Zarankiewicz numbers [1651]. In 1951, Zarankiewicz posed the following
problem: what is the smallest integer z such that every 0,1 matrix with ¢ rows and p
columns, with z entries equal to 1, necessarily contains a submatrix with s rows and r
columns each of whose entries is 1? This number Z(p,q,r,8), called the Zarankiewicz
number is the subject of an abundant literature (cf. Guy [1969], Sterboul [1983]). If
ofH) is the stability number of a hypergraph H, i.e. the largest number of vertices
which contain no edge of H (cf. chapter 4), we have

Z(p,q,r,8) = AKX K341 = pg+1—7(K; X K})

Example 3. (Hales [1973]): What is the least number of points in the rectangle of
points (z,y) having integer coordinates 1 <z <p, 1 <y <g, such that each unit
square contains at least one of these points? If P, denotes the graph whose vertices
are the integers 1,2,...,n, with z,y adjacent if and only if |z—y | = 1, then the answer
is

(P xPy) = (2.

Theorem 15. For two hypergraphs H = (E\,Ey,....E,) and H' = (F|,F,,....F,,)on X
and Y respectively we have
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V(H)W(H') S v(HXH") <t *H)(H') < 7 4H)r *(H')
=7 HHXHY S 7*H)y(HY<t(HXH) < t(H)(H".
Proof:

1. If {E;/i€l} and {F;/j€J} are two maximum matchings of H and H' respectively,
then, for (¢,7),(¢:",4") €I X J, (1,5) # (¢',5"), we have

(E; XF,) 0 (EaX Fy) = 0.
Thus {E; XF;, 1 €I, j€J} is a matching of H X H’, whence
v(HWH') = IV | < v(HXH)
2. If {E; XF;/({,j)€K } is a maximum matching of H X H', the function

7y Histigexy]

z(E;) =
constitutes a fractional matching of H, since
5 #(8) = g B XFy /B €N d) ey | < Sk =1
EeH(z} ) )
Hence

VHXHY) = K| = 5320 < )

3. We have r *(H)v(H') < 1 *(H)r *(H') from Theorem 1.

4. Let g(E) and ¢/'(F) be fractional matchings for H and H' respectively. The func-
tion 2(E X F) = g(E)q'(F) is a fractional matching of H X H’, since
Y HEXF)= Y q(E) ¥ JF)LS1

E€H(z EeH(z)  FeH(y)
FeH'(y

Thus 7 ¥(HXH') 2 Y, 2(E; XF;) = Y, q¢(E;)3 ¢'(Fj) = 7 *(H)r *(H').
i,] i J
We now show the reverse inequality. Let t(z) and t'(y) be optimal fractional

transversals for H and H' respectively. The function p(z,y) = t(z)t/(y) is a frac-
tional transversal of H X H', since

Y pley)= N =X Hy) 21

{(z.y)EE; X F; z€E; yEF;

Thus
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TXHXH) < ¥pley) = L)1)
z.y z y

= ¥ (H)r *(H)
Thus 7 *(H X H') = 7 *(H)r *(H').
5. We have 7 *(HXH') = 7 *(H)r *(H') L 7 *(H)r (H') from Theorem 1.
6. As for 2, we may show that
7*(H)r (H") < r(HXH').
7. As for 1, we may show that
T(HXH"Y < 7(H)r(H').

Corollary (McEliece, Posner [1971]). Every hypergraph H satisfies

™¥(H) = lim N (HF),
—00
where H¥ = H X H X -+ X H is the product of k terma equal to H.

Proof. From Theorem 12 we may write
THH) = 7 HHF) < 7(H*) < [1+log A(H*)|r *(H*)
< [1+klog A(H)|r *(H)E.
It is easy to see that (1+klog A(H))l/" — 1 as k — 00, giving the desired result.

The following results, sharpening the statement of Theorem 15 are due to Berge
and Simonovits [1972].

Theorem 18. Every hypergraph H satisfies
. T{(HXH
e = mp 2050
Proof. From Theorem 15, we have
A
7 *(H) < min ZULXH)
H  T(H")
We shall show the reverse inequality. There exists an integer k£ such that

7 (H)
k

7XH) = . Let ¢(z) be an optimal k-transversal for H; consider a set Y of car-

dinality p = 7,(H), and a partition (Y},Yy,...,Y;) of Y with [¥;|= t(z;) for each 1.
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The complete (p—k-+1)-uniform hypergraph H' = K;‘,’_k“ on Y satisfies 7(H') = k.
Consider the set

j— n

T={J ({=:}xY7)

i=1

For each edge E of H,

kEXYINT|= ¥ t(z) > &

zelk

Further, since each edge F of H' is of cardinality p—k+1, the set E X F meets T, by
the pigeonhole principle; thus 7(HXH') < |T| = Y| = 7,(H). Hence

T(HXH') _ Ti(H)

T(HY — &k
Theorem 17. Every hypergraph H with the Helly property satisfies
_ v(H X H'")
T¥*H) = max )

Proof. From Theorem 15 we have

()
7 *(H) > max V(HXH')

=1 *H).

v(H')
We shall show the reverse inequality. There exists an integer s such that
v (H
)

Let Hj=(E,/k€K) be a maximum s-matching of H; thus [K|=v,(H) and
A(Hp) = s,

Let Y be the set of maximum matchings of the hypergraph Hy; for k €K let F}
be the set of maximal matchings of H, which contain E,. The hypergraph
H' = {F,/k€K} on Y satisfies 1(H') < A(H,) = s, since H has the Helly property.
The hypergraph H X H' admits {E’,c XFy/k€K} as a matching, since
(Bx XFp)N(EwXFy) # () implies both E, N Ep # & and Fi N Fi # (JJ, which is a
contradiction. Thus

WHXH") 2 K | = v,(H) = o7 *(H).

Hence
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v(HXH') sT ¥(H) -
v(H") z 8 =7*(H).

Q.E.D.

We may relate the product of hypergraphs to the numbers P(p,q,2,2) = x(K, XK,)—1
defined in example 1, and to the Ramsey number R(p,q) (the least integer m such that
every 2-colouring of the edges of K,, contains either a p-clique of the first colour or a

g-clique of the second). It is known that R(p,q) < p;il_2), but, with the exception
of a few particular cases, the exact value of R(p,q) is not known. Recall that the

chromatic number x(H) is the least number of colours necessary to colour the vertices
of H such that no edge is monochromatic (except for loops).

Theorem 18. We have

HXH" =
x{?}?ép)‘( XH') = (K, XK,)
x(H)<q

the mazimum betng taken over hypergraphs H, H' without loops.

Proof. Let H = (E;) be a hypergraph without loops on X with x(H) <p, and let
H' = (F;) be a hypergraph without loops on Y with x(H') <gq. On H we have a
p-colouring  g(z) €{oq,%,...,%} and on H' we have a g-colouring
¢'(v) €{B1,Bs, . . . ,B,}. We shall show that we may obtain from these 2 colouring of
H X H' with (K, XK,) colours. Let K, be a complete graph on {a,%, ... ,0,} and
K, a complete graph on {8,,0, ...,B,}; colour the vertices of K, X K, with an
optimal colouring F(af) €{1,2,....(K, XK,)}. Thus four vertices
ajﬁj,ajﬁk,akﬁj,akﬁk are never all with the same colour. Let ®{z,y) = F(g(z),¢'(v))-
Since there exist z,,7 €E; and y,,y; €F; such that g(z;) # g(z2), ¢'(y1) # g'(v2)
(since |E;|>1, le | > 1), the set E; X F; is not monochromatic in ®. Hence ® is a
colouring of H X H' in x(K,XK,) colours, whence x(HXH') < x(K,XK,). Since
this inequality is an equality when H = K, H' = K, we have the theorem.

Theorem 19 (Erdds, McEliece, Taylor [1971], anticipated by Hedrlin [1966]). We have

HXH)=R q+1)—
u(l}l{)aép v(HXH") (p+1,¢g+1)-1
v(H)<q

where the R(p,q) are the Ramsey numbers.
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Proof. 1. We shall show first that v(H)<p, v(H')<gq implies
V(HXH') < R(p+1,g+1)—1. Suppose that this inequality fails for H = (E;) and
H' = (F;). Put:
m = v(HXH') 2 R(p+1,9+1).

Let {E; XF;/(i,j)EM} be a maximum matching of H X H', with M| =m. Consider
the complete graph K, on M: colour the edge [{¢,7),(¢',5")] red if E; N Ey = ¢ and
blue if E; N Ey # & (and then F; N Fy = (J). Since [M|=m > R(p+1,g+1) this
colouring of the edges of K,, contains either a red (p+1)-clique (and then v(H) > p)
or a blue (¢g+1)-clique (and then ¥{H'}) > ¢); in each case we have a contradiction.
2. Consider the complete graph K,, on M = {1,2,...m} where m = R(p+1,g+1)—1.
From the definition of Ramsey numbers, there exists a 2-colouring of the edges of K,
forming two partial graphs G, G' with w({G) < g and w(G') <p.

The dual hypergraph H = G * of the graph G has edges of the form: E; ={edges
of G incident to vertex 1 of G}; thus

Y(H) = w(G) = w(G') <p.

Similarly H' = (G')* has edges of the form: F; = {edges of G' incident to vertex j of
G'}; thus v(H') < q. From part 1 of the proof, this implies

VHXH') < R(p+1,g+1) — 1.

For two distinct indices 7,7 € M the sets E; X F; and E; X Fj are disjoint, so the
product hypergraph H X H' admits {E; XF; /i EM} as a matching, whence

v(HXH') > M| = R(p+1,q4+1)-1.
Thus v{HXH') = R(p+1,q+1)—1, and the statement of the theorem follows.

Application: Shannon capacity of a graph.

Define the normal product of two simple graphs G = (X,E), G’ = (Y,F) to be the
graph G X G' on X X Y where two vertices (z,y) and (z',y") are adjacent if and only
if

z = z'and [z,y'] EF,
or (z,2'] EE and y =¥/,
or [z,z'] EE and [y,y’] EF.
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Shannon was interested in the study of the stability number of the normal pro-
duct of graphs. Indeed, if G is the graph of confusion at reception for a set of signals
X and G' the graph of confusion for a set of signals Y, then &(G XG') represents the
greatest number of words zy with £ €X, y €Y which cannot be confused at recep-
tion. We may also consider words of k signals (taken from X) which form a code; the
largest possible number of distinguishable words is then de), where
GF =G X G X +++ X G is the normal product of £ terms equal to G.

Shannon proposed the term capacity for the number
max FNVHGF) = ¢(G).

It is immediate that for all &
3(G) <FVAGF) < () <*VE(EH) < 0(0).
The number ¢(G) is difficult to calculate (Lovasz proved in 1979 that ¢(C5) = \/5_)

Let H(G) be the hypergraph formed by the maximal cliques of G, and let I?(G),
or more simply H, be the dual of H (G). Then

n(G) = m(H)
w(G) = A(H)
@) = v(H)
8(G) = 7(H)

The minimum value of a g-covering of G by cliques is
Hq(G) = Tq(ﬁ)
Also
a(G*) = v{A(CH) = W)
6(G*) = r(H(G*) = ()
Clearly, k E(Gk) — ¢(G). The corollary to Theorem 15 shows that we also have
k 6(G*) —>T*(f7).
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Exercises on Chapter 3

Exercise 1 (§1)

Show that,

7 (H) "
rEdd (H).

Hint: use the theorem of Fekete that states that if a series (u;) is subadditive, i.e.
Yk Lo Uk

Upyh S “k+“hs then —;:— —’1,’nf -‘I;“

Exercise 2 (§1)

v (H) -
k

Show similarly that T *(H).

Exercise 3 (§1)

7:(H
Show that if kfc ) = 7(H) for some integer k, then every integer p <k satisfies
T,(H
) _
Exercise 4 (§1)
. Tk(H) * . T ks (H) *
Show that if =7 (H) for an integer k, then . = (H} for every

integer s.

Exercise 5 (§3)

Let X be a finite set of points on a line, and let H be an interval hypergraph on
X. Show that H is regularisable if and only if there do not exist two distinct points
z,y €X such that H(z) C H(y) and H(z) # H(y).

Exercise 6 (§3)
Let H be an r-uniform hypergraph such that the distinct I, = 5 er}}( )E form a
T

partition of X, and every edge meeting I, contains I,. Show that if H—H(z) is quasi-
regularisable for each x, then H is regularisable.
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(Berge [1978]; Pulleyblank [1977] in the case of a graph).

Exercise 7 (§3)

Let H be an r-uniform hypergraph without vertices of degree 1, and such that
each edge meets at least r other edges of H. Show that the graph L(H) is regularis-
able.

(Berge [1978]).

Exercise 8 (§3)
Let G be a connected nonbipartite regularisable graph. Show that every graph

which admits G as a partial graph is also regularisable.

Hint: use condition (3) of Theorem 10.

Exercise 9 (§6)

Let H be an r-uniform hypergraph of order n, with m edges, regularisable, linear,

and containing no projective plane of order » as a partial subhypergraph. Show that

m

v(H) 2~

In this case we have a better bound than that of Seymour (Theorem 8, Chapter 2).

Exercise 10
Aharoni, ErdSs and Linial [1987] have proved that every hypergraph H satisfies
vy > L
Check that this interesting inequality holds for some of the hypergraphs described in
the examples of Chapter 2, §4 which do not satisfy the Kdnig property.



Chapter 4

Colourings

1. Chromatic Number

Let H =(E,E,, ...,E,) be a hypergraph and let &£ be an integer > 2. A
k-colouring (of the vertices) is a partition (S,5,,...,5)) of the set of vertices into k
classes such that every edge which is not a loop meets at least two classes of the parti-

tion; that is to say
EcH, [EF|>1=EdS;, (i=12..k)

A vertex in S; will be said to be a “‘vertex of colour ¢, and S; (“the colour set
7") may possibly be empty; the only “monochromatic” edges are therefore the loops.
For a hypergraph H its chromatic number x{H) is the smallest integer & for which H

admits a k-colouring.

Example: If H is the hypergraph whose vertices are the different waste produects in a
chemical production factory, and in which the edges are the dangerous combinations of
these waste products, the chromatic number of H is the smallest number of waste

disposal sites that the factory needs in order to avoid any hazardous situation.

We note that if the hypergraph H is a graph, the chromatic number of H coin-

cides exactly with the usual chromatic number.

For a hypergraph H on X, a set S C X is said to be stable if it does not contain
any edge E with |E|> 1. The stability number of H) of H is the maximum cardinal-
ity of a stable set of H.

Example: The projective plane on seven points is a hypergraph P; with ofP;) = 4, as
can be verified immediately from Figure 2 of Chapter 2. We see also that x(P;) = 3.

Proposition 1. Every hypergraph H of order n satisfies x(H)o{H) > n.

Proof. Let us consider a k-colouring (S1,Ss,...,S¢) of H in k = X(H) colours; we have
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n =3 I5; | < bo(H) = X(H)o(H).

i=1

This gives the stated inequality.
Proposition 2. Every hypergraph H of order n satisfies X(H) + ofH) < n-+1.

Proof. Let § be a maximum stable set of H. We can colour all the vertices of § with
a first colour, and use n—o(H) other colours to colour, each with a different colour,
the vertices of X—S. From this

X(H) < (n—ofH)) + 1.

This gives the stated inequality.

We call a B-star of a vertez z a family H?(z) C H(z) such that
(i) E €H(z)= [E|>2.
(i1) EE'€Hl(z)= ENE' = {z}.

We call the SB-degree of a vertex x the largest number of edges of a fS-star of z.
We denote by dfj(z) the S-degree of z, by A*(H) = mea)){(dg(x) the maximum S-degree,
z

and by §%(H) the minimum S-degree. H /A denotes as usual the family of edges of H
contained in A; then we can obtain upper bounds for the chromatic number with the
following assertion:

Theorem 1. Every hypergraph H on X satisfies

X(H) < max’(H/A) + 1.

Proof. Let p = max§?(H/A). We shall seek to colour the vertices of H successively
in increasing order of their indices using only p+1 colours. Let us index the vertices in
the order z,,z,_),...,x; by the following rule:

{i) T, is a vertex of minimum J-degree in H;
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(i1) for ¢ <, z; is a vertex whose S-degree in H /X — {&;,1,%;¢9s-sZy } Is < p.

Suppose that we have coloured z,,%4,...,z;_; with the colours 1,2,...,p+1 without
any edge of H being completely coloured and monochromatic. The star H(z;) does not
contain p+1 edges containing only coloured vertices (except for z;), monochromatic,
and bearing respectively the colours 1,2,... and p+1; for such a set of edges would con-
stitute a fB-star with p+1 edges, which contradicts the rule for choosing z;. Thus
there exists a colour j < p+1 which we can attach to z; without any edge becoming
completely coloured and monochromatic. Thus, step by step, we colour all the vertices

with p+1 colours.

Corollary 1 (Lovész [1968]). For every hypergraph H of mazimum B-degree AP, we
have x(H) < Aﬂ(H) + 1. Moreover, for every rank r, this bound is the best possible,
since x(KI) = AP(K) + 1.
Indeed, let ¢ = Aﬂ(H) + 1. The set of vertices z with dﬁ(x) > g being empty,
Theorem 1 gives: x(H) < ¢. Moreover, we have
ns (r—1)AP(KI)+1
r—1 — r—1

1
X(Kq) = [21* 2 = MK + =

Thus we have x(K[) = AY(K]) + 1.

Corollary 2. For every hypergraph H of order n
n
H) 2> ———.
oH) 2 AP(H)+1
For Proposition 1 shows that

ofH) > —= -

> .
x(H) = A(H)+1
Corollary 3. For every hypergraph H of order n without loops
A
() s Stk
AP(H)+1
For the complement of a stable set being a transversal, we have
4
r(H) = n—ofH) < M
A(H)+1

From this the stated inequality follows.
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These corollaries enable us to solve easily a large number of combinatorial prob-

lems.

Application 1. Given a simple graph G on X of maximum degree 4, what is the
smallest number of colours necessary to colour the vertices such that no cycle is mono-
chromatic? (Motzkin [1968]).

Let us consider a hypergraph H on X whose edges are the elementary cycles of G.
The answer is then, from Corollary 1,

X(H) < A(H)+ < [2] + 1.

Application 2. Given a simple graph G on X of maximum degree h, what is the
smallest number of colours necessary to colour the vertices such that every subgraph
G; induced by a colour ¢ has maximum degree < ¢? (Gerencser [1965]).

This number ~,(G) generalizes the usual chromatic number (the case t = 1); if H
is the hypergraph on X whose edges are the subgraphs of maximum degree ¢, then
Corollary 1 gives:

Y(G) = x(H) S AP(H) +1 < [—'t’—] + 1.

Application 3. Given a simple graph G on X, what is the smallest number of colours
necessary to colour the vertices such that no elementary path of length & is mono-
chromatic? (Chartrand, Geller, Hedetniemi [1968]). This number 7;(G) generalizes
the usual chromatic number (the case k = 1); it is also the chromatic number of a

hypergraph H defined in an obvious manner, giving immediately an upper bound.

Application 4. Given a simple graph G on X what is the smallest number of colours
necessary to colour the vertices of G such that no clique of size & is monochromatic?
(Sachs, Schatible [1967]).

This number ;k(G) generalizes the usual chromatic number (the case k = 2); it is
also the chromatic number of a hypergraph H defined in an obvious manner, which
leads immediately to an upper bound.

Application 5. Symmetric Ramsey Numbers.

We consider the complete graph K, and propose to associate with each of its
edges one of the colours 1,2,...,¢ in such a way that no clique of p elements of K, has
all its edges of the same colour. The smallest integer n for which this association is
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impossible is called the (symmetric) Ramsey Number and is denoted by R(p,p,...,p), or
Rg. In other words, if n < Rg, there exists an association of colours 1,2,...,q¢ with the
edges of K, such that no K, has all its edges of the same colour.

We can apply Theorem 1 to this problem if we define a hypergraph on the set of
edges of K, denoted K,,/Kp, whose edges are all the sets of edges of K, which induce
a K,. Indeed n <R] -1 is equivalent to saying that the hypergraph K,/K, is
g-colourable.

Let us consider for example the case p = 8. Then n < R§ is equivalent to saying
that K, can be decomposed into ¢ graphs without triangles. We know that K can be
decomposed into two graphs without triangles, in fact two pentagons. We know also
that K4 can be decomposed into three graphs without triangles; one manner of doing
this is due to Greenwood and Gleason [1955], the other to Kalbfleisch and Stanton
[1968]. Finally, we know also that K¢, can be decomposed into four graphs without
triangles (cf. Graham [1965], Chung [1973]). Thus

@) R} >8; R§>17; Rj >65.

On the other hand,

(2) R§<1+4qY) —
2 k!

Indeed, let K be a complete graph of order R{ — 1 which is decomposed into ¢ graphs
without triangles G,Go,...,Gy, let @ be a vertex of K, and let A; be the set of vertices
of K adjacent to @ in G;. As the subgraph K4, does not contain any edge of G; {since

G; is without triangles), it is decomposible into g—1 graphs without triangles, whence
thus

WI<Ry' -1
We deduce from this that
Ri—1 = 14+dy(a) =1+ 3 |4 | <1 + (R§'~1)q.
i=1
This recurrence formula gives immediately (2).

Together (1) and (2) give:
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R2 =6; R} =17; 65 <R} <66.

Theorem 2 (Lepp Gardner [1973]). Let H be a linear hypergraph without loops.

Then x(H) < A(H), except for the two following cases:

(i) A(H) =2, and a connected component of H is a graph consisting of an odd
cycle;

(i) A(H)>2 and a connected component of H is the complete graph of order
A(H) + 1.

In these two cases we have x(H) = A(H) + 1.
If H is linear, we have A’(H) = A(H), and Theorem 1 gives: x(H) < A(H) + 1.
It follows from a theorem of Lepp Gardner [1977] that this inequality is strict

when H is linear and does not satisfy (1) or (ii).
This result is an extension of Brooks’s Theorem (see Graphs, Theorem 6, Chapter 15).

2. Particular Kinds of Colourings

Besides the concept of colouring defined in the preceding paragraph - often called
“weak’ colouring - there exist other concepts which generalize to hypergraphs that of

the colouring of a graph.

Strong colourings. For a hypergraph H on X a strong k-colouring (of the vertices)
is a k-partition (5},59,...,5;} of X such that no colour appears twice in the same edge;
that is to say such that for every edge F

ENS; <1 (i =1,2,...k).

The strong chromatic number of a hypergraph H, denoted by Y(H), is the smallest
integer k£ for which H admits a strong k-colouring. We note that every strong colour-
ing is certainly a colouring, and consequently v(H) > x(H). However, y(H) is nothing
more than the chromatic number of the graph [H|, (2-section of H); for this reason we

shall not study the strong chromatic number for its own sake.

Equitable colourings. For a hypergraph H on X, an equitable k-colouring (of the
vertices) is a k-partition (9,,5,,...,S;) of X such that in every edge E all the colours
appear the same number of times (or to within 1, if k& does not divide |E |); that is to

say:
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[J”f_l} < Ens:|< [-IE—I} (= 1,2,00k)

k

We note that an equitable k-colouring is certainly a k-colouring. Furthermore every
strong k-colouring is an equitable k-colouring. The equitable colourings of a hyper-
graph will be studied more particularly for unimodular hypergraphs (§2, Chapter 5).

Good colourings. For a hypergraph H on X a good k-colouring is a k-partition
(81552ys++sSk) of X such that every edge E contains the largest possible number of dif-

ferent colours (taking account of the value of &}, namely

min{|E |,&}.
We note that a good colouring is certainly a colouring. Moreover, for k = 2, a good
k-colouring is simply a bicolouring; for k <min|E |, it is a partition of X into k
transversal sets; for k > max|E |, it is a strong colouring. Finally, for every k, an

equitable k-colouring s a good colouring.

Good colourings will be studied particularly for balanced hypergraphs (§ 3,
Chapter 5).

I-regular colourings. For a hypergraph H on X, let us associate with every edge E;
two integers a; and b; with 0 <a; <bj;, and let I = {(a;,,]/7 =1.2,.,m}. An
I-regular k-colouring of H is a k-partition ($,55,...,5) of X such that for every edge

Ej
a; < |E;NS; 1<b; (8 =1,2,0k)
We note that an I-regular colouring is also a colouring. Moreover we note:

(1) Every colouring is an I-regular colouring with a; = 0, b; = max{l, |E; -1},

(2) Every strong colouring is an I-regular colouring with a; =0, b; = 1.

IE,-I]

(3) Every equitable colouring is an I-regular colouring with aJ-=[ A

LT

I-regular colourings were introduced by de Werra [1979] who studied the sequences
8, 2> 892> *++ > 8 for which there exists an I-regular k-colouring (S},S3,...,S)) with
8y = |Sl |, 89 = |S2 |, etc. Some interesting theorems on certain I-regular k-colourings
of the edges of a simple graph were obtained by Hilton and Jones [1978].



122 Hypergraphs

By way of an exercise one can verify that if »(H) = 2, all these definitions give
exactly the usual colouring of a graph. We can verify also that if H is an interval
hypergraph whose vertices are the points z;,Zs,...,7,, (in this order) on a line, we obtain
an equitable k-colouring of H by using successively the colours 1,2,...,k, 1,2,...,k, 1,2,...
to colour the points from left to right; thus we see that an interval hypergraph has a
{(weak) chromatic number equal to 2 and a strong chromatic number equal to the rank
r(H).

3. Uniform Colourings

For a hypergraph H of order n, a k-colouring (S,5g,...,5;) is said to be uniform
if the number of vertices of the same colour is always the same (to within one), that is
to say if we have

SIS 6 =120k).

The problem of the existence of a uniform k-colouring arises in numerous schedul-

ing problems.

Example 1. Organizing a colloquium. The organizers of a scientific colloquium have
at hand ¢ half-days to organize n sessions x,,Zq,...,Z,, each lasting a half-day. Certain
people have to be present at all the sessions of a set E; C {xl,xg,...,xn }; others at all
those of a set Ey C {T,,Zg,--sTy, }, thus defining a hypergraph H = (E,E,,...,E,,) on
{21,Zgs+-sT, }. Can one organize the n sessions respecting these constraints with only p

conference rooms? It is obviously necessary that pg > n, that is
n. *
p2[—l.
[ ql

This condition is necessary and sufficient if the hypergraph H admits a uniform
strong g¢-colouring (SI,SZ,...,SQ). Indeed in this case the set of sessions taking place

during the half-day ¢ may be defined by a set S; which satisfies:

(1) ISinEj I S 1 (.7 = ]72,-'-7m)7

(2) Is; 1 < [%1* <p.
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All the constraints are therefore satisfied.

For the existence of a uniform strong k-colouring we have a well-known theorem
of Hajnal and Szemerédi (cf. Graphs, Chapter 13, §2), as follows: a graph [H], of max-
imum degree h admits a uniform colouring for every k > h+1. Therefore H admits a

uniform strong k-colouring for every k& > h+1.

(For a simpler proof, see Szemeredi [1975]).

Example 2. Organizing an air show. In the course of an air show an aeroplane takes
off every ten minutes and two planes may not be displayed in flight simultaneously.
There are m possible buyers who want to be present at these exhibitions at different
times, and it is known in advance at what interval of time E; the buyer j will be
present. This defines a hypergraph H = (E,E,,...,E,,) over the set of flight times.
Moreover each of the & exhibitors wishes to show his craft in flight to all the buyers
and to get the same total exhibition time. It is obviously necessary that k < m}n lEj I

This condition is also sufficient if the hypergraph H admits a uniform good k-colouring
(S15595---,Sk)- Indeed the set of times allocated to the ¢th exhibitor being defined by

the set S;, all the constraints will be satisfied, for we have
-1 < IS =151 <1 0 (6,9)-

We note that the hypergraph H is here an interval hypergraph, and that for every &
an interval hypergraph admits a good uniform k-colouring: it is enough to allot succes-
sively to the vertices the colours 1,2,...,k, 1,2,... going from left to right along the time
axis.

Example 3. Organizing a ping-pong tournament. A set of n players z,2,,...,x, take
part in a tournament where all the matches planned between the players are defined
by the m edges of a graph G on {z,,zy,...,2,}. The duration of a match must not
exceed one hour; the tournament has to be finished at the end of p hours, and there
are available ¢ ping-pong tables. In order for these constraints to be realized, it is

necessary that the maximum degree of G does not exceed p and that pg 2> m, that is

(1) p 2 A(G)
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m
(2) g >

Conditions (1} and (2) are necessary and sufficient if the edges of G have a uniform
p-colouring (a p-colouring of the edges of a graph G being by definition a strong
p-colouring of the vertices of the dual hypergraph G*).

Clearly, if (EI,EQ,...,Ep) is a uniform p-colouring of the edges of G, the matching
E; defines the matches to be played during the <th hour, since

mhﬂ%YS¢

We note that McDiarmid [1972] showed that the edges of a graph G admit a uni-
form k-colouring for every & > A(G)+1.

Theorem 3. Let H be a hypergraph which has a good k-colouring. Suppose that for
every good k-colouring (S;/i €I) and every pair of classes (5,,S,;) with
IS21> 1S, ] + 2, the subhypergraph Hg \, s, admits a bicolouring (SySy) with

(1) IS\ +1< IS IS 1L I8 f -1
Then H admits a good k-colouring which ts uni form.

Proof. Let d = max(|]S; |-IS;|) be the “deficiency” of a good colouring (S},55,..+,Sk)
i

of H. We shall proceed step by step to transform this k-colouring so that it becomes
uniform. If d <1, the colouring is uniform. If d > 2, consider two classes, for exam-
ple S, and §,, with

15,1 = minls; |
1S3 | = max|s; |

As |51 > 18, | + 2 there exists a bicolouring (S4,55) of Hg, \; 5, satisfying the inequali-
ties (1). It is easy to verify that {${,55,55Ss - . - ,S;) is again a good k-colouring of

H. Moreover, by virtue of (1), we have
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Isz 1= Is1 1< ISz -1)—(I81)+1) = d—2

Isi]~Isif<0<d—2

Isz 1= 15 1 < 1S b=18; -1 < d -1 (¢ #1,2)
Istl=Is2 1< IS 1-1si 1 < d—1 (¢ #1,2)
Is; | = sz 1< Is; 1=1S1 1 < d—1 (f #1.2)
Is; | = Isi i< Isi =Is1 b1 < d— {f #12)

We have therefore decreased the number of pairs (.S'p,Sq) with ISp |- ISq |>d.
By repeating this transformation we decrease the deficiency down to d < 1; the good

colouring finally obtained is thus uniform. This is what was to be proved.

Corollary 1 (McDiarmid [1972]). Let G be a multigraph with chromatic index ¢(G).
For k 2> q(G) the edges of G admit a uniform strong k-colouring.

Indeed every strong k-colouring of the edges with k£ > ¢(G) > A(G) is a good
k-colouring. Furthermore the edges having one of the colours ¢+ or § make up either
even cycles or open paths; if the colour ¢ appears more often than colour j there exists
an open path having at each end an edge of colour 7; by interchanging the colours on
this path we obtain a colouring satisfying (1) which enables us to apply Theorem 3.

Corollary 2 (de Werra [1979]). Let G be a multigraph which has a good k-colouring
of the edges. Then the edges of G admil a uniform good k-colouring.

For if not, the edges of G admit a good k-colouring (E,,E,,...,E;) with, for exam-
ple, |E;|> |E;| + 2. The partial graph @12 geperated by the edges of colonr 1 or 2
admits a (weak) bicolouring of the edges; thus G'? has no connected component which
is an odd cycle without chords. We show that from this we can find a bicolouring of
the edges of G? which is uniform. We may suppose G'* to be connected.

If all the vertices are of even degree, G1? admits an Eulerian cycle, in which we
can colour the edges alternately with the two colours. If the Eulerian cycle is odd we
take as starting point a vertex of G1? having degree greater than two (which is always
possible since @12 is not an odd cycle without chords). Thus the edges of G*? admit a
uniform bicolouring.
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If there exist vertices of odd degree, G has 2p vertices of odd degree and there
exists a partition of the edges into p paths joining the odd vertices in twos. An alter-
nating colouring in two colours of the edges of each of these paths gives a uniform
good 2-colouring. Thus we obtain a new colouring satisfying (1), and we can therefore

apply Theorem 3.

Note that Corollary 2 is more general than Corollary 1, and that the values of &k
which guarantee a good k-colouring of G have been obtained by Fournier [1973]. (See
also de Werra [1977]).

Given a hypergraph H, we call a *‘positional game on H” the situation where two
players, say A and B, play in turn at colouring a vertex of H, with the colour red for
A and the colour blue for B. A vertex already coloured cannot be recoloured; the
winner is the one who first colours an edge of H completely with his colour. If neither

of the players obtains a monochromatic edge then the game is a draw.

Example 1. Tic-Tac-Toe in p dimensions. This is played on the set of cells of a
hypercube of p dimensions of sides equal to r, considered as a hypergraph on r? ver-
tices (the cells of the hypercube) in which the edges are all the sets of r cells that are
in line. This game has been studied by Hales and Jewett [1963], who showed that if r
is odd and > 3°—1 or r is even and > 2P*!—2, then player B can force a draw.

One can also play by trying to colour three points in a line with the same colour

on any configuration at all, for example the projective plane with seven points.

Example 2. Ramsey games. Two players A and B play alternately colouring respec-
tively in red and blue an edge of the complete graph K, on n vertices; the first player
to colour with his colour all the edges of a k-clique has won, and his opponent has lost.

The hypergraph H, which must be considered has (Z) vertices and is (g}uniform. A

celebrated theory of Ramsey states that there exists an integer R(k,k) such that for
every n > R(k,k), the hypergraph H, has no bicolouring (so that, in consequence, the
first player has a winning strategy); if n(k) denotes the smallest order for which the
first player wins, we have n(k)} < R(k,k).

Fundamental Proposition. In a positional game on a hypergraph H which admits
no unt form bicolouring, the first player A has a strategy which assures him a win.

Proof. If H does not have a uniform bicolouring, there necessarily exists a
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monochromatic edge when all the vertices have been coloured. Thus it is not possible
to have a drawn game. This implies, by the theorem of Zermelo-von Neumann, that
either player A or player B has a winning strategy.

We argue by contradiction, and suppose that it is the second player B who has a
winning strategy 0. Thus, with the following sequence of moves:

zy, Yy = 0(21), Ty, Y = 0(T1,33), Ty, Yz = 0(7),Tp,T3)selc.

the first monochromatic edge will be blue, B's colour. However the first player A can
play according to the following rule: =, being an arbitrary vertex, A’s first choice will
be z; = o(z); A's second choice will be 2, = o(xg,y,); ete. (If at any step, y; = 2,
that is to say player B chooses the arbitrary vertex z,, the player A will play in the
same manner with z;,., = 0(Zg,¥1,¥-¥f), where y! is a new arbitrary vertex not
already coloured). In this manner A is assured of obtaining a win, and the first mono-
chromatic edge will be red: a contradiction.

Theorem 4. Let H be a hypergraph such that

(1) 2Bl max 5 27Fl<.
EeH T  Ee€H(z)

Then H admits a uniform bicolouring. Furthermore tn the positional game on H the
second player B has a strategy ensuring a draw.

Proof. For a start, consider a hypergraph H satisfying (1), and let player A, who is
trying to obtain a win, choose a vertex x;. After this choice, player B must consider
the hypergraph H, = Hy_(zy 10 choose a vertex y,. After this choice, player A must
consider the partial hypergraph H} = H,—H,(y,) to choose a vertex x,, etc. This
defines a sequence of hypergraphs H, H,, H\, H,, H},.... It is then a matter of show-
ing that B will never leave a hypergraph H!_; with a loop, or, equivalently, that A will
never obtain a family of sets H; having as “‘edge’’ the empty set. For simplicity let us
set
v(H) =3 27 1B,
EeH
Then the hypergraph H, = H X {2} satisfies
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v(H)= Y o-(IEl1) 4 n 9—IE|
E€H(z)) EeH-H(z,)

Thus, from (1),
(@) o(Hy) = o(H) + v[H(z,)] < 1.

Let y, be the reply of player B; then the new hypergraph H| = H,—H,{y,) to be

considered satisfies
(3) v(H1) = v(H;) — v(Hy(¥1))

If B chooses a vertex y, which maximizes v(H,(y)) then, whatever the choice x, of his

opponent,

(4) v[H\(z,)] < v[H (31))-

After the choice 7, of A, the new hypergraph Hy = [H{|x_(s, satisfies
v(Hy) = v(HY) + v[H{(z5)] < v (H]) + v[H (z,)]
= olH,] — o[\ (g)] + o[Hy(e2)] < v(H,) <1

by virtue of (2), (3) and (4).

If B plays in this manner on every occasion, we always have v(H;) < v(H;) <1. The
family H; cannot have the empty set as an edge, since that would imply

Thus B can force a draw, and consequently, from the fundamental proposition, H
admits a uniform bicolouring.

Corollary (Erdds, Selfridge [1973]). Let H = (E;/i €I) be a hypergraph without
loops, of anti-rank s = min |E; |, and such that the number of edges m and the maz-
13

imum degree A satisfy m + A < 2°. Then H admits a uniform bicolouring. Furth-
ermore, tn a positional game on H, the second player B has a strategy for forcing a
draw.
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Indeed, in this case we have

» o—IE| + max Y oI5 <m.27° + A27% <1.
EeH ? Ee€H(z)

Theorem 5. Let H be a hypergraph without loops, of order n such that
n— IE |) (n—l)
E{JH( n/2l) <\Ins2)
Then H admits a uniform bicolouring.

Proof. Let p = [1n/2], and let T, be the family of transversals of H having cardinality
p. Consider the hypergraph

-T, = {F/FCX,lF|=P,FﬂE=@ for some E €H }.
We have

m(K2) — m(T,) = m(K2-T,) < ¥ (", lEl) < —1

EeH

therefore

m(T,) > - (" h =T,

From the theorem of Erdds, Chao-Ko, Rado (Theorem 5, Chapter 1), this implies
that T, is not an intersecting family, and therefore contains two disjoint sets A and B.
If n is even, (A,B) is a bicolouring of H which is uniform. If n is odd, we obtain such
a bicolouring by adjoining to A the unique vertex of X—(A U B).

Generalization (Hansen, Loréa [1978]). Let H be a hypergraph of order n 2> k, and
n
letp =77l g =n—pk. If

n—|El, _El .
kEE( —p +q2 +1—lE|

then H admits a uniform k-colouring.
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4. Extremal problems related to the chromatic number

Numerous works (mostly Hungarian) have as their object the study of the smallest
number of edges (or the largest number of edges) which an r-uniform hypergraph of
order n can have if some given property holds; these are often referred to collectively
as “‘extremal problems'”. In most papers these results are obtained by “probabilistic
methods” (cf. Erdds, Spencer [1974]); here we shall obtain the principal results as sim-

ple corollaries of theorems in chapter 3.

First let us consider the largest number of edges in an r-uniform hypergraph of
order < n which is k-colourable, that we denote by

M (n,r) = H).
k) = max m(H)
n{H)<n

Let us consider also the smallest number of edges in an r-uniform hypergraph of
order < n which is not k-colourable, that we denote by

H)>k
n(H)<n

my(n,r) = min m(H)
X

Denote by M,?(n,r) the largest value of m for which there exists an r-uniform hyper-
graph H with n(H) <n, m(H) = m, and such that by adding a set of n—n(H) iso-
lated points we can find a uniform k-colouring; denote by m,?(n,r) the smallest number
of edges in an r-uniform hypergraph of order < »n which has no uniform k-colouring (if
we complete its set of vertices by adding isolated vertices up to a total of n). We then
have

1 < my(nr) < Myfn,r) < (1)
1 < m(n,r) < MPn,r) < ()
mltc)(nvr) S mk(n)r)
MP(n,r) > My(n,r).
It is easy to calculate My(n,r) and MZ(n,r), which are given by the following

result:

Theorem 8 (Sterboul [1974]). Let Hy, ; be an r-uniform hypergraph of order n on X
defined by a uniform k-partition (Y1,Yy,...,.Y;) of X and by
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k=(B/ECX; [El=r,EQY, EQY,, ..., EQY)
Then we have
My(n,r) = MQ(n,r) = m(Hy ;)

Moreover, every r-uniform k-colourable hypergraph of order n with M,(n,r) edges is

tsomorphic to Hy, .

Proof. Clearly every r-uniform hypergraph of order n having a uniform k-colouring
contains H,',',, as a partial hypergraph. Furthermore, if H is an r-uniform hypergraph
of order n with x(H) < k, consider a k-colouring (S,,Sg,...,S¢) of H; let [S;|=n;. We
have

mE) <@ -5 (") <™ - min % (7).

il ng=n iy

k (n.
It is easy to see that the minimum of }; (r') for ny+ng+ -+ +np=nis
(=1
obtained if and only if we have

Bl <m S 6 =12008)

Indeed, we verify that n, > n, + 2 implies

)+ (>« (1)
(r + r > r + r J°
This algebraic lemma shows that
m(H) < m(Hy ).
This shows also that equality holds onmly if the k-colouring (S},9s,...,5;) is uniform.

The result follows.

It is more difficult to calculate my(n,r). We have my(n,2) = 3 for n >3 (since
the triangle K3 is not bicolourable); my(5,3) <10 (since K§ is not bicolourable);
my(n,3) =7 for n > 7 (since P; is not bicolourable). In the case of graphs we easily

find that mg(n,2) = (k'2H) for n 2> k<1, and the only extremal graph is K, (cf.
Graphs, Theorem 4, Chapter 15).

Theorem 7 (Erdés [1963]). Forr 22,k >2,n 2> kr, we have
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my(n,r) > k"L
Proof.
1. Let X be a set of cardinality n, and let 7 = ($,,55,...,5;) be an ordered

k-partition of X, that is to say, a sequence of &k disjoint subsets whose union is X,
(some of which could be empty). Consider the hypergraph Hy = (E,/m) whose vertices
are the r-tuples of X, an edge E, being the set of r-tuples completely contained in a
single class of the partition .
Every set of edges of an r-uniform hypergraph on X with no k-colouring defines a
transversal of Hg, and vice versa; hence
my(n,r) = 7(Ho)
We have m{H,) = k", for we can identify an ordered k-partition with a sequence of n
integers taken from {1,2,...,k}. Moreover, we have A(Hy) = k"7 X k.
From Theorem 1, chapter 3, we have then
m(Hy) Y
my(n,r) =71(Hy) > m = k",

Q.E.D.

Remark. By some more or less complicated algebraic manipulations, we can improve
the lower bound in Theorem 7, using the inequality 7(Hy) = 7 *(Hp).

For k = 2 the best lower bound for my(n,r) has been obtained by Beck [1977],
1
houtent 4
[1978]: for every € >0 and every n > n(€) we have my(n,r) >2"r® . The inequality

my(n,r) <27r%, due to ErdSs [1964] and Schmidt [1964], has also been improved by
Seymour [1974], giving, for example, my(n,4) < 23, my(n,5) < 51.

Generalisation (Hansen, Loréa {1978]). Let H be a hypergraph of order n such that
=Bl g2
n k" (k" —k+1) | 3 Bl <1
Ben £ Fen
Then x(H) <k.
(The proof is analogous to that of Theorem 5).

Corollary 1 (Johnson [1976]). Forr > 2, k > 2, n 2> kr we have
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rk"

my(n,r) > m

Corollary 2 (Schmidt [1964], Herzog, Sehonheim [1972]). For k > 2, n > 2r, we have
r.2
r+2°

For k = 2 we have upper bounds due to Erdds [1964], Chvdtal [1971], Beck [1977],
Erd6s and Spencer [1974]. Some bounds with the maximum degree (in place of the

m2("’1r) Z

number of edges) are due to Erdds and Lovdsz [1975].

We propose now to find some bounds for m2(n,r).

Theorem 8. Let r 22, k>2, n>kr. In a uniform k-partition of X with

IX|=n, let q, be the number of classes of size [—Z—], and let g5 be the number of size

[%] ", We have

-1
mPn,r) > (") [ql(["{’“ by 4 gyl k] )]

Proof. Define (as in the proof of Theorem 7) a hypergraph Hy, = (E,) whose vertices
are all the r-tuples of X; for every uniform k-partition 7, E, denotes the set of
r-tuples contained in a single class of the partition. Clearly Hy is regular, and it is
also uniform of rank

=) s o)

Thus, using Theorem 1 of Chapter 3, we obtain

-1
m(n,r) = 7(Ho) > f((gj)) = (M [ql(["{“)m(["/,’“]*)]

Remark. The value of m,?(n,r) is precisely known when r = 2. We give first some
examples of graphs of order n having no uniform k-colouring.

If n <k, every graph of order n has a uniform k-colouring.
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If n > k, consider the graph G (n,k) formed by the union of a clique K, (with
k+1 vertices) and a stable set §,_,_; (with n—k—1 vertices). This graph is certainly
of order n, and having no k-colouring, it has no uniform k-colouring.

If ¥ <n <2k, consider the graph Gy(n,k) formed by the union of a clique
Ky, pyy and a stable set Son—ok—1, together with all the edges joining one to the
other. This graph certainly has n vertices, and it will be left as an exercise to the

reader to verify that it has no uniform k-colouring.
If n > 2k, consider the graph G3(n,k) formed from the union of a set A of cardi-
nality 1, a set B of cardinality n—[%Hl, a set C of cardinality [%]—2, and all the

edges joining the singleton of A to the elements of B. This graph is certainly of order
n, and the task of verifying that it has no uniform k-colouring is left to the reader, by

way of an exercise.

Thus, for every n > k, the minimum number of edges in a graph of order n with

no uniform k-colouring satisfies

(1) mP(n,2) < min m[G;(n,k).

Indeed, Berge and Sterboul [1977] showed that equality holds in (1). Further, they
determined the structure of all graphs of order n with no uniform k-colouring having
mpP(n,2) edges.

The same extremal problems can be formulated for the stability number.

Proposition. Let n,p,r be integers such that n >p >r >2. The mazimum
number of edges in an r-uniform hypergraph of order n having a stable set of cardi-
nality p 18

Jax m(H) = ()~ ()

Indeed, the only extremal hypergraph is an r-uniform hypergraph Hy on X with
|X| = g, defined by considering a set S C X with |S | = p, and setting:

Hy=(E/ECX, IE|=T, EN(X-S) + ).

Clearly, we have
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m(Ho) = () = ()

as was to be proved.

For n 2 p > r > 2, the Turan number T(n,p,r) is the smallest number of edges
in an r-uniform hypergraph of order n such that every set of vertices of cardinality p
contains at least one edge. That is to say,

T(n,p,r) = a(‘ﬁ;’ép m(H).

Example 1 (Turan [1941]). Consider a set X with |X|=n, and a uniform (p—1)-
partition (SI,SQ,...,Sp_l) of X. The graph G, ,_; obtained by joining two elements
(vertices) of X if and only if they belong to the same S; satisfies oG, ,_,) <p.
Turan showed that it is the only graph with this property having the minimum number
of edges. Thus

T(":ps2) = m(Gn,p—l)'
(cf. Graphs, Theorem 5, Chapter 13).

Example 2. Consider the 3-uniform hypergraph on X = {1,2,...,9} whose edges are:
123, 458, 788, 147, 258, 389, 159, 267, 348, 168, 249, 357 (the“‘a.ffine plane of rank 3”).
It can be shown that this is the only extremal 3-uniform hypergraph with o < 5. Thus
7(9,5,3) = 12.

Few values of T(n,p,r) are known, but it is known that when n — oo the func-

tion T('n,p,r)(':f)_l tends to a limit ¢{(p,r) (Katona, Nemetz, Simonovits [1964]). For

p >r 23 no values of t(p,r) are known, but it is known that ¢(p,r) > (5:11)'l (de
Caen [1983]). The best upper bound for ¢(r+1,r) is due to Frankl and RSdl [1985].

Theorem 9. For n 2> p > r 22 we have
(1) T(n.p,r) > (B)EY.

@ e < [1+1og(;::)](’:)(’:)*‘.



136 Hypergraphs

Proof. Let X be a set with |[X | = n.

Let Hj be the hypergraph whose vertices are the r-tuples of X, and for §CX
with |S|= p, the edge Eg denotes the set of r-tuples of X contained in §. Then
T(n,p,r) = 7(Hy). Furthermore

n(Ho) = (), r(Ho) = (), m(Ho) = (5), A(Ho) = (,_7)

From Theorem 1 of Chapter 3, we have

( ,Pﬂ‘) = T(HO)

from which (1) follows.

Theorem 12 of Chapter 3 gives

Tn,p,r) = 7(Ho) < [1+1ogA<Ho)]f *(Ho)

sl

Remark. The inequality (1) was originally found (by different methods) by Katona,

from which (2) follows.

Nemetz, Simonovits [1964]. By generalizing a theorem of Moon and Moser, de Caen
[1983] has been able to improve (1) to

@ T > 2 (70T

r—1

(For a more complete account of Turan numbers the reader should refer to Brouwer,
Voorhoeve [1978]).

Note that (2) improves a bound due to Schdnheim [1964].
Corollary. Let H be an r-uniform hypergraph of order n with m edges; then
ofH) > nm™\/",

Indeed, if for an integer p we have m < (np—l)', then m < (f)(’;)'l, and from (1),
m < T(n,p,r). In other words p < nm~ V" implies of H) > p, whence
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ofH) > nm™V7,

6. Good edge-colourings of a complete hypergraph

Let £ be an integer 2> 2. A weak k-colouring of the edges of a hypergraph H is
the colouring defined by a weak k-colouring of the dual hypergraph H*. It is thus a
partition H = H;+Hy+...+H, (edge-disjoint sum) such that for every vertex z with
dy(z) > 1, the star H(z) has at least two edges of different colours. A good
k-colouring of the edges of H is a weak k-colouring of the edges of H such that if
dylz) >k, the star H(z) contains at least one edge of each of the colours, and if
dy(z) <k, the edges of the star H(z) all have different colours. A strong k-colouring
of the edges of H is a partition H = H,+H,+...4+H, such that the edges of the star
H(z) all have different colours. The chromatic index of H is the smallest value of &
for which a strong k-colouring of the edges exists; it is thus the strong chromatic
number Y{H*).

In this section we shall determine for what values of k the r-partite complete
hypergraph and the r-complete hypergraph have a good k-colouring of the edges.

Theorem 10 (Meyer [1975]). For every k 2> 2, the edges of the complete r-partite
hypergraph admit a good k-colouring.

(*) Proof. Let H=K;, ., with 1<n,<n,< ‘- <n, and Ilet
X' = {0,1,...,n;—1} denote the i-th class.

We have seen (Theorem 9, Chapter 1) that for p = [] n; = A(H), we obtain a

iwl
strong p-colouring of the edges by allocating to the edge ¥ = z'z% -+ =" the (r—1)-
tuple (@05, . . . ,0 ), where
at' = [zi+xl]ﬂ."

Thus there exists a good k-colouring for every k > p; for if k > p it suffices to com-
plete the p-colouring above with k—p empty classes.

We can also verify that for n, <s <n,yy and for p =3 J] n;, we obtain a
i
i;qil
good p-colouring by allocating to the edge Z the (r—1)-tuple (q,, . . . ,,), where
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o =lz' 4], il 2<i <g¢
= [z%+29M), if ¢ =g+l

= [z +2'],, if ¢+1 <i<r.

P
For k < J]n; = mindg(z), we obtain a good k-colouring (81,32,...,Sk_1,_uk5',-) from
T o
the p-colouring (S1,5y,...,5,) defined by the formula above with ¢+1 =r and
8 = n,_;. For all the other values of k we find a (o, . . . ,o) by analogous formu-

lae (we refer the reader to Mayer {1975]).

We note also (without proof):

Generalization (Baranyai [1978]). For every k >2 the edges of the complete
r-partite hypergraph admit an equitable, k-colouring which is uniform.

The existence of good k-colourings of the edges of the hypergraph K} has been
proved by Baranyai by induction on the order n. In order that the inductive method
can be used, it is necessary to aim for a stronger statement than we are going to prove.
First we say that a hypergraph H on X is almost-regular if we have

Mgz)—dg()| <1 (2,9 €X).

Lemma 1. Let H be a hypergraph on X. If, for a vertex a €X, the subhypergraph
H' induced by X — {a} is almost-regular, and if

5, a0z [t el
EeH EeH

then H i3 almost-regular.

(*)Seta= 3 |E|, s0 [E] <dg(a) < [2] *. For z # a we can show that
pel n n
o—dp(a) w@mr

]5@m=mms £

n—1

If we note that
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#*

S o i N S
[;]= n—1 | [;] = n—1

we deduce that
(24 [0 39
[C1<dy(x) <[] (z#a)

This shows that H is almost-regular.

Lemma 2. Let 6;-, for 1 =1,2,...,8, § = 1,2,...,t, be real numbers > 0. There exist
integers e;'~ > 0 such that

(i) [ef] <ef <[e)”

(ii) [2 e;] SZ e} < [Z e;'-]*

(i) Fﬂsz%skﬂ
J

J i

(*) Proof. Consider a transport network R whose vertices comsist of a source a, a
sink z, and two sets S and T. The arcs of R, each with an upper and lower capacity,
are of three kinds.

1) ares (a,8), ¢ €S, able to bear a flow ¥ with

Fﬂswmskgr
J ]

2) ares (i,§), ¢ €8, j €T, able to bear a flow 1 with
€] <¥6.5) L[]

3) arcs (5,2), 7 €T, able to bear a flow ¥ with
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[z; e;'-] <wiie) < [z; e;'-]*.

The necessary and sufficient conditions for the existence of a flow in a network with
integer capacities are the same for a flow with real values and for a flow with integer
values (cf. Graphs, Chapter 5, §2). Since the network R admits a real-valued flow P
with @(z’,j) = ei-, it will admit an integer-valued flow . The integers ¥ (¢,7) = e;-
satisfy the conditions (i), (ii) and (iii).

Baranyai’s Lemma. Let n, r; and m;'-, fori €1, 7 €J, be integers satisfying
M 0<r<n (¢ €Iy

(1) mi >0 (i €1, 5 €J);

() Ymi= (:) G €I

JjeJ

Then there exists a set X with |X|=n and families H' (E‘()\)) of subsets of X
satis fying

W mE) =

(2) H = EH; is the complete hypergraph K)';
jeJ

(3) H; = EH_’, 18 almost-regular, or, equivalently,
i€l

[ m|]<dg<z)<[ EIEI @ €X).

(*) Proof. We shall suppose that the assertion is verified for every integer <n, and
prove it to be true for n. Consider, for n, the following tableau of integers satisfying
(1), (IT) and (III).



Colourings 141

l 2 seeoe ] sesoe t
rl S0000CCOENUNRON0RC00004GG00000000SSROEY
L . .
. . -
. » L3
- . .
r2 |4 : :
K : :
U : :
Fi [M) cesncencencecncae mieecacencanea my
. . . .
* 3 L4 .
. : : .
* H : :
F; | evesccecssonssescscacsscnccosasscccsed

We can eliminate from this matrix every row ¢, with

r;, = 0 (since ij-" = 0 from (III), and H° = ). Similarly we can eliminate every
J

row i, with r; = n (since H'= (X), from (III), and its suppression will make no
change in the conclusion).

Supposing this to have been done, consider, with n—~1, the new tableau:

I 2 eeeenses ] t
rl - l :oouc--o'oo--ccoo-vo.occ:--oo..o..voocoooooonlo:
H . .
r,—1 H . H
2 . . H
. . .
* . .
. . . .
. . . .
. . . .
. . . .
. H : .
—1 i i i
r; el.-o-o.--oon-o-oo-c-oo-ej seascscccsncossscovests
: : : i
H . . .
. . . .
M . . .
H H :
r.—1 : : H
s 000000000000 000000000000Reeesrencesccartosacince
ry geseresscsccncsccnssasesBsstrssssvetesrressrrren
: : :
. . .
2 : : H
. . .
. . . .
H H . .
. . . .
: : : :
[ i i i
r; my; €] asconaoressee M; — €ieevescvesssneee M — €
. . -
. .
: : : i
. . M .
. . . H
. : :
Iy ese

where the e;: are integers satisfying properties (i), (ii) and (iii)

R | i . : :
of lemma 2 with €; = —r;m}. Then the coefficients in the new tableau satisfy
n
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1) 0<r—1<n-1
(1) 0<r; <n-—1
(i) ej~ >0

(1) mi—e: >0

In order to obtain (II"), observe that
P r m] i
mj —e; > —— =

The first term being an integer we deduce, by using (i) of Lemma 2, that
*

i i 't’mﬂ
mj—e; > |— —e]>0
n |

We also have, from (iii) and (III),

i
28}2 E:'nﬂ [(1\ r,]— r:i)

For the same reason we have the inverse inequality, thus

i _{n—1
z}e-’. - (r;—l :

(ur)

Finally

s m] - () -G -0

By virtue of the lnductlon hypothesns, there exists a set X with IXI = n—1, and
families H' (E '(\)) and H (EJ()\)) of subsets of X satisfying

(1) m(H;) = ¢
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) m(E)=mi-

2) S H =K\
i

(3/) ZH Kr,—l

4) 2[7; + 2}7; is almost-regular.
g i

Consider an additional point a. Set X = X U {a} and
EiN =E{\U {e} for 1 <N <el
=E0)  for ei+1<X <ml.
It is clear that the hypergraphs Hj- = (E;()\)/l <X Sm;) satisfy

2H) - "|
jeJ
Furthermore
il rmd
S —r—==3
i P

Thus, for z # a,
Ly 1gip q<@n<kzmﬁq

From Lemma 1, we see then that H; = EH} is amost-regular, which completes the
f

proof.

Theorem 11 (Baranyai [1975]). Let n,r be integers, n >r >2, and let
my,my, . .. ,m, be integers with my+my+ - - +m; = (:) Then K}, is the edge-

disjoint sum of t hypergraphs H;, each satisfying

(1) m(Hj) = m;
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@) [":j ] <dy(s) < [rnﬂ] (= €X).

This is the statement of Baranyai’s lemma for |[[|= 1.

Corollary 1 (Baranyai). K 8 the edge-disjoint sum of partial h-regular hyper-
graphs H; if and only if r divides hn and -th divides (:_L) In this case, the H; make

up a uniform colouring of the edges of K.

Proof. If there exists a decomposition of K, as the sum of h-regular hypergraphs Hj,

we have rm(H;) = hn (by counting, in two different ways, the edges of the vertex-

edge incidence graph). Thus r divides hn, and th = m(H;) divides m(Ky) = (:f)
Conversely, if these conditions are satisfied, apply Theorem 11 with m; = th

and t = (:)ﬁ There exists a decomposition of Ky, into ¢ hypergraphs H; such that

h = [%] < dy(z) < [’:’] —h.

Thus the hypergraphs H; are h-regular.

Corollary 2. The complete graph K, is the sum of h-regular graphs if and only if

. hn . . n
hn 1s even, and vy divides {,)).
Corollary 3 (Baranyai). The hypergraph K, has the coloured edge property if and

only if r divides n. In this case, there exists an optimal colouring of the edges which

18 uni form.

Proof. We note that — divides (:L), the quotient being ('::11) We therefore apply
r

Corollary 1 with A = 1.

Corollary 4 (Baranyai). The chromatic index of K, 1s
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qmwkﬁﬂ-

Proof. Let K} = H,+H,+..+H, be a decomposition of the edges of Ky into
g = ¢(K},) matchings. We have

(7) = m(K) = H W H b4 1H, | < q[%]
Thus
qmmzkm%wy

On the other hand, if we denote by ¢ the second term of this inequality, we can apply
Theorem 11 with

my=mg= """ =me—1=[':_l—]
m = () = ¢-DI S 1T

Thus there exists a decomposition K}, = H; + Hy + *** + H; such that, for every
r €X,

0 < dy(z) < [%{%1] <1

This is then a strong colouring of the edges of K[ in t colours, whence ¢(K}) <¢,

which completes the proof.

Corollary 5. Let K, = H\+Hy+..+H, be a decomposition of the edges of K, into
p hypergraphs on X (* coverings”). If p(K}) denotes the smallest integer p for
which such a decomposition exists, then

N
pmm=LHTF+
The proof is the same as that above.

Corollary 8. There exists a good k-colouring of the edges of K, if and only ¢f either

ksﬁm%ﬁquzﬁm%ﬁ]-
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Proof. Using Corollaries 4 and 5 we can write

# (7:) n, r
p(KT) = [(’:)/1—’,‘—1 ] < o <Ak =M=

) iy
L moa-1] o T
<T< [(r)/[ 2 ] = 4(3).
r
If £ < g(K7}) there is no strong k-colouring, and if k 2> p(Kj) there exists no decompo-

sition into k coverings. Hence there are no good k-colourings.

On the other hand, if k& > ¢(Kj) there exists an obvious good k-colouring,
obtained from a colouring in ¢(KJ}) colours by adding empty classes. If k < p(KJ]),
there exists a decomposition into k coverings, obtained from a decomposition into
p(K}) coverings by redistributing the p(K;)—k last classes.

8. An application to an extremal problem

The above results enable us to give a partial answer to the following problem:
what is the largest number of edges in an r-uniform hypergraph of order < n which

does not have k+1 pairwise disjoint edges. This number will be denoted by

! -
Mi(n,r) = »{?{")lékm (H).

For the case of graphs this problem has already been solved by Erdds and Gallai [1959]
(ef. Graphs, Theorem 2, Chapter 7).

Theorem 12. Let n,r.k be integers with n > r 22, n 2 kr. If we let
*

= M1

q= [(,)/[r] ]

we have:
Mi(n,r) < (g=1)k + minfk, (H~(a—D]).

Proof. Let H be an r-uniform hypergraph on X, }X | = n, having no matching with
k+1 edges, and with the largest number of edges possible. As in Corollary 4 of
Theorem 11, consider the decomposition of the r-complete hypergraph K} on X as the
sum of ¢ matchings H; with
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m(HJ) = [_n"] (7 =12,..,4-1)

= (™ — (¢—1)[~
m(Hy) = () = (a=1) %)
The hypergraph H admits at most k edges in H; for j <g—1, and at most
min{k, (:f)—(q—l)[%]} edges in H,. Thus m(H) = Mi(n,r) is bounded by the expres-

sion given above in the statement of the theorem, as was to be proved.

Remark., If k =1 and r < %, we have M{(n,r) = (1::11) from the theorem of Erdds,

Chao-Ko and Rado, and the only extremal hypergraph is the star K (z).
If n < kr+(r—1), we have Mi(n,r) = (7:), the only extremal hypergraph is K7,.
If n > kr+r, consider a set X with [X|=n, aset Y CX with [Y|= &, and let
vk =(E/ECX, |[E|=r, ENY#().

The hypergraph £, cannot have k+1 disjoint edges (for each of these edges would
have to meet a distinct point of Y). Erdds [1965] proved that for n > ¢k, where ¢, is
a constant depending only on r, 8;‘k is an extremal hypergraph; that is to say

n n—k
™ - ("7H.
Furthermore, Erdds conjectured that for every m > kr+r, one of the hypergraphs
Ky or €, i is extremal, and consequently

Mi(n,r) = m(€5 k)

k —1 —k
Mj(n ) = max{("" 7T, () = ("5
When n is sufficiently large, is €, ; the only extremal hypergraph? Bollobds, Day-
kin and Erdds [1980] showed that every r-uniform hypergraph H satisfying
n(H) > 2r’%

n—k—r

m(H)>m(Er ) — (7.2 1
v(H) <k

is contained in an &£}, ;.
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7. Kneser'’s problem

The study of the chromatic index of a hypergraph is comparable to the dual prob-
lem: What is the smallest number of intersecting families whose union is the set of
edges of the hypergraph H? This new coefficient, denoted 7o(H), and sometimes called
the Kneser number, has properties similar to those of the transversal number 7(H).
We have 74(H) < 7(H), for one can always cover the set of edges of H with 7(H)
stars. If H satisfies the Helly property, we clearly have 74(H) = 7(H).

The study of 7o(H) is inseparable from that of Ay(H) (the maximum cardinality of
an intersecting family) and pi(H) (the minimum number of intersecting families which,
collectively, cover each edge of H at least k times). The coefficient

pi(H
T(;(H)=§Cn>illl lc( )

is sometimes called the fractional Kneser number.

Theorem 13. For every hypergraph H,

H H
ST(;(H)=£nin PuH) < max PrH)

H) <
vH) < >1  k k>1

m(H')
=71.(H) <T1{H).

g}g’;{ Ay(H) olH) < 7(H)

Proof. To the hypergraph H = (E|,Ey,....,Ei,) on X let us make correspond a hyper-

graph H = (E,E,, . .. ,E,,) on the set of intersecting families of H, where E; is the

set of intersecting families which contain E;. We then have E; N E; = (J if and only

if E‘, g Ej = (/. Moreover,

v(H) = v(H)

A(H) = Af(H)
7(H) = py(H)
7(H) = 14(H)

7 "(H) = 14(H)
Applying Theorem 1 of Chapter 3 to the hypergraph H, we obtain the stated inequali-
ties.

Example 1. Let P; be the projective plane on 7 points. We have
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Bo(P7) =7

To(Pr) =1
We have also 7¢(P;) = 1, since Theorem 13 gives

1= U(Py) S7o(Py) S7o(Py) = 1.
Example 2. Let K} be the r-complete hypergraph with r < -;l From the theorem
of Erdds, Chao-Ko and Rado,

-1
Bo(K7) = (3 1)

We have also 7o(K]) = %, since Theorem 13 gives

AolKp)  (*ThH T r r

We note that p.(K}) < n, being given that the n stars of K, collectively cover every

edge exactly r times.

The problem of determining 7(Kj) which was put by Kneser in 1955, was not
solved until 23 years later, by Lovdsz, using algebraic topological methods. We shall
give here a simpler proof due to Baranyai [1978].

Proposition. Let H be an r-uniform hypergraph of order n 2> 2r. Then
To(H) < n—2r42.

Consider a set of vertices Y C X with [Y| = 2r—1. The family H/Y of edges of
H contained in Y is an intersecting family. This, together with the stars of the form
H(z) with 2 €X-Y, cover all the edges of H. Hence
To(H) <1+ (n—2r+1) = n—2r+2.

Theorem 14 (Lovisz [1978]). Let n,r be integers with 2 <r < % We have

To(Ky) = n—2r42.

Proof. From the preceding proposition, it is enough to prove that
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To(Ky) 2 n—2r42.

Let d = n—2r. We argue by contradiction and suppose that we can decompose K,
into d+1 = n—2r+1 intersecting families H,,H,,...,H;;;. From a theorem of Gale
[1956], for every k>1 we can place d+2k points on the sphere
S% = {x,x&R?*||x||=1} in space of d+1 dimensions, in such a way that every open
hemisphere contains at least k of these points. Hence we can place the n = d+2r ver-
tices of K], on 5% in such a way that every hemisphere contains at least r vertices (and
hence at least one edge of KJ).

Denote by P; the set of points x of the sphere S such that the (open) hemisphere
centred on x contains an edge of the family H;. Since for every point of S%, the hemi-
sphere centred on this point contains an E € K}, (hence an E belonging to an H;) we
have S = Py U P,U *--U Pyyy.

We now use Borsuk's ‘“‘antipodal points theorem’ [1933] which says that if a
sphere S CR**! is the union of d+1 open sets, then one of these sets contains two
antipodal points. Let set P; contain two antipodal points x and y. The hemisphere of
S centred on x contains an edge E belonging to H;,, and the hemisphere centred on y
contains an edge F belonging to H;. Consequently, E N F = (/. This contradicts the

fact that H; is an intersecting family.

Exercises on Chapter 4

Exercise 1 (§1)
Determine the chromatic number and the stability number of K] and of

,
nyng.. B

Exercise 2 (§1)

Let H be a hypergraph on X. Show that if ofH/A) > J%I- for every A C X,

then X can be covered by of H) edges or singleton vertices. (Lehel {1982]).

Exercise 3 (§1)

Let H be a hypergraph, and let m,m,,...,m, be positive integers. Show that H is
the union of k hypergraphs H; with no edges in common and with x(H;) < m; if and
only if x(H) <mmgy *** my. (Miller, Miiller [1981]).
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Exercise 4 (§1)
Show that if a hypergraph H of rank r >3 satisfies |[ENE'|<r—2
(E.E' €H; E # E'), then ofH) = a satisfies n—a < (,%)).

Exercise 5 (§1)

On a chess board of n Xn squares we define the ““Queen’s move hypergraph’ H,?
as the hypergraph whose vertices are the squares, and for which an edge E, is the set
of squares which a queen placed on square z dominates (including z itself). We define
similarly the “King's move hypergraph” Hf, etc.

Show that x(HY) = x(HY) = x(HZ) = x(HX) = 2. (R = rook; B = bishop).

Exercise 8 (§1)

Consider the 3-uniform hypergraph whose vertices are the integers 1,2,...,n and
whose edges are the triples {r,y,2} with z+y = z. Show that the stability number of

this hypergraph is [121—]+1. (Sedlagek {1970]).

Exercise 7 (§1)

Consider the infinite hypergraph whose vertices are the positive integers, and
whose edges are the families of integers forming an arithmetic progression. Show that
this hypergraph satisfies the Helly property, and that its chromatic number cannot be
2.

Exercise 8 (§2)

If we associate one of the colours 1,2,...,k with each vertex of a hypergraph H, we
regard an edge as ‘‘strongly coloured” if all its elements have different colours. The
cochromatic number of H, denoted ;y_(H), is the smallest integer k& such that for every
k-partition (5},55;...,5;) (with no empty classes) there exists a strongly coloured edge.

Show that y(K7) = r.

If H is r-uniform of order n, show that
A(H) < n—r+1.

Calculate ;(K;bnm-u.n,)'
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If G is a graph with p connected components, then ’7(0) =p+1. Let G be a
graph of order n, and H a hypergraph on the edges of G in which the edges are the
cycles of G. Show that ’;(H) = n.

Exercise 9 (§2)
Show that between the cochromatic number ~(H) and the stability number of H)

the following relation holds:
V(H) < ofH) + 1.
Show further that for n 2 p > r 2> 2 there exists an r-uniform hypergraph of
order n with ofH) = p—1, ¥(H) = p. (Sterboul [1975]).

Exercise 10 (§2)
If G is a graph, show that the “product” (cf. Chapter 3, §6) G X K, satisfies

WG XK,) = n(G) + ofG)(n—1) + 1.
(Sterboul [1975]).

Exercise 11 (§3)

Show that the vertices of a tree of maximum degree A can be uniformly

k-coloured for every k > [—2A—] + 1.

Show further that there is a tree with no uniform k-colouring if & = [%]

Exercise 12 (§4)
Show that

metnr) < (F74+1)

(Herzog, Schénheim [1972]).

Exercise 13 (§4)

Show that if p = % is an integer > r, then
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mP(n,r) = (THET

Exercise 14 (§4)
Show that for n > kr
m(n,r) < T(n—1,p—1,r—1)
where p = [n/k].
For this, consider an extremal (»—1)-uniform hypergraph H, of order n—1 with no
stable set of cardinality p—1. Consider the r-uniform hypergraph Hg of order n

obtained by adding to every edge the same additional vertex z,, and show that H, has
no uniform k-colouring. (Berge, Sterboul [1977]),

Exercise 15 (§4)

Let H be an r-uniform hypergraph of order n and stability number a. Show that
the maximum number of edges containing a set T C X with [T] = r—1 is an integer 2
satisfying
o+ (rgl)z >n.
Deduce from this that the number m of edges in such a hypergraph satisfies
o n \-
-+ (r—l)rm(r—l) '>n

(de Caen [1983}).
Hint: Use the inequality (3) that follows Theorem 9.

Exercise 168 (§4)

Let H be an r-uniform hypergraph of order n = kr which has no uniform
k-colouring and which has the minimum number of vertices for this condition. Show
that H is a star of KJ,. (Berge, Sterboul [1977]).

Exercise 17 (§5)
Show that there exists an equitable k-colouring of the edges of K, if and only if
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[[(’Z)ﬁ]%] <G < [[,c—;(’:)l*—";]-

Exercise 18 (§7)

Given integers n,k,t with n >k >¢ >0 and n+4t > 2k, consider the graph
G(n,k,t) on the set of k-tuples taken from a set of n elements, where two k-tuples A
and B are joined if and only if [ANB|<t. Then 7o(K7) is the chromatic number of
G(n,r,1). Frankl has conjectured that the chromatic number of G(n,k,t) is T(n,k,t)
for n sufficiently large, and has proved it for ¢ = 2. (Frankl [1985]).

Exercise 19 (§7) Show that
7o(H) Kmax m(H/X-E;)=1
1

and that equality is possible only if the connected component of the complement of the
graph L(H) having maximum degree is either a clique or an odd cycle without chords.

(Use Brooks’s Theorem, Graphs, Chapter 15).

Exercise 20 (§7)
Show directly that 74(K,) = n—2r+2 for n > 3.



Chapter 5

Hypergraphs Generalising Bipartite Graphs

1. Hypergraphs without odd cycles

Let H be a hypergraph on X, and let k 2> 2 be an integer. A cycle of length k is

a sequence (z1,E1,29,E T3, 08 Ey,2) with:

(1) E\,E,,...,.E; distinct edges of H;
(2) 21,%gy...,T; distinet vertices of H;
(3) zi,2i41 EE; (0 = 1,2,...,k—1);
(4) T, € Ey.

Observe that the sequence (z,E,z;) is not considered to be a cycle.

length k odd (respectively even) is called an odd cycle (respectively even).

Graphs without odd cycles possess such remarkable properties as:

- the Helly property,

- the K&nig property,

- the dual Kénig property,

- the coloured edge property,

- the two-colourability of the vertices.

Is it still true for hypergraphs?

A cycle of

Example: Consider a 0-1 matrix A with p rows and ¢ columns. Let H be the hyper-
graph whose vertices are the entries of the matrix having value 1, and whose edges are

those 1's lying in a single row or a single column. Clearly # is the dual of a bipartite

graph G (whose vertices are the rows and columns of the matrix A). Thus H contains

no odd cyeles, and it is easy to show the existence of a 2-colouring of the vertices of H.

For a stronger statement, call a B-cycle a cycle (z,,E,,20,Eq,....Ey,x,) with the

following properties:

(1) k is odd;
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q columns
0o 0 o0 1t*o0 1*O0 1
0 1010 0 1* 0
A=|1* 0 00 1* 1* 1- 1*|} prows
-0 01* 10 1*0
10 0 1* 17 17 1t o0

Figure 1. Example of a 2-colouring of H with +, —.

2) H' = (E\,E,,...,E;) has maximum degree A(H') = 2;
@) IE;NE;y|=1 (@ =12,..,k—1)
(4) IEkﬂE, I 2 1.

Example. The projective plane P; and the complete hypergraph K3, ;, which are
not 2-colourable, contain B-cycles of length 3.

Theorem 1 (Fournier, Las Vergnas [1972], [1984]). Every non 2-colourable hypergraph
contatns a B-cycle.

Proof. Let H be a non 2-colourable hypergraph; by removing the maximum number
of edges without altering this property, we may suppose that x(H)>2 and
X(H—E) =2 for each E €H. Suppose that H contains no B-cycle. Let Ey € H: since
H—E, is 2-colourable, let (4,B) be a 2-colouring of H—E,. Since X(H) > 2, the edge
E is monochromatic, and we may assume Ey C A.

Now define one by one the bipartitions (A,B,), (45,B5),... in such a way that the
families H;,Hj,... formed by the monochromatic edges in the different partitions are
pairwise disjoint. Since H has only finitely many edges this will imply that for some
integer k the family H, is empty; that is to say, that (A4;,B)) is a 2-colouring of H:
this will contradict x(H) > 2 and will complete the proof.

Consider 2 vertex z € Ey, denote by T = {z} the singleton z, and set
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A=A -T,
B, =B U T,

We have thus defined a new partition (A,,B;), and the family H, of mono-
chromatic edges in this partition satisfies

Iy H, is disjoint from {E},

Iy every edge of H is contained in B, and meets 7,

Iy there exists a set T, € Tr H,; contained in B N B; and disjoint from E
1 1 1 1 )

(Tr H denotes the transversal hypergraph of H, cf. Ch. 2 §1).

More generally, suppose that we have defined a bipartition (A;_,B;_;) and the
associated family H;_; of monochromatic edges. Let T;_; €Tr H;_; be contained in
AN A, (if £ isodd) or in B N B;_; (if ¢ is even). For ¢ > 1 odd, set

{A«' =A;i1 — Ty
B; = B;_1 U T,

For 1 > 2 even, set

A=A UT,,
B; =B;_, — T;—-1.

We shall now show by induction on ¢ that the family H; of monochromatic edges

with respect to the bipartition (A;,B;) satisfies the following three properties:
(I;) H; is disjoint from the families Hy = {E}, H,Hg,.... H;_1;

(119 every edge of H; is contained in A; (for 7 even) or in B; (for ¢ odd), and
meets T;_;;

(It there exists a set T; €Tr H; contained in A N A; (for ¢ even) or B N B;
(for ¢ odd), and which meets none of the sets Eq — Ty, Ty, Ty, Toye-rs Ty s

Let £ > 1 be an integer; assume first that &£ is odd. Suppose that we have shown
II,, I}, II? for each ¢ < k—1.
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1) Proof that II, holds.

From II{,IT%, . .. ,II{_, the sets Eq—T4,Tgs---sTx—1 2re pairwise disjoint (and each
set has changed colour completely in a single step in the procedure). Hence T; C By
for 7 even < k—1, or T; C A, for i odd < k—1. For ¢ < k—1 every edge of H; meets
T; (since T; €Tr H;) and T;_; (from II}) and cannot be monochromatic with (Ay,B;)
since Ty C B, and E—T, C A;. Thus the family H; of monochromatic edges has no
edge in common with {E.}, H,Hy,...,.H,_,.

2) Proof that II} holds.

Every edge of H, is 2-coloured in (A4;_;,B;_;) from II;, and is monochromatic
with (Ag,B); thus it must meet T,_;, which is the set of vertices which change colour
in the k-th step, and is contained in Bj.

3) Proof that IT} holds.

Since & is odd, the edges of H, are contained in By (from II}): thus there exists a
T, €TrH, contained in Bj,. Further no edge of H, is contained in
ToUTyU -+ U T,_, since such an edge would be monochromatic with (A,B),
which  contradicts II;. Thus we may assume 7, is contained in
B, — (ToUT,U - - - UT,_,) = B, N B. From II{II4, ... IIJ_, the sets
T0sToyTyy..., T,y are contained in Aj; thus they do not meet T;. By the definition of the
transformation, the sets Ey—T;,Ty,T;,...,T;_o are contained in Aj, and so they do not
meet T},

4) If we now suppose k is even, nothing changes in the above argument except for one
point: the edges of Hy are contained in A, and T, C A N A;. Consequently T does
not meet T,Ty,...,Ty_g (which are contained in Bj) or T,Ta,...,Ty_; (which are con-
tained in B), but it remains to show that T, does not meet Ey—T.

More precisely, we shall show that every edge of H is disjoint from Ey—T,. Oth-
erwise, there exists an E;, € H;, which meets Eq—Ty: let z4 € E;, N (Eg—T,). From II}
there exists a vertex zy €T;_; N E, and by the minimality of the transversal 7, _;,
there exists an edge E,_; € Hy_; such that E;_; N Ty_; = {z3}; since E, C A; and
E,_y CB, UT,_; we have also E;_; N E; = {z;}. Repeating this procedure with

Ej_,, etc., we obtain a sequence term by term
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Eg=Tq, xg, Ep, Ty Epyy Tp—1yeeslyy ¢ = 2,

with, for ¢ = 1,2,...,k, the relations
(1) E; €H;, z; €T;y, E; N Ej_y = {z;}.

Then the sequence (zg,Eq2,E Tt By, 2g) defines a cycle and satisfies
lE,-ﬂE;_l | = 1 for each ¢ > 1; further its length k+1 is odd.

So, by virtue of the hypothesis, there exists a vertex y of degree > 2 in the hyper-
graph H' = (Ey,E|,...,Ey}); suppose for example:

yE€EE, NE NE,
0<p<g<r<k
r—p minimum.

We shall show first that y # z,,1,2p,9,...,%,- Indeed, if for example » is even,
then E, C A, from II!, so the vertex y is different from x,,%3,...,2,_; (Which are in B,,
from (1) and NJJI4, ..., IIV_)). If y ==, for s even, p+1 < s <r, then the cycle
(24:F 41T g 11eees®p Fopy,) is an odd cycle of maximum degree 2 (by the minimality of
r—p), so it is a B-cycle, contradicting the hypothesis. If y = z,, then r = ¢g+1 from
(1) and the minimality of r—p. Hence ¢ is odd. Moreover, p is odd (since if p were
even, T, CA,, and does not contain z, which is in Bp,). Hence the cycle
(a:,,Ep,:cpH,EpH,...,xq,Eq,:c,) is odd of maximum degree 2; so it is a B-cycle, which
contradicts the hypothesis.

Observe that the indices p,g have different parities: otherwise the cycle
(¥+EpsTpi19Ep 19001 q1Eq,y) is odd of maximum degree 2, so it is a B-cycle, contradict-
ing the hypothesis. Similarly, the indices ¢ and r have different parities. Suppose for
example p even, ¢ odd, r even. Then E, CA,, E, CB, E, CA,. Since
E,, N B CB, we have Ep N E, CA. For the same reason, E, N E, CB, which
implies that E, N E, N E, = (/5 and the contradiction follows.

Corollary 1. In a non 2-colourable hypergraph of rank <3, there exists a B-cycle

such that every pair of two non-consecutive edges are disjoint.

Let H be a hypergraph with x(H) > 3, r(H) < 3. We may suppose that we have
removed from H as many edges as possible without it becoming 2-colourable. Now,
from Theorem 1, there exists a B-cycle (z,E,zg,...,E},z;) which we may suppose of
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minimum length k. If E; N E; # (J for an integer j, 3 < j < k-1, then there exists a
vertex y € E| N E;. Since the degree of the B-cycle is 2, the vertex y is distinet from
Z1,@3..,%k; and since H has rank <3, we have E; = {y,z,,,} and E; = {y,2;,2,,,}.
One of the two cycles (y,Ey,%g,...,E;y) and (z1,E,4,E;,%;415--F,1) is odd. Since
E, N E; = {y}, this cycle is a B-cycle, which contradicts the minimality of .

Corollary 2. In a non 2-colourable hypergraph, there is an odd cycle of mazrimum

degree 2 such that every pair of two non-consecutive edges are disjoint.

(Same proof, replacing each occurrence of “B-cycle” by ‘‘odd cycle of maximum
degree 2").

Following these results, we might expect that hypergraphs without odd cycles of
maximum degree 2 would have those properties apparent in bipartite graphs; however,

they may satisfy the Helly property as in Figure 2, or not, as in Figure 3.

ve2 tT=3

Hypergraph without odd cycles Hypergraph without odd cycles
of mazimum degree 2 of mazimum degree 2
(with the Helly property) (without the Helly property)

Figure 2. Figure 3.
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From these results, we obtain the following characterization of the hypergraphs which

contain no odd cycle:

Theorem 2. A hypergraph H = (E|,E,,...,E,,) has no odd cycles if and only if every
hypergraph H' = (EY,E},....El,) with E! C E; for each i is 8-colourable.

Proof. If H contains no odd cycles, Theorem 1 shows that x(H) <2. The hyper-
graph H' is also without odd cycles, so x{(H') < 2.

If H contains an odd cycle (z,E,z5,E5,...,E},x;), then there exists a hypergraph
H' of the form indicated which has edges |z,,%5),|2,%3],-s[Zk,%1], Whence x{H") > 3.
Contradiction.

The class of hypergraphs without odd e¢ycles has been studied from the point of
view of matrices by Commoner [1973]; Yannakakis [1985] has given a polynomial algo-
rithm to test whether a given hypergraph is in this class.

Theorem 3. A hypergraph H = (E,E,,...E,,) s cycle-free if and only if for every
non-empty subset J of {1,2,...,m}, we have

(1) I],LEJJE]' | > J_Z;}J( IE;|-1) .

Proof.
1. If H contains a cycle (a,,E,,a4,E,,...,E},a,) we obtain, setting K = {1,2,...,k}

Y= 1Y EeDIS S eyl = 5 (5,

JEK
Thus condition (1) fails.

2. If H contains no cycles, the partial hypergraph H' = (E;/j€J) also contains no
cycles. Set UJEj = {z; /i €I'} and form the bipartite graph G on I U J, where
J€E

1 €I and j €J are adjacent if and only if z; €EE;.
Since G contains no cycles, we have m(G) < n(G) (cf. Graphs, Ch. 2); thus
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Y IE; | =m(G) <n(G)= |UE;| + I/|
jes ieJ

whence (1) holds.

Remark. If H is k-uniform, a necessary and sufficient condition for H to have no

cycles is that for every non-empty subset J of {1,2,...,m},

E; k—1)|J |
Iy B 1> G-

We may generalise this result in the following way:

Generalisation (Las Vergnas, [1970]). Let H = (E,Ey,....E,,;,) be a hypergraph and
let k > 2 be an integer; a necessary and sufficient condition for the existence of a
k-uniform hypergraph H' without cycles, H' = (E\,E},....E!) with E! C E; for every

1, 1s that

lVE;|>®k-1)] (J#0O)
ieJ

Between the class of hypergraphs without cycles and the class of hypergraphs
without B-cycles, there are many classes, each having interesting characteristics and
concrete combinatorial applications. In this chapter we shall study the classes of

hypergraphs shown in Figure 4.

2. Unimodular Hypergraphs

A matrix A = ((a_;)) is said to be totally unimodular if every square submatrix of
A has determinant equal to 0, + 1 or — 1. A hypergraph is said to be unimodular if

its incidence matrix is totally unimodular.
It is immediate from this definition that the dual, the subhypergraphs and the
partial hypergraphs of a unimodular hypergraph are unimodular.

A combinatorial property of unimodular hypergraphs is revealed in the concept of

an ‘‘equitable colouring”.

Theorem 4. A hypergraph H on X 18 unimodular if and a:nly if for every S CX
the subhypergraph Hg has an equitable 2-colouring: that is to say a bipartition (S,,S,)
of S such that each edge E of Hg satisfies
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[.I%l] < ENS | < [-l%l] (i = 1,2).

Proof. If an n X m matrix A = ((a})) is totally unimodular, it is clear that aj- = 0,+1
or —1 (since the value of each entry is a determinant of order 1 from A); further
Ghouila-Houri [1962] showed that A is totally unimodular if and only if every non-
empty set I C {1,2,...,n} may be partitioned into two disjoint sets I and I, in such a

T Without cycleTs

Without cycles totally Arboreal - b .3 of
>3 = balanced ot (Fig. 14) =i maximum

= (Fig. 12) degree 2

(Fig. 3)

!

Without odd
Without Balanced Normal cycles of
odd cycles (Fig. 10) - (Fig. 16) = maximum a| DBicolorable
(Fig. 1) degree 2
| (Fig. 2)

N

Unimodular Helly
(Fig. 9) property
With a star
as maximum
intersecting
family
Mengerian Coloured
(Fig. 17) edge
property

————

Paranormal
(Fig. 19)

Kdnig
property

Figure 4. Implication scheme for the principal classes of hypergraphs generaliz-
ing trees and bipartite graphs.
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way that

IS ai—Nd [<1 (5 <m)
i€l i€l,

If A is the incidence matrix of a hypergraph we obtain the required 2-colouring with

81 = {z; fi€l,}, 8y = {z; /i€l }.

Example 1. Bipartite multigraph.

Let G be a bipartite multigraph; clearly every subgraph of G is a bipartite multi-
graph, and hence is 2-colourable. Thus G is a unimodular hypergraph.

Example 2. Interval hypergraph.

Let H be defined by a set of points on a line and a family of intervals. Clearly for
A C X the subhypergraph H, is an interval hypergraph, for which we obtain an equit-
able 2-colouring by successively colouring the points from left to right red and blue

alternately. Thus H is unimodular.

Example 3. Hypergraph of paths in an oriented tree.

Let T be a tree on a set X with a (unique) orientation on each edge. Let H be a
hypergraph on X such that each edge is an oriented path of T. Clearly a 2-colouring
of T defines an equitable 2-colouring of H (cf. Figure 5). Every subhypergraph of H
also has an equitable 2-colouring: if we remove a vertex a from H, consider the tree TV
of Figure 6 for which every 2-colouring induces an equitable 2-colouring of Hy_(4)-

Example 4. Hypergraph on the arcs of a tree.

Let T, be a tree on a set X, with a unique orientation on each edge, which defines
a set U of arcs. Let Hy be a hypergraph on U such that each edge is a set of arcs
forming a path of T,. Clearly we may colour the arcs of T in 2 colours, + and —, in
such a way that every pair of consecutive arcs contain both colours (cf. Figure 7); this
defines an equitable 2-colouring of H, Every subhypergraph also has an equitable
2-colouring: if we remove an arc u of U, consider the tree T§ of Figure 8 for which a

2-colouring induces an equitable 2-colouring of Hy_y,,).

Theorem 5. Every hypergraph without odd cycles 18 unimodular.

Proof. Since no subhypergraph of a hypergraph without odd cycles contains an odd
cycle, it suffices to show that a hypergraph H without odd cycles may be equitably
2-coloured.
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Figure 5 Figure 6

Figure 7 Figure 8

For i <m, put r; = |E; | and define a map y;:{1,2,...,7;} = X so that
E; = {yi(1),9:(2)y; ()}
Consider the set ¥; of the following pairs:
vi(Dwi(2),
vi(3)yi(4)
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vi (2[r; /2]-1)yi (2[r; /2))-
The union of the ¥;’s is a graph G and we may suppose that the y;'s (and hence the
¥,'s) have been chosen so that the minimum length of an odd cycle of G is as small as
possible. If G has odd cycles, consider an odd cycle of G of minimum length, say
i = [a1,89, . . . ,a;]. The cycle u is elementary. We shall show that u does not con-
tain two edges from the same set ¥;.

Indeed, if for example [a,,a,4,] €F; and [g;,a,,,] EF;, by replacing these two
edges in ¥; by the edges [a,,a;4,] and [a;,8,,,], the graph G' so obtained has an odd
cycle which is shorter than p, (as one of the two sequences {aj,a,,...,85,0; 1 1,-..,8;] and
[@541:85405+18158541] is odd) which contradicts the definition of G. Further, if the
cycle p has its edges in different classes ¥; then it defines an odd cycle of H, which
contradicts our hypothesis that H has no odd cycles. Thus such a cycle ¢ cannot
exist,

Since the graph G has no odd cycles, there exists a 2-colouring (S,,S,) of its ver-

tices: this constitutes also an equitable 2-colouring for H.

Theorem 8 (de Werra [1971]). A unimodular hypergraph H has an equitable
k-colouring for every k > 2.

Proof. For k = 2 the statement follows from Theorem 4. For k& > 2 consider a parti-
tion (51,85,...,9;) of the vertices of H into k classes. For 7,7 < k and for E € H put

&;(E) = IS;nE| - [s;nE|
€(E) = max ¢;(E).
i
Clearly €¢(E)>0. If ¢(E) <1 for every E €H, the partition is an equitable

k-colouring of the hypergraph H, and vice versa. Suppose therefore that there is an
edge Eq with €(Eg) > 2 and let p,g be indices for which €,,(Eq) = ¢(Ey). Then

IS, NE S ISiNEp| S 1S,NEol (5 # py9)
The subhypergraph of H induced by the set S, U S, admits an equitable 2-colouring
(85:5,). Put S/ =8; for i # p,g. The new partition (S},5%,...,5¢) defines new coeffi-
cients €/}, such that every E € H satisfies ,,(F) < 1. Furthermore

€(E) = €;
for ¢+ and j # p,q. Further, for 1 # p,qg we cannot have efp(E) = €(F}) unless
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Eip(E) = e(EO) or fiq(E) = ¢(Ey).

In summary, the number of triples (r,s,E) with €,(E) = ¢(E;) has decreased by at
least one. By repeating this transformation we finally obtain a partition with €(E) <1
for each E € H; this partition is an equitable k-colouring of H.

Corollary 1. Let H be a unimodular hypergraph and let k = }gnlglE |; there exists a
€

partition (T),Ty,...,T},) of the set X of vertices of H into k transversal sets such that,
for every E €H,

m [%wl] <EnT|< [%m]* (i = 1,2,k)

Indeed, H admits and equitable k-colouring (T,T%,...,T}), and consequently (1) holds.

Further, as k = min |E |, each 7T} is a transversal.

Corollary 2. Let H be a unimodular hypergraph and let k 2> 1; then there exisis a
decomposition H = H{+Hy+ * * « +H), into k classes such that for every vertex z of
H,

[% dH(a:)] < dp(@) < [% dH(x)] (i = 1,2,...k).

Indeed, apply Theorem 6 to the dual hypergraph H*, which is also unimodular.

Corollary 3. Every unimodular hypergraph satisfies the coloured edge property.
Indeed, set £ = A(H) in Corollary 2.

Our interest in totally unimodular matrices arises principally from the following

result:

Theorem 7 (Hoffman, Kruskal [1956]). Let A be an n X m matriz: the following
conditions are equivalent:

0] A is totally unimodular;

(i) for every ¢ € Z" the polyhedron of c-matchings
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Qc) = {y/yeR™, y 20, Ay <c}
has only integer valued extreme points,
(iii) for every b,e € Z", for every p,q € Z™, the set
Q(be,pa) = {y/YER™, b <Ay <c;p <y <q}

18 emply or contains an integer valued point.

Proof.

(i) implies (it). Indeed, the extreme points of the polyhedron @(c) are given by
the intersections of planes of the form <a’,y> = ¢;. Cramer’s rule says that every
solution y of such a system has for each coordinate y; the quotient of two deter-
minants; the first is integer valued (as a} is an integer), the second has value 0 or 1

(since A is unimodular). Thus the point y has all its coordinates integer valued.
(i7) implies (i). Let B be a regular square submatrix of order n of the matrix

' 0
1
(Ad,) = | 4, 1

X 1

' 0 1
Let y € Z" be such that y + B 'u’ >0, where u’ is the ith unit vector of Z". The
vector z = y + B~ v’ satisfies Bz = By + u’ € Z". Consequently z defines the non-
zero components of an extreme point of Q(c) where ¢ = By + u'; thus, from (ii),
z €EZ".

Therefore B~'u’ = z—y € Z® for i =1,2,...,n and thus the matrix B™! has
integer coefficients. Hence detB and detB~! are integers which satisfy
(det B)(det B™!) = det I, = 1. Thus det B = +1. This proves that A is totally unimo-
dular. (The idea for this much simpler proof is due to Viennot and Dantzig, [1968]).

(i1) is equivalent to (i71). The total unimodularity of A is equivalent to the total
unimodularity of the matrix
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»
I

We now apply (ii) with e={(cpeq ...,60,—bp,—bo ..., —by)q1,92see18m,
—P1y—Pgsers—Py ) a0d the matrix A. Thus, (iii) follows.

To show that this result implies all the characterisations of unimodular matrices
by forbidden structures such as those of Ghouila-Houri [1962] quoted above, or those of
Camion [1965], etc., the reader is referred to the excellent exposé by Padberg [1988].

Consider a hypergraph H, and its incidence matrix A = ((a;)) (with n rows, m
columns, with no zero rows or zero columns). Let ¢ =(ccqcp) ENT. A

c—matching is a vector y with integer coordinates of the polyhedron

Q(c) ={y/yer™, y 20, Ay <c}
For ¢ =1, a point of Q{c) with integer coordinates is necessarily 0-1 valued, and a

l-matching is nothing but a matching. If we associate with each edge E; an integer

m
d; >0 called the weight of the edge E;, and if Y] d;y; is the total weight of the
J=1
c-matching y, we may ask for the mazimum weight of a c-matching, which we denote
by

N—- nelgz()<d,y> = max{<d,y>/y €Q(c)NN"}
yEQ(e

In particular, if ¢ = 1, d = 1 we have N—max<d,y> = v(H).
For a vector d EN" we may define a d-transversal to be a vector t = (¢1,tg,...,t, )

with integer coordinates of the polyhedron
P(d)={tteR", t >0, A*t >d}.
Defining the cost of a vertex z; of the hypergraph to be an integer ¢; > 0, we may ask

n
for the minimum cost 3 ¢;¢; of a transversal t, which we denote by
i=1
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—~mi s8> = mi 6>/t d
]\tfep(n;l)n<c > = min{<e,t>/A€P(d)NN"}

In particular, N—min<1,t> = 7(H).
A%>1

We may now state, as an application of Theorem 7:

Corollary 1. Let H be a unimodular hypergraph with n vertices and m edges; for
c EN" and d €N, we have

N—max<d,y> = N—min<ec,t>
y€Q(c) teNd)

Proof. If H is unimodular, the maximum of <d,y> for y € @(c) is attained at a point
¥o having integer coordinates; the minimum of <e,t> for t € P(d) is attained at a
point ty having integer coordinates. The duality theorem of linear programming shows
that

<d,yO> = <C,t0>.

This implies the equality stated in Corollary 1.

Corollary 2. A unimodular hypergraph H of rank r can be strongly coloured with r

colours.

Proof. Let A = ((a;)) be the incidence matrix of H, where the rows represent the ver-
tices and the columns represent the edges. An n-dimensional vector z with coordinates
0 or 1 is the characteristic vector of a set § C X, and |SﬂEj| is equal to the scalar
product <z,a;>.

There exists a set S which meets each edge E; at most once, and exactly once
each edge with lE'j | = r, if and only if there exists an integer solution to the following

system of inequalities:
0<2z<1
0<<z,a;><1 ifE;€EH
1< <z,2;><1 ifE; €H, and [E;|=r.

11 1 . . ., . .
The vector z = (T’T’ . ,7) satisfies all these inequalities, so there exists a solution

in integers (and hence in 0,1), which is the characteristic vector of a set S of vertices
defining the first colour. Repeating the procedure with the unimodular hypergraph
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Hy_g, or rank r—1, define the second colour S', etc. When we arrive at a hypergraph
of rank 1 we have defined a strong colouring (5,5',...) of H with r colours.

Remark. A polynomial time algorithm to test whether a matrix is totally unimodular
results from the work of Seymour [1980], and from the extensions of Bixby, Truemper,
Tamir, etc. Indeed, the problem of testing if a matrix A is totally unimodular is
equivalent to that of testing if its associated matroid M(A) is regular. (For an exposi-
tion of the algorithm, cf. Bixby [1982]). For good algorithms to find maximum match-
ings in certain classes of unimodular hypergraphs, cf. Conforti, Cornuéjols [1987].

3. Balanced Hypergraphs

A hypergraph is said to be balanced if every odd cycle has an edge containing
three vertices of the cycle. A hypergraph is said to be totally balanced if every cycle of
length > 3 has an edge containing three vertices of the cycle.

In other words, H is balanced if and only if its incidence matrix contains no

square submatrix of the form:

10 0 01
1 0 0
01 0 0
Blc=
. )]
. 10
o... 0 1

where k 2> 3 is odd. Similarly H is totally balanced if and only if A contains no sub-
matrix By with & > 3.

A totally balanced hypergraph is thus balanced; it is easy to see (by considering
all the cycles) that the hypergraphs in Figures 9 and 10 are balanced.

Proposition 1. Every partial subhypergraph of a totally balanced hypergraph (resp.
balanced) is totally balanced (resp. balanced).

Indeed, if H has A as its incidence matrix, a partial subhypergraph has a subma-
trix A’ of A as its incidence matrix; then if A’ D B, we must have A D By.

Proposition 2. The dual of a totally balanced (resp. balanced) hypergraph is totally
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f

Figure 9. Balanced hypergraph (strongly unimodular).

— +

i}

Figure 10. Balanced hypergraph (not unimodular).

balanced (resp. balanced).

Indeed, if H has A as its incidence matrix, the dual H* has for its incidence
matrix the transpose A* of A. Then if A* D B, we must have A D (B }* = B;.

Example 1. Unimodular hypergraphs.
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We shall show that every unimodular hypergraph is balanced. Let H be a unimo-
dular hypergraph which is not balanced: the incidence matrix A contains a submatrix
of the form Bj with k& >3 odd. However the matrix B, is not totally unimodular
(since the hypergraph which it represents is an odd cycle Cj, which cannot be equit-
ably 2-coloured and thus cannot be unimodular from Theorem 3). Thus H cannot be

unimodular: a contradiction.

Observe that the converse is not true: the hypergraph of Figure 10 is clearly bal-
anced, but it cannot be 2-coloured equitably (because of edge E,) and thus is not uni-

modular.

It was precisely in order to generalise some theorems for totally unimodular
matrices that the concept of a balanced hypergraph was introduced (Berge [1969],
[1972)).

Example 2. Strongly unimodular hypergraphs (Crama, Hammer, Ibaraki [1985]).

Another balanced hypergraph, due to Crama, Hammer and Ibaraki [1985] is the
strongly unimodular hypergraph: this is a balanced hypergraph which further admits
no odd cycles having one edge containing exactly three vertices of the cycle and all the
other containing exactly two vertices of the cycle. (For example, the hypergraph of
Figure 9, which contains odd cycles of length 5 and 7, is strongly unimodular). In
other words, H is strongly unimodular if and only if its incidence matrix contains no
square submatrix of the form B, with ¥ >3 odd, nor of the form B, where Bj is
obtained from B, by replacing a 0 by a 1. Consequently we see as before that if H is
strongly unimodular then its dual and its partial subhypergraphs are strongly unimodu-
lar.

The same authors have shown further that in a strongly unimodular hypergraph
H there exists a non-empty set S C X meeting each edge of H which is not a loop in 0
or 2 vertices. In Figure 9 we find for example the set § = {a,b,c,d}. We may show
that H is unimodular as follows: consider such a set S; then in Hy_g (which is also
strongly unimodular) consider such a set Sy; then in Hy_g_g, such a set Sz ete. Each
subhypergraph Hg, being a bipartite multigraph we can colour it equitably with two
colours, red and blue. When all the vertices of H have been coloured, the blue set and
the red set constitute an equitable 2-colouring of H. Thus from Theorem 3, H is uni-

modular,
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Example 3. Hypergraph of neighbourhoods.
Let Ty be a tree on X = {z,%y,...,7, }; denote by plz;,z4] the (unique) path whose

extremities are z; and z;, and denote by d(z; ,%;) the distance between z; and x;, that
is to say the length of plz;,x;. For p >0 we define the neighbourhood centred at
a € X of radius p to be the set

T = {z/x€X, d(z,a) < p}
A family H = (T,Ty,...,T},) of neighbourhoods is a hypergraph; we shall show that it is
totally balanced.
Indeed, otherwise there exists an odd cycle, say
0 = (21,171,290, pyeres gy TisThp1 = Z1)s
such that the set
T; = {o/z€X, d(z,0;) < p;}
does not contain z; for j % ¢,0+1.
Since T; N T;4y # (J, we have
d(a;,8i41) < pi + Pisys
d(a;,z;) < 05,
d(a;,zi41) < 05
It is easy to see that in the tree T, at least three of the paths ple;,a;,,] have a

non-empty intersection. Let y €T be such that it appears in, say, ¢{a,aq], ,u[ap,apﬂ],
#lag,a,41]. Suppose further that d(y,z,) > d(y,z,) = d(y,x,).

As y € play,ay), we have either y € play,z;] or y € p[z,a,).
Suppose, for example, that y € u[a;,z;]. Then
0 < py —d(ayz,) = py —d(ary) — d(y,z))
<py—d(apy) - d(y,l‘p)
<o - d(al’xp)’

Hence z, €T,. For the same reason, z, €T;. Thus 7', contains at least three vertices
of the cycle o: contradiction.
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Example 4 (Tamir [1985]).

Consider a tree T on X = {z,,%g,...,2,} and let § CX with |S|=4%k. We may
generalise the example 8 by considering for every vertex z €X the sequence
0=dj <df <£dj < --- <dj of distances from z to the different elements of S.
Consider the minimal subtree T; of T containing 2 and the elements s €S with
d(z,s) < df; for every integer p with df_; < p < df denote by E(z,7,p) the set of ver-
tices y of the minimal subtree T; which satisfy d(z,y) < p. Tamir [1985] showed that
the hypergraph (E(z,i,p)/z2,p) is totally balanced.

If § =X we obtain thus the hypergraph of neighbourhoods (Example 3). If
S = {z,} we obtain the hypergraph of paths of an arborescence rooted at z,.

Example 5. Composition of two totally balanced hypergraphs (Lubiw [1985]).

Given two hypergraphs H = (E|,E,,....E,,) and H' = (F|,Fy,...,F,) on a set X,
the composition hypergraph Hp is a hypergraph whose vertices f; represent respec-
tively the edges F; € H' and whose edges are the sets E_j = {/;/F;NE;#}. In order
that Hg be a hypergraph on H' we suppose further that each F; meets at least one E;
and each E; meets at least one F;.

E,=F,
A
~ ™~
1 2 3 4 5 6
N _ i - AN - AN _ Vr S
E,=F, Ey=F, Es=F,
Figure 11 Figure 12

For example, consider the arborescence T of Figure 11 with H = (£,Ey,E3,0y)
and H' = (F|,Fy,F3,F,). Then H is the hypergraph represented in Figure 12.

Lubiw [1985] showed that if H and H' are both totally balanced then their compo-
sition hypergraph Hp is also totally balanced.

(Note that as in Figure 12, Hy: need not be unimodular, even if H and H' are uni-
modular).
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This theorem generalises a result of Frank [1977] who showed that if H and H'
are two hypergraphs of paths of an arboresence then Hpy is totally balanced; it also
generalises a result of Tamir [1983] who showed that if H and H' are two hypergraphs
of neighbourhoods, then Hpy: is totally balanced.

Theorem 7. A hypergraph is balanced if and only if its induced subhypergraphs are

2-colourable.

Proof.

1. To show that the condition is necessary it is enough to show that a balanced

hypergraph is 2-colourable.

Indeed, otherwise, there exists a balanced hypergraph H of minimum order with
x(H) > 3. For each vertex z¢, the subhypergraph induced by X—{z,} has a 2-colour-
ing (S¢,53), since H is minimal. As H is not 2-colourable, this implies that x, appears
in two edges of H of cardinality 2, say [zo,y] and [zq,y'], with y €8, v’ € Sh. Thus
the graph G formed by the edges of H of cardinality 2 satisfies dg(z) > 2 for every
x €X. Since G is a balanced hypergraph, it is a bipartite graph. Let G; be a con-
nected component of G (which is of order at least 3 from the above) and let z, be a
vertex of G which is not an articulation point (there must exist at least two of these
since G is of order > 3). The subhypergraph of H induced by X—{z,} has a 2-colour-
ing, say (81,51). Then z, can be coloured in such a way that no edge of @, is mono-
chromatic. Thus every edge of H contains two colours if it has more than two ele-
ments, and contains also two colours if it has two elements: this contradicts x(H) # 2.

Observe that the existence of a 2-colouring of H also follows from the difficult

theorem of Fournier-Las Vergnas (Theorem 1).

2. We shall show that if for every A C X the subhypergraph H, is 2-colourable,
then H is balanced. Indeed, otherwise there exists an odd cycle
(a1,E1,00,E 0,895 41,E 054 1,8;) where no edge contains three of the a;'s. The set
A = {a,,a4,...,0054,} induces a subhypergraph H, which contains the edges of the

graph Cy, 1, and consequently H, is not 2-colourable, a contradiction.
Corollary. A hypergraph of rank <3 is unimodular if and only 1 f it is balanced.

Proof. If r(H) <3 and if H is balanced, then there exists a 2-colouring of H, and

this 2-colouring is necessarily equitable. The same is true for every subhypergraph of
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H. Then, from Theorem 3, H is unimodular.
Theorem 8. A balanced hypergraph H has a good k-colouring for every k > 2.

Proof. Let H be a balanced hypergraph on X. For k = 2, the statement is proved by
Theorem 7. For k > 2, consider a k-partition (5,,5,...,5;) of X; for each E €H,
dencte by k(F) the number of classes of this partition which meet E. If every edge
E €H satisfies k(E) = min{|E |k}, the partition is a good k-colouring of H. Suppose
that there exists an edge Eo with k(E,) < min{|Eo|,k}. Since k(Ey) < |Eq| there
exists an index p such that ISpﬂEol > 2. Since k(Ey) <k there exists an index g
such that |SqﬂE0| = 0.

The subhypergraph of H induced by S, U S, is balanced (Proposition 1): thus it
admits a 2-colouring (§p,§q). Set §; = S, for i # p,g. Then (5,,5,, ...,5)is also a
k-partition of X, and the number E(E) of classes of this partition which meet an edge
E satisfies

k(E)>k(E) (E €H)

IC(EO) = k(Eo) + 1.

This transformation of the k-partition allows us to reduce min{|E |k} — #(E) for each
E € H, and repeating as often as necessary, we obtain a good k-colouring of H.

Corollary 1. A balanced hypergraph has the coloured edge property.
Indeed, the dual hypergraph H* of a balanced hypergraph H is of rank
r(H*) = A = A(H). Setting ¥ = A in Theorem 8 we obtain a strong colouring of the

edges of H in A colours. Thus ¢(H) = A(H).

Applied to bipartite multigraphs (cf. Graphs, Chapter 12, Theorem 2), this state-

ment gives Konig’s theorem on edge colouring.

Corollary 2. A balanced hypergraph H contains k =g161;1{[E| pairwise disjoint

transversal sets.

It is sufficient to apply Theorem 8 with k = IrEmgIE |
€
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Applied to the dual of a bipartite graph, this gives Gupta’s theorem [1978].

Corollary 3 (Las Vergnas). Let H = (E\,E,,...,E,,) be a hypergraph; denote by k the

least integer greater than or equal to
1
min —7 |U E;
5 vl IfEJ il
this minimum being taken over the non-empty subsets J of {1,2,...,m}. Then H has a

good k-colouring for every k < k.
Indeed, by definition of kg, for every J # (),

J (ko—1 E;
U kko) < [y 751

Let k£ < ky; the condition in the generalisation of Theorem 3 is satisfied for k.
Hence there exists a k-uniform hypergraph H' = (E{,Ej},...,E!) without cycles such
that E! C E; for every . As H'is also strongly balanced, Theorem 8 shows that there
exists a good k-colouring of H', which is also a good k-colouring of H. Q.E.D.

Theorem 9 (Berge, Las Vergnas [1970]). A hypergraph is balanced if and only if
every partial subhypergraph has the Konig property.

Proof.

1. If v(HY) = 1(HY) for every H' CH and A CX, then H is balanced, since
otherwise there exists an H) isomorphic to an odd eycle Capyyq; as V(Coryy) = k and
7(C1441) = k+1, a contradiction follows.

2. If H is balanced, H), is also balanced. Thus it suffices to show that a balanced
hypergraph satisfies v(H) = 7(H).

Set 7(H) =1t. Consider a partial hypergraph H' with 7(H') = ¢, and such that
H' is minimal with this property. We shall show that H' consists of pairwise disjoint
edges, which implies

V(H) 2 v(H") = 7(H") = 7(H) 2 v(H);
consequently v(H) = 7(H), and the proof will be complete.

Suppose (to prove by contradiction) that two edges E},E} of H' satisfy
EiNE)#; let 2€E; N E,. There exists a transversal T, of H' — E| with
[Ty]| = t—1, and there exists a transversal T, of H' — E} with |1p]=t—1. Let
Q=T\NT, R =T,—Q, S=R, URyU {ze; The subhypergraph H% is
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balanced and thus has a 2-colouring (5,,55). One of the colour classes, say S, satisfies
1811 < IR}, since |S|=2|R,|+1. Observe that E| meets § in at least two points
(one of them being z,), so E} meets Sy, and thus meets §; U Q. Similarly E} meets
S, U @ (cf. Figure 13).

Figure 13

For i # 1,2, either the edge E} of H' meets @ or it meets By U R, in at least two
points, in which case E! meets §;. Thus $; U Q is a transversal of H', which implies
that

rH)<BuRI< IR+ Ig|=1t—1
A contradiction follows.

(This new proof is due to Lovdsz).
Corollary 1. Every balanced hypergraph has the Helly property and is con formal.

Proof. Let H be a balanced hypergraph and let H' C H be an intersecting family.
Since H is balanced, Theorem 9 shows that 7(H') = v(H') = 1, and so there exists a
vertex common to all the edges of H'. Thus H has the Helly property. Since the dual
of a balanced hypergraph is balanced, we deduce that H is conformal.

Corollary 2. A hypergraph H with m edges and n vertices is balanced if and only if.
for every ¢ €{l,+00}" and each d EN™, we have
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N—max<d,y> = N—min<e,t>.
y€Q(c) tEP(d)

Proof. 1. Let H = (E,E,,....E,,) be a hypergraph for which this equality holds; con-
sider a partial subhypergraph HY, and let
¢, =1 ifz €EA;
¢; =+oo ifz; & A;
dj=1 if E; €H";
d;j=0 fE; ¢ H.
For ¢ = (¢},695..44¢, ) and d = (d,dy,...,d,, ), we have:

1Yy = N— d,y> = N—min<e,t> = r(H}).
v(H) yE&th y> tepr(r;z)n« (H4)

Thus, from Theorem 9, H is balanced.

2. Let H be a balanced hypergraph; it suffices to show that for d €N™, we have:

N—maz<d,y> = N—min<L,t>
yeQ(y) tEP(d)

If we associate with each edge E; of H an integer d; = O called its “‘weight” then
it is enough to show that the maximum weight of a matching is equal to the minimum
value of a d-transversal. For an integer A > 0, an edge E = {z,2y,...,7, } will be dupli-
cated X times if we replace each z; €E by a set X; = {z},z2,....z}} of X additional ver-
tices, and the edge E by \ new edges E! = {zll,:vgl,...,a:,l}, E?= {mf,a:g,...,z,z} ete. We
say that the edge E is duplicated O times if we remove the edge E from H.

In each case, the hypergraph so obtained is balanced. For d = (d,,d,,....d,,),
denote by HU the hypergraph obtained from H by duplicating the edge E, d; times,
the edge E, d, times, etc.

It is easily seen that

N—maz<d,y> = v(H

[ aas<dy (H'")

N—min<1,t> = r(H)
teP(d)

Since H!¥ is a balanced hypergraph, these two coefficients are equal, which
achieves the proof.

Theorem 10 (Fulkerson, Hoffman, Oppenheim [1974]). Let H be a balanced hyper-
graph with m edges and n vertices. For each ¢ €EN", we have
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N—max<l,y> = N—min<e,t>
y€Q(c) ter(1)

(*) Proof. We shall assume some knowledge of the theory of linear programming.
1. We shall show that the program:

8] minimize <e,6> for t € P(1)

has an integer solution.

From Corollary 2 of Theorem 9, the maximum of <d,y> for those y in the
polyhedron @ = {y/y€R™, y >0, Ay < 1} is attained at a point y, with integer coor-

dinates, indeed 0,1 coordinates since Ay, < 1.

Since this is true for all d €N™, it is easy to see that all the extreme points of @
have coordinates 0,1 (cf. for example Lemma 1 of §6). The hyperplane
{y/y€B™, Ay = 1} being a supporting hyperplane of the convex polyhedron @, all the
extreme points of the polyhedron Q= {y/yeR™,y >0, Ay = 1} have 0,1 coordi-
nates. Let 2 be an extreme point of the polyhedron {y/y€R™,y >0, Ay > 1}; this is
also an extreme point of the polyhedron obtained by eliminating the inequalities of
Ay > 1 which are strict. Thus z has integer coordinates. Applying this result to the
dual H* of H, which is also balanced, we see that the extreme points of the
polyhedron

P(1) = {t/t€R", t >0, A* > 1}

have integer coordinates, whence the result.

2. We shall show that the program:
(2) maximise <1,y> for y €Q(c)
has a solution with integer coordinates. (This result, combined with the result of part
1 above immediately implies the equality in the statement of Theorem 10.} We shall
argue by a double induction, on £c¢; = X and on m; the result is clear if A =1 or if
m = 1.

Let z = (zy,29,...,2y,) be a solution to the program (2) with fractional coordinates.
If z; =0, it suffices to apply the induction hypothesis with m —1 to the submatrix of A

obtained by eliminating the jth column to show that the program {2) has a solution

with integer coordinates. Thus we may suppose that z; >0 for every j.

By virtue of part 1 and the duality theorem, we know that <1,2> =k is an
integer. Suppose that the ¢th row vector a' of the matrix satisfies <z,a'> <e. If
<z,a'> <¢; —1 we may apply the induction hypothesis with A—1 to show the

existence of an integer solution Zz of the programme (2) with <1,2> = <1,2> = k.
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Hence we may suppose that <z,a'> = ¢; —1 + € with 0 < e < 1. Clearly there exists
a vector Z €P(cq,CopensCi—lyunne,) with Z <2z, <1,2> =k —e. By the induction

hypothesis with A—1, there exists a vector z with integer coordinates such that
720, AZ < (Crrmsli=lymty) <€, <1,7>>k — €.

Hence <1,z> = k and the demonstration is done.

Thus we may suppose <za'>= ¢; for every ¢, and z; > 0 for every j. By virtue
of the principle of complementary slackness, each optimal solution X of the dual pro-
gram:

3) minimise <e¢,x> for x € P(1)

satisfies A*X = 1, X >0, <e,Xx> = k. Hence z and X are optimal solutions respec-
tively of the dual programs:

(4) minimise <1,y> for y €Q(c);

(5) maximise <e,x> for x € {x/xER", x >0, A*x <1}.

Furthermore, <1,z> = <¢,X>.

As we have seen in part 1, there exists a vector z with integer coordinates such
that 2 >0, Az >¢, <L,z>=k. If AZ = ¢ the demonstration is done. Suppose
therefore that <@,a'>>¢; for an ¢ <n. Since z; >0 for every j, there exists an €
with 0 < € <1 such that z; > (1—¢)z; for every j. Set

w = %[z—(l—e)i]

Then z = (1—€)z + ew, w 2 0, <IL,w> = k. As Az = ¢ and AZ > ¢, we deduce
that Aw <c¢. Further, since there exists an ¢ such that <z,a‘>> ¢; we have
<w,a'> < ¢;. Thus w is a solution of (2) with <w,ai>< ¢; for some 7. Applying the
induction hypothesis once more, to show the existence of a solution w of the program

(2) with integer coordinates, we complete the proof.

Remark. Let H be a balanced hypergraph. From Theorem 10 and Corollary 2 of
Theorem 9, we see that many values of ¢ and d satisfy
N—maz<d,y> = N—min<c,t>
y€eQ(c) teP(d)
Nonetheless, this equality is not satisfied for all ¢ and d for a balanced hypergraph (as
it is for unimodular hypergraphs).
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Consider for example the balanced hypergraph of Figure 12, with ¢ = (3,2,2,2) and

d = (2,1,1,1). The vector t = (-;—,-;—-,-é—,%) is a fractional d-transversal since

2 tl' Z dJ (-7 = 112$3)4)'
[i€E;

The vector y = (1,-;-,—;—,-;-) is a fractional c-matching since
yJ S € (2 = 1,2,3,4).
i/fi €E;

We have <d,y> = <c,t> = % and the minimax equality does not hold, since
N—maz<d,y> < 9 < N—min<1,t>.
y€Q(c) 2 teP(d)

Application. Location problems.

Given a tree T on a set X = {r,,T9,...,T, }, We may interpret the vertex z; as a
possible centre capable of distributing consumer goods to all vertices x such that
d(z,z;) < p;, where p; is a given integer > 0. Further, each vertex z; has an annual
cost ¢; of maintenance of a distribution centre. The problem consists of choosing a set
of distribution centres, capable of serving all the clients, for which the total cost is as
small as possible. If H is the hypergraph whose edges are the T; = {z/d(z;,z) <p;}
then we require a minimum cost cover of H, that is to say for the dual H* a minimum
cost transversal. From Theorem 10, we have

N—maz<ly> = N—min<c,t>.
y€Q(c) ter(1)

Thus the minimum cost of a cover of H is equal to the maximum cardinality of a fam-
ily of vertices of H which has at most ¢; representatives in the edge E; for
J=1.2,.,m. Polynomial time algorithms to determine optimal locations are due to

Tamir [1980], Kolen [1982], Farber [1984], Lubiw {1984).

To recognize whether a hypergraph is totally unimodular and to determine an
optimal d-value ¢-matching it is useful to consider a particular order relation on the
set of d-dimensional vectors (Lubiw [1974]). This relation, which we shall call reverse

lexicographic order and denote by <, is defined by
(TI,TQ,...) 2 (81,82,-..)

if the largest index k& such that r, # s, satisfies r, < s;.
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Lemma 1. In every 0,1 matriz the rows and columns can be simultaneously

arranged in reverse lexicographic order.

Proof. Consider a 0,1-matrix A = ((a;)) with m columns, n rows. Consider the vec-
tor dy = (dgydgseeslyp4n) Where dp = 33 alh
i+j=k

11 and

are in the wrong order, i.e. anZajl, the matrix A’ obtained by permuting the

If for two indices fy,jo with j; < 7, the column vectors corresponding to a

a .
Jo
columns j, and j, satisfies dy 2dA:. Then, taking the permutation of rows and
columns of the initial matrix A which maximises d4, we obtain a new matrix satisfying

the required conditions.

Lemma 2. If a matrix A = ((a;)) has its rows and columns arranged in reverse lex-

icographic order, and if A conlains a submatriz equal to

iyt
%j, 11

10]=5B

ig ig
a]z

with 1) <1y, j) < Jy, then in the hypergraph H the vertices z;,r; and the edges

E.

i»Ej, appear in a cycle of length > 3 with no edge containing 8 vertices of the cycle.

(It is easy to show with an inductive construction that the given submatrix occurs
with an unbalanced cycle).

Theorem 1 (Hoffman, Sakarovitch, Kolen [1985], Lubiw [1985]). Let A = ((a;)) be the

incidence matriz of a hypergraph H. The following conditions are equivalent:

(i) the matriz A with its rows and columns arranged in reverse lexicographic

order contains no such submatriz B;

(ii) it 1s possible to place the rows and columns of A in an order such that A
contains no submatriz B;

(iii) the hypergraph H is totally balanced.

Proof.
(i) implies (7i). Clear.
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(i) implies (ii1). Indeed, if H is not totally balanced, there exists a cycle

(:Bi‘,Ejl,fl;‘,'z,...,Ejk,w,'l)

with & 2> 3 where each edge contains exactly two vertices of the cycle. The submatrix
of A generated by the rows 7,7y,... and the columns j;,J,,... contains exactly two 1’s in
each row and in each column (whatever the order of their indices); the two columns
which have a 1 in the top row, together with the top row and the row which has a 1
under the first 1, gives the matrix B: this contradicts (ii).

(ii1) implies (i). From Lemma 2.

Remark 1. Condition (i) provides an effective algorithm to determine whether a
hypergraph H is totally balanced (Lubiw [1985], Hoffman, Sakarovitch, Kolen [1985]).
This algorithm appears to perform better than other polynomial algorithms which had
previously been proposed (Fagin [1983], Farber [1983], Anstee and Farber [1984])).
Observe that this recognition problem is of practical interest in the study of database
schemes (Fagin [1983]).

Remark 2. Hoffman, Sakarovitch and Kolen called a 0,1-matrix greedy if it satisfies
condition (ii), and they showed that a maximum d-valued c-matching may be obtained
by a greedy algorithm for every d € N™ and every ¢ EN" if and only if the matrix A
is greedy. This is thus a characteristic property of totally balanced matrices. More-
over, it indicates how to obtain a minimum c-valued d-transversal in polynomial time

when d €N™, ¢ EN".

Remark 3. Farber [1982], [1985] independently obtained logically equivalent results
by a different approach relating to Graph Theory. Recall that a graph G is said to be
triangulated if every cycle of length > 4 has a chord (cf. Graphs, Chap. 16 §3). A sun
of G is a subgraph induced by a set S = {a;,a0,..s@,01,05, - - + ,bx} With k& >3 which
is the union of the complete graph on {a,,ag,...,ax} and the cycle (a;,b;,a9,bg,...,0¢,a;).
Farber showed that for a graph G on X, the following conditions are equivalent:

(1) G is triangulated and sun-free;

(ii) each subgraph G’ of G contains a vertex z such that the family
({yUTg(y)/y Elg(z)) is totally ordered by inclusion;
(iii) the vertices z; can be indexed in such a way that the adjacency matrix of

G contains no submatrix B;
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(iv) the sets {z} U I'g(z) form a totally balanced hypergraph on X
) the maximal cliques of G form a totally balanced hypergraph on X.

4. Arboreal Hypergraphs
A hypergraph H is arboreal if:

(1) H satisfies the Helly property;
(i) each cycle of length > 3 contains three edges having a non-empty intersec-
tion.

A hypergraph H is co-arboreal if it is the dual of an arboreal hypergraph, that is

to say ift
" H is conformal;
(ii") every cycle of length > 3 has three vertices contained in the same edge of

H.

Example. A totally balanced hypergraph is both arboreal and co-arboreal. Indeed,
from Corollary 1 of Theorem 9, such a hypergraph H satisfies (i) and (i'). Further it is
clear that H satisfies (ii) and (it’). In fact, a hypergraph is totally balanced if and only
if all of its induced subhypergraphs are arboreal.

Observe that the hypergraph of Figure 14, whose edges are abd, bed, acd is arbo-
real, but it is not totally balanced, since abe are the three vertices of a cycle, and no
edge contains the three.

Theorem 2. A simple hypergraph is the family of mazimal cliques of a triangu-
lated graph if and only 1 f it 18 co-arboreal.

Proof. 1. Let H be a simple co-arboreal hypergraph. As H is conformal from (i'), it
is the hypergraph of maximal cliques of G = [H],, the 2-section of H. Further, G is
triangulated as otherwise it would contain a cycle of length > 4 without chords, which
corresponds in H to a cycle with no edge containing three vertices of the cycle: a con-
tradiction with (ii").

2. Let H be the hypergraph of maximal cliques of a triangulated graph G. Then
H is conformal and satisfies (i'). Further, a cycle = [a,b,...] of G has three vertices
contained in the same edge of H if its length is 3 (since H is conformal). If the length
of p is >4, the partial subgraph G, — [a,b], which is connected, has a shorter path
between a and b of the form [a,2,b] (as G, is triangulated) which shows that the three
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Figure 14. Arboreal hypergraph (not totally balanced).

vertices a,b,r of p are contained in the same edge of H. Thus (ii’) holds. Thus we

have shown that H is co-arboreal.

Corollary. A hypergraph H is arboreal if and only if H satisfies the Helly property
and the representative graph L(H) is triangulated.

Indeed, we have seen (Proposition 1, §8, Chap. 1) that if a hypergraph H satisfies
the Helly property, a graph G is the representative of H if and only if H* is the hyper-
graph of the maximal cliques of G (with, perhaps, other cliques of G). From Theorem
12, this graph G is triangulated if and only if H* is co-arboreal, i.e. H is arboreal.

Lemma. Let H be an arboreal hypergraph without loops; there exists a vertex x

such that all the edges of H contarning xy, have a common vertex yy # xg.

Proof. Let (21,1720, Eqs%y 4150 EpsTpi1) be a path of H with E; N E; = (J if
k=jl>1, z, ¢ E, and Tpy1 & Ep_y. Suppose that it is maximal in length and set
To = ZTpy;- By virtue of the maximality of this path, an edge E\ € H with zy €E),
IE\|# 1, Ey # E, satisfies Ey N E; # (J for some ¢ < p—L.

Assume that ¢ is the largest possible index defined in this way. The edges
EEqi1y-Ep,Ey define a cycle, and as H is arboreal, we must have

E)‘ n (Eanq-H) # @
From the maximality, we have ¢ = p—1, whence E\ N E,_; N E, # J.
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As this is true for every edge E) with zo €E,, |Ey|# 1, the family formed by

E,_y,E, and all the E) is intersecting; then by the Helly property these edges have a

P
common element y,. Further we have yo # x4 since zo € Ep_;.

QED.

Theorem 13 (Duchet [1978], Flament [1978], Slater [1978]). A hypergraph H on X is
arboreal if and only if there exists a tree T on X such that the edges of H induce
subtrees of T.

Proof.

1. Let H be a hypergraph of subtrees of T. We know from Theorem 10, Chap. 1,
that H satisfies the Helly property. Further, a cycle (z{,E,Zg,Ey,....%) of H of length
>3 having no three edges with a non-empty intersection determines a sequence
Wz 1,24 u[wg,T3),... Of paths of T with «; & plz;,x;4,] if 7 >¢+1, which contradicts
z; = z,. Consequently, the hypergraph H is indeed arboreal. »

2. Let H be an arboreal hypergraph on X. We shall demonstate the existence of
a tree T with the required properties by induction on |X |

Let zg,y¢ be vertices of H defined as in the lemma; the subhypergraph H induced
by X = X — {zo} is also arboreal since it satisfies (i) and (ii); thus by the induction
hypothesis there exists a tree TonX satisfying the desired property for H. Clearly
the tree T =T + [zg,yo) satisfies the desired property.

QED.
{This new proof is due to Duchet).

Application. If we represent species of animals at present in existence by the vertices
of a hypergraph, with each edge being a set of species presenting a common hereditary
characteristic, the theory of evolution says that this hypergraph is arboreal.

Observe that for the arboreal hypergraph of Figure 14, the corresponding tree T is
uniquely determined. In general, a hypergraph H may have many corresponding trees;
for a complete description of these trees, cf. Duchet [1985].

To determine whether a given hypergraph is arboreal we shall use an extension of
the concept of the “‘cyclomatic number of a graph” due to Acharya and Las Vergnas.
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Given a hypergraph H = (E,,E,,...,E,,) on X, its representative graph L(H) will
be “‘weighted” by associating with each edge u = [e;,e;] the integer w(u) = lE,-nEjI
which we call its “‘weight”. If F is a partial graph of L(H) without cycles (“forest’ of

L(H)), the weight of F is defined to be w(F) = 3] w(u).
u€l

Finally, we define the cyclomatic number of the hypergraph H to be the integer
m
j=1
where wy is the maximum weight of a forest F' C L(H).
For example, the reader may verify that the hypergraph H of Figure 15 contains a

forest of maximum weight 5 (in fact, F is a tree since L(H) is connected); the
cyclomatic number of H is then y(H) =12 -6 — 5 = 1.

L(H)

Figure 15. A balanced hypergraph, not co-arboreal, and its representative
weighted graph.

The determination of the cyclomatic number pu(H) is an easy problem, as it reduces to
the classical problem of the determination of a maximum weight tree in a graph with
(positive) weighted edges; the complexity of various algorithms (e.g. Kruskal, Solin,
Hell, etc.) has been studied. Recall, for example, Kruskal's greedy algorithm: form a
forest edge by edge, each time taking the edge of greatest weight which will not create
a cycle with the edges already chosen.

Remark. If H is a linear hypergraph of order n with m edges and p connected



190 Hypergraphs

components, then each edge of L(H) is of weight 1 and the maximum weight forest F
has weight w(F) = n(F) — p(F) = m—p. Then

wH)=Z|E;|—n —m +p.
In particular, if H is a simple graph, we obtain
yH)=2m —n—m +p=m —n +p.
We thus recover the expression for the cyclomatic number of a simple graph.

If H has only one edge E,, then
uH) = |E,| - |E\|=0.
If H has just two edges E, and Ej, then
wH) = |B,|+ || = |E\UE, |- [E\NE;|=0.

If H has more than two edges we have u(H) > 0, as we see immediately (by induction
on the number of edges) with the following proposition:

Proposition 1. Let H be a hypergraph with more than two edges. Then there exists
an edge E| of H such that w(H) > w(H—E,); further there exists an edge Ep such
that

WH) — W(H=E;) > [E|| - [E\NE,| - lEl_'jE‘JlEj |>o0.

Proof. Let ¢, be a vertex of degree 1 of the maximum weight forest FF C L(H). Let
e, be the vertex adjacent to e, in F. The partial hypergraph H' = H — E; obtained
by omitting the edge E, corresponding to e; satisfies

wi 2> w(F—leyeq]) = wy — |[E\NE, ]
Hence:
WH) — wH') = E|B;| - JJE;| — wy — (IEE; |- B, ])
+ (JUE; |—|E1—jl;JIEj )+ wy
> B, |- lEl_j*lEjl + wyp — wy
> B |- IEI_}.E‘JIEjl_ [E\NE,[>0

Q.E.D.

Theorem 14 (Acharya, Las Vergnas [1982]). A hypergraph H satisfies u(H) =0 if
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and only if H is co-arboreal (i.e. from the corollary to Theorem 12, if H is the hyper-
graph of cliques of a triangulated graph.)

Proof.
1. Let H be a co-arboreal hypergraph on X. We shall show that u(H) =0 by

induction on § |E; I
J=1

- Ity IEj | = 1 the hypergraph has a single edge, which is indeed a loop, so

wH)=Z|B;| - X|-wg=1-1-0=0,
- IfZlEj|22, consider two cases.

Case 1: The hypergraph H has a vertex x; of degree 1. The subhypergraph Hof H
induced by X — {z,} satisfies

WH) = (B |B;|-1) — (n—1) — wy = p(H).

The hypergraph H is also co-arboreal by the axioms (i) and (ii’). Since

3 |E| < 3 |E| we have, by the induction hypothesis, u(H) = 0, hence p(H) = 0.
EeH EeH

Case 2: The hypergraph H has two edges E; and E, with E; C E,. The partial
hypergraph H' = H—E satisfies wy = wp — lE'l | from Kruskal's algorithm, whence

wH) = C|E;-IE, ) — n — (wyg—|E,|) = w(H).

As H' is co-arboreal from axioms (i) and (ii'), and as ¥} |E'| < 30 |E | we have
E'eH’ EeH

uWH) =0
by the induction hypothesis, hence p(H) = 0.

We are necessarily in case 1 or case 2, since H is the hypergraph of cligues of a
triangulated graph (Theorem 12) and we know that a triangulated graph has a vertex
which appears in only one maximal clique (cf. Graphs, Chap. 16 §3). The proof is thus
complete.

2. Let H be a hypergraph with u(H) = 0. We shall show by induction on the
number of edges that H is co-arboreal.
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We may suppose that H has at least two edges (otherwise the result is clear);
from Proposition 1, there exist two edges E| and E, such that

0= p(H) > wH-E)) + |E\| - [E\NE;| - lEl—jaJlEjl
> WH-E;) + |E,| - |E\nE;| — |E\—E,|
2 WH—E,) 2 0.

We thus have equality throughout, and in particular,
(1) WH) = p(H—E,) =0

(2) IEl—J_ylEj I = ‘EI-E2 I

By (1) and the induction hypothesis, H—E; is the family of maximal cliques of a tri-
angulated graph G' (plus, perhaps, other non-maximal cliques); the graph G obtained
from G’ by joining pairs of vertices contained in E; is also triangulated, because of (2).
Thus the hypergraph H is co-arboreal.

Q.ED.

Corollary 1. A hypergraph H is arboreal 1 f and only if u(H*) = 0.

The recognition of arboreal hypergraphs is thus simple, as it reduces to the prob-
lem of maximum weight trees.

Corollary 2 (Lovdsz’ Inequality). Let H = (E,E,,....E,,) be a coarboreal hypergraph.
Set

8 = max lE,vnEJ- l
1% ]

Then we have:

M B(IE ) <n-a.

j=1
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Indeed, as H is connected, the maximum weight forest F' C L{H) is a tree, and satis-
fies

w(F) < 8(n(F)-1) = sm—s
whence

0=y,(H)=ZlEj|—'n —wF)2Z|E;]—n —sm +s.

The inequality (1) is thus satisfied.

Remark. Inequality (1) was demonstrated by Lovdsz [1968] in the case where H has
no cycles of length > 3 and where 8 = 2; it was studied by Hansen and Las Vergnas
[1974] in the case where H has no cycles of length > 3 and where s > 2. As has been
noted by Acharya [1983] inequality (1) is satisfied in lots of other cases; for example,
for the hypergraph H of Figure 15 we have s = 2 and

Y(|Ejl-2)=2<n-—2=4

Thus inequality (1) is also satisfied. Zhang and Li [1983] have shown that (1)
holds also if H has no odd cycles and if every cycle has two vertices contained in at
least two common edges.

5. Normal Hypergraphs

We say that a hypergraph H is normal if every partial hypergraph H' has the
coloured edge property, that is to say

q(H') = A(H') (H'CH).
Example 1. A balanced hypergraph is normal. Indeed, we have seen that every par-
tial hypergraph of a balanced hypergraph is also balanced, and that every balanced
hypergraph has the coloured edge property (Corollary 1 to Theorem 8).
Note that the converse is not true: for example, the hypergraph H of Figure 16 is
normal, but it is not balanced. In fact, it was in order to generalise results on balanced
hypergraphs that Lovdsz {1972) introduced the concept of a normal hypergraph.

Example 2 (Shearer [1982]). The hypergraph of a simply connected polyomino is nor-
mal.

Theorem 15 (Fournier, Las Vergnas [1972]). Every normal hypergraph is 2-colour-
able.
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Figure 16. A normal hypergraph (not balanced).

Indeed, a normal hypergraph H cannot contain an odd cycle
(z1,E1,29,E s Eop 4 1,%1) such that H' = (E,E,,...Epp,1) is of maximum degree
A(H') = 2, as this would imply ¢(H') > 3. From Theorem 1 we deduce that x{(H) < 2.

We shall now establish the fundamental result of this chapter, Lovdsz’s Theorem.

As a preliminary we shall prove the following lemma:

Lemma. Let H = (E\,...,E,,) be a normal hypergraph on X. If E,,,| s a subset of
X equal to E,, the hypergraph H' = H + E,, ., 18 also normal.

Proof. It suffices to show that g(H') = A(H").

Case 1: The set E;, contains a vertex z with dgy(z) = A(H). In this case,
A(H") = A(H) + 1, so0

A(H') < q(H') < q(H) + 1 = A(H) + 1 = A(H')
We thus have equality throughout, and ¢(H') = A(H').

Case 2: The set E; contains no vertex z with dy(z) = A(H).

Set A(H) = A, and consider an optimal colouring of the edges of H with A
colours; let a be the colour given to the edge E,. Let H, be the family of edges of H
other than E; which receive the colour a. A vertex z with dy(x) = A must necessarily
appear in an edge of colour o other than E|, so A(H—H,) = A—1. Since H is normal

we have
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q(H—Hy) = A(H-H,) = A — 1.

Thus there exists a colouring of the edges of H—H, with A—1 colours, and if we add a

new colour to colour the edges of H, + E,,,; we obtain a A-colouring of H'. Hence
q(H") < A = AH') < q(H).
Thus ¢(H') = A(H').

Theorem 16 (Lovédsz [1972]). Let H = (E\,E,,....E,,) be a hypergraph of order n and

let A be its incidence matriz with n rows, m columns. The following conditions are

equivalent:

) H is normal, i.e. every partial hypergraph H' C H has the coloured edge
property;

(2) every extreme point of the matching polytope
Q ={y/yeBR™,y >0, Ay <1}is a 0,1 vector;

(3) every extreme point of the matching polytope is.integer valued;

(4) ]\{lzér(tgx<d,y> = I\tfaa(nﬁz;n<1,t> for every d EN™;

(5) every partial hypergraph H' C H has the Kdnig property.

Proof.

(1) implies (2). Let z be an extreme point of the polyhedron Q. As z is the solu-
tion of a set of linear equalities with integer coefficients, each coordinate of the vector
z is a rational number: thus there exist integers p,,p9,...,p,, and k >0 such that

kz = (pyPoseeesPrm )+
Let H' be the hypergraph obtained from H by repeating each edge E; p; times.

From the lemma, H' is normal. Further, for z; € X we have

dg(z;) = 3 pj = <a'kz>=k<a'z><k.

Jlz€E;

Thus q(H') = A(H') <k and we may consider a k-colouring of the edges of H' with
colours 1,2,...,k. Set

yi(@) =1 if a copy of E; receives colour o

= (0 otherwise.

The vector y(a) = (y,(a),y2(0), . . . ,#m (@) has coordinates 0,1, and is contained in Q.
Further
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= %(plyp%"-vpm) = %zi) ( )

As the vector z is an extreme point of the polyhedron @ and as y(co) €Q we deduce:
y(1) = y(2) = - -+ =y(k). Then z = y(1) and consequently z is a 0,1 vector, so (2)
holds.

(2) implies (8). Clear.
(3) implies (4). For d €N consider the set
Q= {s/2€Q,z€EN™" ,<d,z> = m;g((d,y>}.
]

As Q@ # (J from (3), and as Q is contained in a facet of the polyhedron Q, there
exists a row vector a'' of the matrix such that
<a'z>=1 (2€Q)
In other words, in H, every maximum d-value matching covers the vertex z; . Set
d} = d;—1if E; appears in an optimal matching and contains x;
= d; otherwise.

It follows that = (d},d},....dl) >0 and that
N—maz<dy>= N—mazx<d,y>. As before, there exnsts a vector d? > 0 satisfying
N—maz<d®y> = N—maz<dly> —1.

Continuing in this way, we arrive at d* such that
N—maz(dk,y> =0.
Thus we have determined a sequence (:z,-l,x,-z,...,:z:,vk) which contains, say, the vertex z,
exactly ¢; times, x, exactly ¢, times, etc.
Observe that the vector t = (t,t4,...,t,) is a d-transversal of H; further
Et =k = N—mQa:r<d,y>
i=1

From the duality theorem in linear programming, t is a minimum value d-transversal,
whence

N-—maz<d,y>=%t¢; = N —maz<l,t>.
yeQ teP(d)

Thus (4) holds.
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(4) implies (8). Let H' C H be a partial hypergraph of H; set d;=1\{E;€H
and d; = O otherwise. The vector d = (dy,dy,...,dy,) satisfies

N—maz<d,y> = v(H'

yeQ(1) Y ()

N—min<l,t>=1(H').
teP(d)

Thus (4} implies V(H') = 7(H'}, whence (5).

(5) implies (1). Let H = (E,E,, ... ,E,,) be a hypergraph on X satisfying (5).
Let H = (EvE,, . .. ,E_m) be a hypergraph on the set of matchings of H where E_]
denotes the family of matchings of H which contain the edge E;. Clearly,
E;NE, = @if and only if E; N E}, # .

As H has the Helly property by virtue of (5), we have

v(H) = A(H)

g(H) = 7(H)
Further

7(H) = q(H)

A(H) = v(H).

As H satisfies the KSnig property, we deduce that g(H) = A(H); for the same reason,
every partial hypergraph of H has the coloured edge property. As we have already
shown that (1) implies (5) we see that v(H) = 7(H), i.e. q(H)= A(H), and (1) fol-
lows.

Corollary 1. A hypergraph H is normal if and only if H satisfies the Helly pro-
perty and L(H) is a perfect graph.

Indeed, if H is normal, it has the Helly property, since from (5) an intersecting
family H' satisfies 7(H')=v(H')=1. Further, as g(H)= A(H), we have
Y(H*) = r(H*), and the 2-section G = [H*], satisfies 7(G) = w(G@). This equality
being satisfied (for the same reason) for every induced subgraph of 7, the graph G is
“perfect” (cf. Graphs, §3, Chap. 16).

Conversely, if H has the Helly property and if G is its representative graph, the

maximal edges of H* are the maximal cliques of G (Proposition 1, §8, Chap. 1). If G
is perfect, then 4(G) = w(G), whence y(H*) = r(H?*), whence ¢(H) = A(H).
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This equality being satisfied for the same reason for every H' C H, the hyper-
graph H is normal.
Q.E.D.

It should be noted that H need not be normal if we do not assume the Helly pro-
perty (cf. for example the hypergraph H, of Figure 8, Chap. 1).

Corollary 2. Every co-arboreal hypergraph is normal.

Indeed, let H be a co-arboreal hypergraph; it satisfies the Helly property, and
L(H) is a triangulated graph from the corollary to Theorem 12. Since every triangu-
lated graph is perfect (cf. Graphs §, Chap. 6), Corollary 1 shows that H is normal.

6. Mengerian Hypergraphs
A hypergraph H is said to be Mengerian if for every ¢ €N" we have

1) N—mazr<l,y> = N—min<e,t>.
yEQ(c) ter(1)

Observe that every balanced hypergraph is Mengerian (by Theorem 10). The converse
is not true: for example a Mengerian hypergraph may have a chromatic number greater
than 2, as does the hypergraph of Figure 17.

Figure 17. A non-bicolorable Mengerian hypergraph.
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Proposition 1. Let H be a Mengerian hypergraph, and let A be a set of vertices con-
taining at least one edge; then the partial hypergraph H/A = (E;/E;CA) 1a
Mengerian.

Proof. Let ¢; >0 be an integer defined for every vertex z; of H/A. Set ¢; = ¢; if z;
is a vertex of H/A and ¢; = 0 otherwise; if P and @ denote the polyhedra associated
with the hypergraph H /A, we have:

(1) N—maz<l,y> = N—maz<l,y>
v€Q(c) v€Q(?)

(2) N—min<e,t> = N—min<c,t>.
teP(1) ter(1)

As H is Mengerian, the numbers (1) and (2) are equal, so the hypergraph H/A is
Mengerian.

Q.E.D.

Proposition 2. Let H be a Mengerian hypergraph, and let A be a set of vertices
meeting all of the edges; then the induced subhypergraph
H, = (E;NA/i <m,E;NA#(J)is Mengerian.

Proof. Let ¢; >0 be defined for every vertex z; €EA. Set ¢; =¢; if z; EA and
& = +oootherwise. If P and Q denote the polyhedra associated with the hypergraph

H, we have

1) N—maz<l,y> = M—maz<l,y>
yEQ(c) VEQE)

(2) N—min<e,t> = N—min<c,t>
teP(1) ter(1)

As H is Mengerian the numbers (1) and (2) are equal. The hypergraph H, is thus

Mengerian.

Let H be a hypergraph, and let A 2> 0 be an integer. We shall say that we expand
the vertex = by X\ if we replace z by X\ new vertices z!,2%,...,z*, and replace each edge
E which contains z by X\ new edges E' = (E—{z}) U {z!}, E2 = (E-{z}) U {=%} - - -.

Expanding the vertex z by X\ = 0 will be taken to mean deleting the vertex = and all
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the edges of H containing z.

Let ¢ = (¢1,¢gy-.,¢n) be a vector each of whose coordinates ¢; is an integer > 0.
The erpansion of H by ¢ is the hypergraph H°® obtained from H by successively
expanding vertex z; by ¢,, z, by ¢,, ete.

Theorem 17. Let H be a hypergraph with m edges and n wvertices. Let
¢ = (e1,CqpsrCy) EN", and let k > 1 be an integer. Then

(1) vp(H®) = max{<1l,y>/y eN" Ay <ke},

(2) 7 (H®) = min{<c,t>AEN" A%t >k1}

(3) 7 *H°®) = max <l,y> = min <c,t>.
y€Q{c) tEeP(1)

Proof. It suffices to show (1) and (2) for the hypergraph H® obtained by expanding
the vertex z; by A = 0 (suppression) or by A = 2 (doubling), i.e. for ¢ = (0,1,1,...,1) or
for e = (2,1,1,...,,1).

Proof of (1) with ¢ = (0,1,1,...,1). Consider a ke-matching ¥ = (§,¥s, . . . ,¥p) of H
of maximum value Xy;. Since y; = 0 for each edge E; containing z;, the vector ¥
determines a k-matching of H of value L§;, whence
v(H®) 2 3 y; = max{<1,y>/y EN" Ay <kc}.
J21
Further, in H® a k-matching y = (y,,¥3ye-s¥m) of maximum value determines in H a
kc-matching of value £y; whence

max{<Ly>/y EN™ Ay <ke} > Ly; = v,(H°).

Combining these inequalities we obtain (1).

Proof of (1) with ¢ = (2,1,1,...,1). Let (§1, s - - - ,¥p,) be 2 maximum value ke-
matehing. In H€ there are two vertices z} and z{ corresponding to a single vertex z,
of H, and the set of edges {E;/j€J} of H containing z, corresponds in H® to two sets
{E!/i€J} and {E}/j€J}; we have
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30 < 2k
ies

Consider a vector
y = (v;/5€{1.2,.,m}~J)(y;/5€J ) (v /i €T)
where
vty =9 (EJ)
Yy <k
ies
Suj <k
jet
This vector being a k-matching of H® we have
m
Vi(H?) 2 Zy; = 3 §; = max{<L,y>/y EN" Ay <kc}.
j=1
Thus (1) follows.

Proof of (2) with ¢ =(0,1,1,...,1). Consider a k-transversal {t,,lg,...,t,) of H of
minimum c-value Y] ¢;. As the vector (¢4,t3,...,t, ) is a k-transversal of H® we have
%]
7.(H°) £ Y t; = min{<e t>AEN" A*t >k1}
inl

Conversely, if (£9,3,...st, ) is & minimum k-transversal of H®, the vector (k,tg,tg,...t,) is
a k-transversal of H, whence

min{<e,t>AEN" A*>k1} < 3¢ = 7, (H).

isl

By combining these inequalities we obtain (2).

Proof of (2) with ¢ = (2,1,1,...,1). Consider an optimal k-transversal (¢,ty,...,t,) of
H with minimum c-value 2¢;+t,+ - +t,. Since the vector (fy,t),to,tz,..0t,) is a
k-transversal of H® we have

T (H) < 2ty+to+ - - - 41, = min{<e,t>/AEN" A*t >k1}.

Conversely, if (t1,t},t2,-st,) is 2 minimum k-transversal of H°, we have t] =t,. Since
the vector (ty,ta,...,t, ) is 2 k-transversal of H, we have
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min{<c,t>AEN" A* >k1} < 26,4+, -+ -+, = T, (H®).

Combining these inequalities we obtain (2}.

Proof of (3). Let k tend to infinity in %rk(Hc) or %uk(m). We obtain 7 *(HC).
Hence (1) and (2) imply (3).

Corollary. Let ¥ be a family of hypergraphs with the Konig property, which
Sfurther satisfy:

HeN, ceN'H) = g ey,

Then every hypergraph of X is Mengerian.
Proof. Clear.

Example 1 (Menger). Let G be a multigraph and let a,b be two vertices of G.
Denote by H the hypergraph on the set of edges of G, having as edges the simple
paths joining @ and b. A transversal of H is then a simple cocycle w(S) of G with
ea€SandbeEX —-S.

Menger’s theorem implies that H has the Kdnig property. Further, expanding a
vertex of H by X 2> 0 becomes replacing an edge of G by A parallel edges: thus H is a
Mengerian hypergraph.

Example 2 (Menger). Let G be a simple graph and let a,b be two non-adjacent ver-
tices. Denote by H the hypergraph on the set of vertices of G different from a,b, and
having as edges the sets of intermediate vertices of simple paths joining ¢ and 4. A
minimal tranversal of H is then a minimal cut-set disconnecting a and b, and Menger’s
second theorem shows that H has the Konig property. Furthermore, expanding a ver-
tex of x by X\ > 0 corresponds to replacing the vertex # in G by an independent set of
X elements, each joined to all the neighbours of . Thus H is a Mengerian hypergraph.

Example 3 (Edmonds). Let G be a multigraph on X, and let S be a subset of X hav-
ing at least two elements. Denote by H the hypergraph on the set of edges of G hav-
ing as edges the simple paths of the form u = [8,a,,89,...,8%,82] Wwith 8,8, €S and
G1,89y..,8y €EX — S. A theorem of Edmonds [1970] shows that H has the Konig pro-
perty. Since expanding a vertex of H corresponds to multiplying an edge of G, H is a
Mengerian hypergraph.
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Example 4 (Edmonds [1973]). Let G = (X,U) be a directed graph, and let a be a
vertex of G which is an ancestor of all the others (a ‘“root” of G). Denote by H the
hypergraph on the set of arcs of G having as edges those arborescences rooted at a
which cover all the vertices of G.

The transversals of H are the sets of arcs of the form w*(S) with a €5, § # X
(i.e. which go from S to X — S§). A theorem of Edmonds [1973] implies that H has the
Konig property. Expanding a vertex of H by A = 0 corresponds to eliminating an arc
of G, and expanding by A > 0 corresponds to replacing it by X parallel arcs. Thus H
is a Mengerian hypergraph.

For the extension of this example by replacing rooted arborescences by forests of
arborescences, cf. Frank [1979].

Example 5. Let G = (X,U) be a directed graph; denote by H the hypergraph on the
set of arcs of G having as edges the cocircuits of G. A theorem of Lucchesi and
Younger [1978] shows that H has the Kdnig property. Expanding a vertex of H by
X = 0 corresponds to contracting an arc of G, and expanding by A > 0 corresponds to
replacing an arc by a path of length A, Thus H is a Mengerian hypergraph.

For further examples, cf. Woodall [1978], Seymour [1977], Maurras [1976]. A
method of proving that these hypergraphs have the Kénig property is, nonetheless,
necessary; general ideas for such a method have been given by Lovdsz [1976] and
extended by Schrijver and Seymour [1979].

Lemma 1 (Hoffman [1974]). Let A = ((a})) be a matriz with n rows and m columns,

with a;- €EN. Let k be an integer 2>1. If the conver polyhedron

P = {x/x€R",A*x>1}, is such that the number lcmeig<c,x> is an integer for every
z

¢ EN", then the extreme points of P have coordinates multiples of %

Proof. Let y = (y;,¥9y---,Y,) be an extreme point of P; we shall show, for example,
that y; is a multiple of % Set e; = (1,0,0,...,0). We show that there exists a vector
¢ €N" such that
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1 < s > = min< 2 >,

W R A

(2) <c+e;,y> = min<c+e, x>.
z€P

Then, the hypothesis will imply that y; = <ct+ej,y>—<c,y> is a multiple of %,

which achieves the proof.
Set I={i/y;=0} and J={j/<a;y>=1} and consider the vector
d = (d,,dy,...,dy ), where
Sai+l ifi €1
jes
d,' = i op o
diay i@l
e

For every x € P we have
<d,x> = Zdil',' = 23:" + Z<n],x> Z IJI
g i€l JeJ
As equality holds for x =y,
<d,y> = min<d,x>
z€P

Further, as the hyperplanes {x/r;=0} for < €I and the hyperplanes {x/<a.j,x>=1}
with § € J completely define the extreme point y, we have also

(3) <dx>><dy> (x#y,x€P)

Suppose that for each integer X > 1, the minimum of <\d-+e;,x> for x € P is attained
at an extreme point z(\) # y; as P has only a finite number of extreme points, there is
an extreme point X such that X = z(\) for infinitely many values of A, that is to say

for infinitely many A we have

<AT> + 25 < <dy>+ +u,

Thus X # y, X €P, and <d, x> < <d,y>, contradicting (3). Hence for some X\ >1
the minimum of <Ad-+e;,x> is attained at y. Since the minimum of <\d,x> is also
attained at y, the vector ¢ = Ad must satisfy conditions (1) and (2), which completes
the proof.
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Lemma 2. Let H be a hypergraph of order n, and let k be an integer 2> 1; the follow-

ing condilions are equivalent:

(1) kT *(H®) is an integer for every ¢ EN",

(2) TH*H®) = —1 ,(H®) for every ¢ EN".

1
k
Proof. It suffices to show that (1) implies (2).

Let A be the incidence matrix of H. The polyhedron
P = {x/x€R" x>0,A*x>1} satisfies the conditions of lemma 1, so each of its extreme

points has all coordinates a multiple of e In particular, the minimum of <e¢,x> is

t
attained at a point of the form x; == To where tg = (£,89,...4t,,) EN". As A¥xy>1

the vector ty is a k-transversal of H and further it has minimum c-value. Thus
%{min<c,t>/t6N",A*t >k1} = %<c,to>
= min<c,x>.
z€P

From Theorem 17, this implies (2).

Lemma 3. Let H be a hypergraph of order n, and let k be an integer > 1. The fol-
lowing conditions are equivalent:

(3) %- Vi (H®) = 7 *(H°) for every ¢ EN";
(4) Vi (H®) = 7, (H®) for every ¢ EN" .

It suffices to show that (3) implies (4).
Indeed, (3) implies condition (1) of Lemma 2, and thus (2); further, (2) and (3)
imply (4).

Theorem 18 (Lovdsz [1976]). A hypergraph H of order n is Mengerian if and only
if for an integer ¢ 2> 0 we have
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1 c
(5) 7 VlH) = UH) (e €F).

Proof. Suppose that for each ¢ €EN" we have (5), that is
min{<1,y>/y EN™ Ay=gc} + g min{<L,y>/y EN" Ay <c}
Let ¢ = gc'; we may write
min{<1,y>/y EN™,Ay <¢*c'} = gmin{<1,y>/yeN™ Ay <qc'}
Hence, for every ¢ EN"

1 1
= VAH®) = = v (H°) = v(H)
q q
From Theorem 1, Chapter 3,
THHS) = lim v (HC) = u(H")
8 —+00 q
From Lemma 3 with k = 1, we obtain v(H®) = 7(H°). Thus H is Mengerian.

Q.ED.

Let H be a hypergraph of order n. We say that the vertex z, is multiplied by an
integer A > 0 if we replace z; by a set X, = {a:ll,a:f,...,.z'{‘} of X new vertices and if we
replace each edge E containing z, by an edge E= (E—{z'l}) U X; multiplication of
x; by A =0 becomes replacement of H by the subhypergraph of H induced by
X—{=}

Let e = (¢,¢9,-.-y¢,) EN". The multiplication of H by ¢ is the hypergraph 7%
obtained by multiplying the vertex z; by ¢, 24 by ¢y, ete.

Remark. If H is balanced then H®) i also balanced. Indeed, for ¢ = (0,1,1,...,1) the
hypergraph ﬁ(c), which is a subhypergraph of H, is necessarily balanced (Proposition 1,
§3). For ¢ =(2,1,1,...,1) the hypergraph H is obtained by replacing the vertex z; by
{z},2"}; it H® cannot contains an odd cycle (a,Ey,a,E,, . . . ,a;) such that no E; con-
tains three g;, then 2} and z! are both vertices of the cycle, and the two edges next to
z} in the eycle also contain z¥, so at least one contains three vertices of the sequence:

a contradiction.



Hypergraphs Generalising Bipartite Graphs 207

In contrast, sf H ts balanced, its expansion H® need not necessarily be balanced.
For example, consider the balanced hypergraph shown in Figure 12, and split the ver-
tex f; into two vertices f{ and f¥: then no edge of the resulting hypergraph contains
three vertices for the following odd cycle:

11,7 {flllv f4}1 f47 {fi,f2vf37f4}3 f2y {fi’,fz}y fil~

We shall study some conditions for the transversal hypergraph to be Mengerian.
Let o(H) be the maximum number of colours for a colouring of the vertices of H such
that each edge contains all the colours. Clearly

o) < min|5; | = s ()

We shall say that H has the Gupta property if o(F*)) = s(H) for all ¢ EN".
For example, the dual of a bipartite graph has the Gupta property, by Gupta's
Theorem [1978].

Lemma. Let H be a simple hypergraph of order n and let K = Tr H be its transver-
sal hypergraph. Then K 18 Mengerian if and only if H has the Gupta property.

Proof. We see immediately that if ¢ €N" we have
1) Tr 1) = (Tr HY.

Further, for every hypergraph H,

(@) o(H) = u(Tr H)

(3) s(H)=1(TrH).

From (1), (2) and (3) we obtain
o(Hy = v(Tr B = v[(Tr HY)
s(H®) = 7(Tr H9) = 7 [(Tr HY]

H has the Gupta property if and only if these two quantities are equal, i.e. if H is
Mengerian.

Theorem 19 (Berge [1984]). Let H be a simple balanced hypergraph; then TrH is a
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Mengerian hypergraph.

Indeed, if H is balanced, the hypergraph HE) is also balanced; thus, from Corol-
lary 2 to Theorem 8, we have a'(ﬁ(c)) = s(ﬁ(")). From the lemma, this implies that
Tr H is Mengerian.

Remark. The converse of Theorem 19 is not true; for example, if H is the dual
hypergraph of K, (Figure 19), then Tr H is the Mengerian hypergraph of Figure 17,
but it is elear that H is not balanced. Nomnetheless, if Tr H' is Mengerian for all
H' C H, then every H' C H has the Gupta property and H is necessarily balanced.

7. Paranormal Hypergraphs
We may generalise Mengerian hypergraphs. Observe first of all the equivalence of
the following properties:
(1) every extreme point of the polyhedron P = {t /A &R" ,t>0,A*t>1} is a vec-
tor with integer coordinates;

(2) min <e,t> is an integer for every ¢ EN";
ter(1)
(3) N-—min<e,t> = min <e¢,t> for every ¢ EN",
ter(1) teP(1}

The equivalence of (1) and (2) follows from Lemma 1 (with £ = 1); the equivalence
of (2) and (3) follows from Lemma 2 (with k¥ = 1). We shall say that a hypergraph H
is paranormal if it satisfies (1) or, equivalently, (2) or (3). (These hypergraphs, which
were first studied by Fulkerson, are also called ‘‘fulkersonian” by Schrijver, or “having
the weak max-flow min-cut property” by Seymour).

If a hypergraph H is Mengerian then it satisfies (3) and is thus paranormal; the
converse is not true, as may be seen in Figure 19: the hypergraph (K,)*, dual of K, is
paranormal but not Mengerian (since 7 # v).

Seymour [1977] conjectured that if a simple paranormal hypergraph cannot be
reduced to (K,)* by means of the operations H/A and H, described in Propositions 1
and 2, §6, then H is Mengerian.

We shall now give some examples of paranormal hypergraphs.

Example 1 (Seymour [1977]). Let G be a planar graph; let H(G) be the hypergraph
whose vertices are the edges of G and whose edges are the elementary odd cycles of G.
Then Seymour has shown that H{G) is paranormal. In contrast, for G = K, which is
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A paranormal non-Mengerian hypergraph.
Figure 18 Figure 19

non-planar, H(Kj5) is not paranormal.

Example 2 (Hu [1963]). Let G be a graph, 8,8',t,t’ four vertices of G, and let H(G)
be the hypergraph whose vertices are the edges of G and whose edges are the simple
paths joining s and &/, or joining t and ¢'. Hu has shown that H(G) is paranormal (a
result known as the “‘two-commodity flow theorem”). The hypergraph H(G) need not
be Mengerian as may be seen from the graph @ of Figure 20 for which H(G) is none
other than the non-Mengerian hypergraph of Figure 19.

Figure 20
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Theorem 20 (Lehman, Fulkerson). Let H be a simple hypergraph and let K = Tr H
be its transversal hypergraph. Then H is paranormal ¢f and only if we have

1) T(HY)r(K°) < <e,w> (c,w EN").

Recall that (1) is sometimes known as the width-length inequality for the following rea-
son: let G be a network flow with a source a and a sink z; if ¢; denotes the ‘“length”
of edge ¢ and w; its “‘width”, the hypergraph H, whose vertices are the edges of G and
whose edges are the paths between a and z, gives us the following interpretation:

T7{K®) = min )] ¢; is the length of a shortest path from a to 2,

EeH{cy
7(HY) = min 3 w; is the width of a smallest cut between a and z.
Tr H; €T

The proof of (1) given by Lehman [1975] is valid for all paranormal hypergraphs

and Fulkerson extended it to matrices with non-integer entries using the theory of

pairs of “blocking” matrices(!).,

Corollary. Let H be a simple paranormal hypergraph; then Tr H is also a paranor-
mal hypergraph.

Indeed, for K = Tr H inequality (1) may be rewritten as
T(K*)r(|Tr K]°) < <w,e> (w,c EN")

Thus K is paranormal.

Remark. If H is Mengerian, the preceding corollary shows that 7+ H is paranormal;
nonetheless Tr H need not be Mengerian: for example the Mengerian hypergraph of
Figure 17 has as its transversal hypergraph that of Figure 19, which is not Mengerian.
If H is balanced we also know that Tr H is paranormal (from Theorem 18). In the case
when H is normal, the hypergraph Tr H need not be normal: for example, the normal

{3) For the matrix proof, cf. Fulkerson {1981]. If A is a matrix G;' >0, a;— real (and not necessarily integer) and such
that no column vector is & convex linear combination of the others, its “‘blocking” matrix B is 2 matrix whose column
vectors are the extreme points of the polyhedron

P = {t EER" t >0,A% >1}

It is easily seen that the matrices A and B play a symmetric role. When A is the incidence matrix of a hyper-
graph H, the matrix B is the incidence matrix of Tr H if and only if H is paranormal.
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3 .
hypergraph H of Figure 16 satisfies 7 #(Tr H) = 5 so Tr H is not paranormal.

An important family of paranormal hypergraphs appears in Graph Theory: these
are the “S-joints” (introduced by Little [1973] to generalise an idea of Kasteleyn), and
the “S-cuts’ (considered by Lovdsz in 1977).

Let G = (X,E) be a multigraph which we suppose for simplicity to have no loops
and to be connected; iet $ C X be a non-empty set of vertices.

We call an S-joint of G a set of edges F C E forming a partial graph G’ = (X ,F)
whose set of vertices of odd degree coineide with S, with F being minimal for this pro-
perty.

Observe that an S-joint of @ exists if and only if |S|is even. Indeed, if |S]is
even, divide § into disjoint pairs {s,8]}, {82,84}, etc., and consider for each ¢ a chain
g; joining s; and s/. The edges of G which belongs to an odd number of y; form an
S-joint.

Conversely, if there exists an S-joint F, then the partial graph G' = (X,F) satis-
fies, modulo 2,

I51= 5 dofe) = ¥ dale) =2m(G") =0
€S zeX
We shall study the hypergraph of S-joints of G which we denote by H?®.

Recall some classical notation from Graph Theory. Let G = (X,E) be a multi-
graph on X, and let A CX. The cocycle w(A) is the set of edges of G joining A to
its complement X —A; a cocycle is elementary if it contains no other cocycles, or
equivalently if G, and Gy_4 are connected. Further, w(A) = w(X—-A4). I S CX,
an S-cut of G is an elementary cocycle w(A) for which |[SNA|and |SN(X—A)] are
both odd.

Observe that an S-cut of G exists if and only if [S]is even. We shall study the
hypergraph of S-cuts of G which we denote K°,

Example 1. Let G = (X,E) be a connected multigraph of even order. An X-joint of
G (being minimal) cannot contain a cycle of G; thus it is a forest of G. Further, each
vertex of this forest has odd degree. In particular, a perfect matching of G, if it exists,
is an X-joint of G.
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On the other hand, an X-cut is nothing but an elementary cocycle w(A) for which
|A | is odd.

Example 2. Let G = (X,E) be a transporation network with source a €X and sink
z €X, and a capacity associated with each edge. Set § = {a,z}. An S-joint is a sim-

ple path between @ and z, and an S-cut is a “‘cut’ between a and z.

Example 3. Let G be a connected multigraph on X with a length associated with
each edge, and let S be the set of vertices  with dg(z) odd. An S-joint is a minimal
set of edges which must be doubled to obtain an eulerian multigraph.

An S-joint of minimum total length defines the edges to be traversed twice in the
“chinese postman problem’ (Guan Meigu) well known in Operations Research. An
S-cut is an elementary cocyle w(A) with [ANS |odd, i.e. satisfying, modulo 2,

kwa)l= ¥ de@)+ X dolz)=lns[=1
TEAN(X-S) T€EANS
Proposition. Let G be a connected multigraph, and let S be a set of vertices with
18] even. Then the hypergraph H® of S-cuts is the transversal hypergraph of the
hypergraph K® of S-joints.

Proof.

1. First we shall show that if £ € H® and F € K®, then E N F # .

Indeed, otherwise we have E N F = (), E €H®, F = w(A), where |SNA| and
Is Nx —A)I are odd. Since E is the union of edge-disjoint paths p; between pairs
{s;,s{} forming a partition of S, and since none of the y; meet w(A), this implies that
[SNA]and |SN(X ~A)| are even: contradietion.

2. Let Fy € Tr H®. Since F, meets all the E € H®, the partial graph G —F} does
not allow S to be joined in pairs, and thus it has several connected components
X1, X 94000, X3 further, at least one of the |SﬂX,~ | is odd (otherwise we may join the
vertices in pairs). Since G is connected, we have Fy D w(SNX;); thus F,, contains an
S-cut F. From the minimality of the transversal Fy, and from part 1, we have Fy = F.
Thus every minimal transversal of HS is as S-cut, which achieves the proof.

Lovdsz-Seymour Theorem. Let G be a connected multigraph, and let S be a set of
vertices with |S | even. Then H® and K*® are paranormal hypergraphs.



Hypergraphs Generalising Bipartite Graphs 213

The fact that K* is paranormal was shown by Lovdsz [1977], and that H® is
paranormal by Seymour [1977]. In fact these two theorems are clearly equivalent by
virtue of Proposition 1. Further Lovész {1977 has shown that

vor(K®) = kuy(K®).

Remark. H® and K° are not, in general, Mengerian. For example, if G is a cubic
graph without bridges, of chromatic index 4 (such as Petersen’s graph), Seymour has
shown that H¥X cannot have the Konig property and so certainly is not Mengerian. By
contrast, HX is Mengerian if it cannot be reduced to (K ,)* in the sense of Seymour’s

conjeeture (Seymour {1977]).

Exercises on Chapter 5
Exercise 1 (§1)

If »(H) >3, it is not true that every B-cycle contains a B-cycle such that every
pair of non-consecutive edges are disjoint. Show this for the B-cycle of length 7
defined by the sequence of edges:

(12, 2390, 34, 45, 5690, 678, 781).

Exercise 2 (§1)
Sterboul [1973] has conjectured that if x(H) > 2 there exists a B-cycle such that

every pair of non-consecutive edges is disjoint. Show that we cannot suppose that the
B-cycle has the further property that two consecutive edges have exactly one vertex in
common: for example take the hypergraph K3, _,.

Exercise 3 {(§1)

Show that example 2 is a special case of example 3 (§2), but that example 4 (§2)
cannot be considered a special case of example 3 (which relies on a theorem of Tutte

on graphic matroids).

Exercise 4 (§2)
Let P, be a graph on X which consists of an elementary path of n vertices.

Let H, be the hypergraph on X whose edges are the maximal cliques of the com-
plement P,. Show that for n < 6, H,, is unimodular (Chvatal).
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Hint: reduce to example 4 by an appropriate choice of a tree.

Exercise 5 (§2) Show that Ghouila-Houri’s Theorem may be applied to extend
Theorem 5 in the following way: if a2 matrix A of 0’s, 1’s, and —1’s has no square sub-
matrix of order 2k+1 each of whose entries is greater than or equal to the correspond-
ing entry of By, (the incidence matrix of the cycle Cygty ), then A is totally unimo-

dular.

(Another proof has been given by Commoner [1973], and Yannakakis [1980] has
given an efficient algorithm to find a maximum matching in this case).

Exercise 8 (§2)

Let G be a bipartite graph. Let H be a hypergraph on the edge-set E of G
whose edges are E and the complete stars of G. Show that H is unimodular.

Exercise 7 (§3)
Meyniel has conjectured that for every hypergraph H, the relation
XHa) <k (ACX)

implies 7(H) < (k—1)v(H). This is always true for k¥ = 2, from Theorem 9; further if
H is a partial hypergraph of the complete multipartie hypergraph, this reduces to the
conjecture of Ryser.

Exercise 8 {§3)

Show that if A is a totally balanced incidence matrix, the matrix A*4 (boolean
matrix product of A with its transpose A¥*) is also a totally balanced matrix, as is the
k-th boolean power A* (Lubiw [1985]).

Exercise 9 (§3)

Show that if H = (E,,F,,...,E,) is a totally balanced hypergraph on X, then
H+4(X) and HH{E|NE,) are also totally balanced hypergraphs.

Exercise 10 (§3)
Using the preceding exercise, show that a totally balanced hypergraph of order n

without repeated edges has at most (g)+n edges; further every maximal totally bal-

anced hypergraph without repeated edges has exactly (g)+n edges {Anstee [1985]).
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For a simpler proof, cf. Lehel [1985).

Exercise 11 (§4)

Let H be a hypergraph and let L(H) be the representative graph of H with
weight [E,—ﬂEj| associated with each edge [e;,e;]. Let F C L(H) be a maximum
weight forest. Show that

n
HH) = 3 [p(Fx,)-1]
f=1
where X; = {¢;/x; €EE; in H} and where p(Fy,) denotes the number of connected com-
ponents of the subgraph of F induced by X; (Lewin [1983]).

Exercise 12 (§7)

Lovdsz has shown: “If a digraph G has at most &k pairwise disjoint co-circuits,
then each family (with repetition) of co-circuits covering each arc at most twice is of
cardinality < 2k’". Show that this implies a generalisation of a theorem of Lucchesi
and Younger: “If in a digraph G, we associate with each edge ¢ an integer weight
¢; 20, then the minimum weight of a set of arcs which meet every cocircuit is equal to
the maximum number of cocircuits forming a family using the arc ¢ at most ¢; times

for ¢ = 1,2,...,m".

Exercise 13 (§7)

As an analogue of Lemma 3, Theorem 17, Schrijver has conjectured that the fol-

lowing conditions are equivalent:
(1) 1 HNY=71*HY (H CH
(B = T () (H' CH)

(ii) ve(H') = 7,(H")  (H' CH)

The equivalence of (i) and (ii), proved by Lovdsz [1977] for £ = 1,2,3 is false for k = 60
(Schrijver, Seymour [1979]). Show this for the hypergraph H on X = {1,2,...,9} whose
edges are

E, =X-{1,3,5}
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E, = X—-{1,4,8}
E; =Xx—{2,3,6}
E, = X—{2,4,5}

E; = X—-{7}
Ey = X—{8}
E; = X—{9}

Show that 74o(H') = 607 (H') and vgo{H) # 607 *(H).

Exercise 14 (§7)

Show that the following conditions are equivalent:
(i) 7 *(H®) is an integer {c €{0,1}")
(i) THH) =7(H") (c €{0,1}")

Hint: If (i) is true and (ii) is false, consider a hypergraph of minimum order such that
(ii) is false.

Exercise 15 (§7)

Deduce from the preceding exercise that the following are equivalent:
(i) YH)=1(H") (c €{0,1}")

(1) V(H®) = T XH*) (c €{0,1}").
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Matchings and Colourings in Matroids

The concept of a matroid, introduced by Whitney in 1835 in order to generalise
linear independence allows us to restate a large number of theorems in optimization
theory. First of all, it has been observed by many authors that the hypergraph of
independent sets is such that one may use Kruskal’s greedy algorithm to determine a
tree of maximum weight. The identification of regular matroids with unimodular
hypergraphs is due to Tutte, Camion, and to Seymour, who also showed that if C is
the family of circuits of a matroid and if e is an element of the matroid then the
hypergraph {C—e/C €C,e €C} is mengerian if and only if the matroid is linear and
does not contain Fano’s matroid as a minor(l),

We shall consider here the concepts of matching and colouring defined for hyper-
graphs in the preceding chapters.

Let E = {81,32,...,37"} be a finite set, and let ¥ be a set of subsets of £. We shall
say that ¥ constitutes a matroid on E if

(1) {e.}€F (@ =12,...,m)
(2) FeEF P+ FFCF=Fc¢€¥
(3) For each S CE, if F and F' are two members of ¥ contained in § and

maximal with this property, then |[F|= [F'].

The pair M = (E,¥) is called a stmple matroid (on E); in particular it is a heredi-
tary hypergraph, and we may consider for matroids the same concepts defined above
for hypergraphs. In particular, the rank r{S) will be defined by

S) = S|
r(S) Igg;IFn I

Axiom (3) states that a member of the family ¥ contained in § and maximal in S has

cardinality r(S).

(1) (P. Seymour, J.C.T., B23, 1977, 189-222). For a detailed exposition and for general terminology, we refer the reader
to D. Welsh, Matroid Theory, Academic Press, New York 1976; R.E. Bixby, Matroids and Operations Research in H.
Greenberg, F. Murphy, S. Shaw, Advanced Techniques, North Holland, Amsterdam, 1982.
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In matroid theory, the elements of E are the elements of the matroid M, and the
members of F are the independent sets. They are also the edges of the hypergraph ¥,
Those sets which do not appear in ¥ are the dependent sets. A minimal dependent set

is called a circust.

Proposition 1. If M = (E,¥) is a matroid of rank r(E), then the maximal indepen-
dent sets form a uniform hypergraph of rank r(E).

Clear.

Proposition 2. If M = (E,¥) is a matroid of rank r, and if A CE, the subhyper-
graph ¥4 = {FNA/FEF,FNA¥} of M is a matroid of rank r,(S) = r(S).

Clear.

Proposition 3. If M = (E,¥) is a matroid, every k-section
Fiy= {FALIF|<k, FeF}
forms a matroid of rank r)(S) = min{k,r(S)}.
Clear.

Example 1. The family P'(E) of non-empty subsets of a set E is a matroid of rank
r(S) = |8, and its strong stability number is @ = 1.

The family P(;)(E) of subsets of E of cardinality <k and 21 is also a matroid,
since it is the k-section of the preceding matroid. Its strong stability number is & =1,
its circuits are the subsets of E having k+1 elements.

Example 2. Take for E a finite set of vectors, and for ¥ the family of linearly
independent sets of vectors. Then (E,¥) is a matroid, and the rank r(S) of a set § of
vectors is the dimension of the linear space spanned by S; @ is the maximum number
of vectors of E which are all colinear.

Example 3. Let G be a multigraph; take for E the edge-set of G, and for ¥ the fam-
ily of sets of edges which contain no cycles. (E,¥) is then a matroid with rank r(S)
equal to the cocyclomatic number of the partial graph generated by S. An indepen-
dent set is a forest of G, and a circuit is an elementary cycle in G.

Example 4. Let G be a multigraph without bridges. Take for E the set of edges of
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G, and for ¥ the family of sets of edges of G whose suppression does not increase the
number of connected components. (E,¥) is then a matroid, having rank »(S) equal to
the cyclomatic number of the partial graph generated by S. A base is a minimal
co-forest, a circuit is an elementary cocycle of G.

Example 5 (Edmonds, Fulkerson 1965). Let G be a graph without isolated vertices
and for every matching V denote by S(V) the set of vertices saturated by the matching
V; take as members of F every set F' of vertices contained in at least one S(V).

It can be shown that (X,¥) is a matroid of rank
S)=|5]— {(Gp)~Te(T)-TI},
() = 15| - maxpi(Gr)- Me(D)—T}

where p;(H) denotes the number of components of odd order in a subgraph H of G.

Example 8. For a family (A;/7€Q ) of subsets of a set E, set
A = UA;=E;
@) i€Q 7
we call a partial transversal a subset T = {t|,t5,...,t;} of E such that there exists an
injection 5(¢):{1,2,....k} — @, with
t,' EAJ(|) (’L = 1,2,...,]0).
The family of partial transversals defines a matroid on E of rank

rS)=lel+ ?“c“é( annsk- ).

This matroid is called the transversal matroid of the family {4;/7€Q}.
Indeed, consider the bipartite graph (Q,E,I') formed by two sets @ = {1,2,...,4}
and E = {z,,zy,...,z, } where
@) =4, (G€Q)
We know from Example 5 that the family of sets of saturated vertices in a match-

ing defines a matroid: the family of partial transversals is the trace on E of this
matroid: it is thus a matroid. Its rank is given by Konig’s Theorem:

r(8) = }“ci‘é( [R—JI|+IT(WNS|) = q+5ncig( NS |- D.

Example 7. If (01,02,...,0,,) is a partition of a set E into p classes, and if ¢,¢9,...,¢p
are integers with 1 <¢; < |C; |, the family
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F={F/FCE,F+J, IFNC;|<c; for each i}

defines a matroid on E of rank

r(8) = i min{e;, |SNC; |}

f=1

Example 8. Let G be a simple graph, and let k¥ be an integer > 2. A k-star with
centre x is a partial graph of G formed by a set of < k edges incident on z. Las Verg-
nas has shown that the sets S of vertices which may be covered by a family of pairwise
vertex-disjoint k-stars form the independent sets of a matroid of rank

r(S) = minfk () b |S-T1).

Example 9. Let f be a map from subsets of X to N such that

J@)=0
ACB= f(A)< f(B)
J(AUB) + f(ANB) < f(A) + f(B).

Edmonds, Rota, and Welsh showed that the sets $ such that |T']| < f(T) for every
T C S form the independent sets of a matroid of rank

S) = mi T)+|S-T|}.
r(S) = min{f(D)+ 5T}
We shall now prove two propositions which we will need for the following.

Proposition 4. If M = (E,¥) is a matroid, then its rank r(A) satisfies the follow-
ing properties:

(1) () =0,
(@) rie)) =1 (c€R)

@3) A CB = r(A) < r(B),
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(4) r(A) + r(B) 2 r(AUB) + r(ANB).

Properties (1), (2) and (3) are clear. We shall prove (4). Let F be an independent
set contained in A N B with |F|= r(ANB).

Let F4 be an independent set contained in A with |F4 | = r(A) and F,y D F.

Let E; be an independent set containing Fj,, contained in A U B, with
|Eo| = r(AUB).

Clearly EqN A =F, (since F, is a maximal independent set in A) and
Es N (ANB) = F (since F is a maximal independent set in A N B). Then

r(AUB) = |Es| + (EonA4) U (EonB)|
= |[EsnAl+ [EonB| - [E,nANB|
< |Fal+r(B) = IF|=r(A) + r(B) — r(ANB).
Thus (4) follows.

(Properties (1), (2), (3), (4) are characteristics of the rank and may also be taken
as the axioms of a matroid on E).

Proposition 5. If, in a matroid M, we have F €F and F U {a} €F, then the set
F U {a} contains exactly one circust.

Let F be a minimum independent set which would be a counterexample. Since
F U {a} contains two distinct circuits C| and C,, we have ¢ €Cy, a €C,. By the
minimality of C; and C, there exists a point a, €C; — Cy, and a point a; €Cy — C.

1. The set Ag = F U {a} — {a;,a,} is independent. Otherwise, consider the set
F' = F — {a}, which is independent as it is contained in F. The set F' U {a} contains
the eircuit Cy and a minimal dependent set of Agy; thus it contains two distinet cir-
cuits, and as |[F'| < |F|, this contradicts the minimality of F.

2. The submatroid spanned by F U {a} is a matroid of rank |F| which contains
the independent set Aq. Since |,A0| < |F| we have

AgU {a;}EF

for ¢ =1,2. The contradiction follows, as C; is a dependent set contained in
Ao U {o;}.

Lemma. If S is a mazimal strongly stable set in a matroid (E,¥), then each s €S

18 adjacent to everya €EE — S.
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Consider a maximal strongly stable set S. Then 7(S) = 1. Let

S = {81,80)s8p }-
Consider a point a €E — S; since § U {a} is not strongly stable there exists an
8; €S adjacent to a. If k # j the vertex s, €8 is adjacent to {a,s]-}, since the set
A= {a,sj,sk} is of rank 2, and an independent set containing 8, is contained in a max-
imal independent set F satisfying |[FNA|= 2. Thus a is adjacent to s, for every k.

Theorem 1. If M = (E,¥) is a matroid with strong stability number (M) > -I;:J-
then M) = p(M).
Indeed, consider a maximum strongly stable set
S = {81,80,18p }i
we may write
E — 8 = {a,80:08,}, ¢ <p.

From the lemma, there exists an edge F;; which contains ¢; and s;, and E can be

covered by the p edges Fy ,F 9seesFy 1F g4 190sF g pi thus
(M) < p = (M)

Since the reverse inequality also holds, we have p(M) = o M).

Theorem 2 A matroid M = (E,¥) i3 conformal if and only if there exists a parti-
tion (S,,59,---,5;) of E such that F consists of the family of non-empty sets F with

I-Fn Si | Sl (i = 1521-"7q)'

Let §; = {81,62,...,6p} be a maximal strongly stable set in a conformal matroid of
rank A = r(E). It is sufficient to show that the family # is of the desired form.

1. Let F; be a maximal independent set containing the point s,. Put
A=E -5,
Ai=FNA.

Then |Fy|=h,s0 JA(}=h —1.

2. We shall show that A, is a maximal independent set in A. Indeed, if this were
not the case, there would exist an ¢ € A with
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AU {a}e?7
From the lemma, the vertices a and s, are adjacent and are thus contained in a
maximal independent set F, ;. As the matroid M is conformal, from Theorem 15,
Chapter 1, there exists an Fy € ¥ such that
Fy D [FN(AU{e}] U [AU{ahNF,, ) U (F, 5N F)
=AU {e}U {s)}
Thus |Fy] >k + 1 contradicting that & is the rank of M.

3. From the above, we have r(A) = h — 1, so every maximal independent set F

satisfies
IFns|=1.
In the submatroid induced by A, which is of rank h—1, consider a maximal
strongly stable set S,; as above we see that
FNS,| = 1.
We determine thus a partition S,,5,,...,5, of E and every maximal independent
set F' of M satisfies |[FNS;|=1 for¢ = 1,2,...,h.

4. Conversely, every set F which satisfies the above equalities has its points pair-
wise adjacent, and since the matroid is conformal and of rank A it is a maximal

independent set.
The family ¥ is thus of the desired form.
Q.E.D.

Let A4 = (A}, Ag..4y) = (A; /g €Q) be a family of subsets of a set E. A family
of distinct representatives is a family (a(7)/f €Q) of elements of E such that

(1 i # 5= a() # a(j)
2) a(i) €4; (¢ = 1,2,...9).

The point a(i) is the representative of the set A;. Clearly a family of distinct
representatives defines a transversal of cardinality ¢; the converse, however, is not

true.
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If we consider the bipartite graph (@,E,I') with e €I(7) if e € A;, a set of distinct
representatives is the image of a matching of @ into E.

If J CQ, put A(J) = ~UJA!'; a necessary and sufficient condition for the existence
i€
of a family of distinct representatives, from Kénig’s theorem, is that
Wz Vvl (v ce)

The following theorems are generalisations of this result.

Theorem 3 (Perfect, 1969). Let M = (E,¥) be a matroid of rank r(E), let k be an
integer < r(E) and let A = (A},Ag,....A)) = (A; i €Q) be a family of q subsets of E;
a necessary and sufficient condition for the existence of an independent set
F={a(t)/ieK}, K CQ, |K|=k, with a(i) €A; for everyi €K is that we have
rAMN 2 Wl+k—q¢ (JCQ)
1. If there exists such an independent set F, we have
rAW) 2 FnaW)| 2 IKnJ|= K|+ 7] - [KuJ|
>k+ -4
Thus we have the stated inequality.

2. Conversely, suppose the inequality holds. Consider the family B = (B; /i €Q)
with

(1) {B.- C a4 (i €Q)
rBUIN2Vl+k~q (JCQ)
The relation B < B’ meaning B; C B/ for every i €Q is an order relation. Con-
sider a family 8 = (BI,BZ,...,Bq) which is minimal with respect to this order. We shall
show that |B;| =1 for every 1.

Indeed, if for example |B;|>1, there exist two points b/,6" € B; with b’ # b".
Put

By =B, ~ {t"}
Bl =B, - {t"}
Bl=Bl'=B; if i #1.

By the minimality of B there exist two subsets I,J C Q with
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rBI) < Il+k—q
rB"IN< V] +k—g
Thus
P(BD) + r(BI) < |+ W]+ 20k—) — 2.
Further,
B/(I)u B"(J) = B(IUJ)
B'(I)n B"(J) = B(InJ-{1}).
From proposition 4 we may write
r(B'(I)) + r(B"(J)) 2 r(B'(I) U B"(J)) + r(B'(I) N B"(J))
> r(B(IUY)) + r(BUNJT—{1})
> ruJ|+ IInJ—{1} + 2(k—q)
>+ l=2(k—g) — 1.
A contradiction follows.

We have thus shown that B is of the form ({b;}/i €Q). Put
B ={/ieQ}

From (1) we have
rB)=rBRN2RI+k—g=r

Thus there exists a set K CQ with |K|=k', and an independent set
F={b; /i EK} C B with

b €4; (i €EK).
QED.

As an immediate consequence, we have the well known theorem of Rado:

Theorem 4 (Rado, 1942). If M = (E,¥) is a matroid, a family A = (A,,..,4;) of

subsets of E has an independent set of distinct representatives i f and only i f
rA(W) = Wl (JCQ)
Indeed, let k¥ = ¢ in the statement of Theorem 3.

Corollary 1. Two families 4 = (AI,AQ,...,A,,) and B = (BI,BQ,...,Bq) have a common
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set of distinct representatives 1 f and only 1 f

UhnBx)I> |+ Kl-¢ (K CQ).

Indeed, consider the transversal matroid M of the family B (example 6), whose
rank is

r(8)=q+ Ir(né%( IB(K)NS - |K |).

There exists a transversal set of A which is independent in M if and only if, for every
J C @, we have

r(AW) = ¢ + pin(ANBE)| = KD > ]

giving us the desired condition.

Corollary 2. If C = (C,,Cy,...,Cp) i3 a partition of E, and if ¢|,5,...,c, are integers
with 0 <¢; < |C;| for each ¢, a family A = (A AgyesAy) has a set T of distinct
representatives with [TNC; | <c¢; for every i if and only if
3 minfe;, MONG 2 W] (7 CQ),
i=l
Indeed, consider the matroid M formed by the sets F C E with [FNC;| < ¢; for
each ¢ {example 7), whose rank is
r(8) = Y minfe;, ISNC; .
=1
There exists a set of distinct representatives of 4 which is independent in M if
and only if, for every J C @,
r(A() = Ymin{e;, ANNG; [} > 1]
i=1

Q.E.D.

Recall the proposition (ef. Graphs, Corollary to Theorem 6, Chap. 7) which says:
A necessary and sufficient condition for a set B C E to be contained in a set of dis-
tinct representatives of a family 4 = (A),Ag,...,A,) is that

min{|A(J)UB lg—|B-A(N) [} > V| (JCQ).
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This may be externded to matroids; first we shall prove a lemma:

Lemma. Let M = (E,¥) be a matroid of rank v, let B €¥, and let ¢ > |B |; the
family

¥p, = {F/FCE,FUBE¥,|FUB|<q}
defines a matroid on E and its rank is
rp4(S) = min{r(SUB),q} — |B—-S|.
Let 8§ C E, and let S, be a subset of S that belongs to ¥ . every set F with

(1) FeFg,
@) SyCFCS

clearly satisfies
|7 | < min{r(SUB).¢} — B—S|.
It thus remains to show that equality can hold.

The set B U Sy, being independent in M, is contained in an independent set F' of
B U S with

|[F'| = r(SUB).
Let F" be an independent set with

BU S, CF'CF; |F'|=min{r(SUB)yg}
The set F' = F" N S satisfies (1) and (2), and

7| = min{r(SUB),q} — 1B—5|

Q.E.D.

Theorem 5 (Las Vergnas, 1969). Let M = (E,¥) be a matroid of rank r, and let
Be¥,andq> |Bl;a family 4 = (A4, Ay) of subsets of E has a family of dis-
tinct representatives which is an independent set containing B if and only +f

min{r(A(/)UB),¢} — A()-BI= V] (JCQ).
Consider the matroid on E defined by the family



228 Hypergraphs

Figure 21

Fp, = {F/FCE,FUBE¥, [FUB|<q}.
If there exists a set T of distinct representatives of 4 with T € ¥, T D B, then
ITl= 4,50

T €%p,.

Conversely, if there exists a set T of distinct representatives of 4 with T € ¥,
then

TUBEF ITUB|<q, [T|=4q,

Te#¥ TDOB.

Thus, from Rado’s theorem, there exists a set T satisfying the conditions of the
statement if and only if the rank rp  of the matroid (E,Fp ) satisfies

r (AN > V| (VCQ)
min{r(A(J)UB),q} — [B=A())| > |
QED.

Let M = (E,¥) be a matroid on E = {;,€9,...,6,, } and consider a map ¢ of E
onto E; define the image of M under ¢ to be the hypergraph
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¥ = (H(F)/FEF).
As ¢ is a map onto E, M= (E",?) is clearly a hypergraph, which we shall now
study.

Theorem 6 (Nash-Wiliiaws, 1968). If M = (E,¥) is the image of a matroid
M = (E,¥) under a map ¢ of E onto E, then M is a matroid and its rank is
7(E) = min(r(¢"H(A)+|E-A))
ACE
1. We shall show that:
max [F| = min(r(¢~(A)+[E-A]).
F ACE
Clearly, max IF'.I is the greatest integer k& such that the family
G CY R A R )

has a partial set of distinct representatives that is an independent set in M and has
cardinality k. From Theorem 3, this is the greatest integer k such that

min(r(¢" AN+ |E-A]D > &,
ACE

whence
max [F| = min(r(¢7(A))+ [E-A).
ACE
2. Now, it remains to show that the image of M under ¢ is a matroid.
Consider a map ¢ of E = {;,€0,..-.¢p } ODto E = {€,,¢3, . . . , &, } satisfying
#e) = &,
He;)=¢; ifd+#1.
We shall say that ¢ is a map contracting the set {e,,¢,}; since every map is a com-
position of contracting maps, it suffices to show that the image of the matroid M

under the contracting map ¢ is a matroid. Consider an independent set Fy € ¥ such
that fo is maximal in F we shall show that Fo is maximum for ¥ that is, from Part 1,

that there exists a set A C E with
ol = r(¢7(A)) + [E-AL
For simplicity, set Eq = E — {¢,,¢5}. The set fo being maximal in 7 we may sup-
pose that Fy is a maximum set of ¥.
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We may also suppose that F contains both e; and e,, since otherwise Fy will be
maximum, as we may write:

[Fol = [Fol = r(E) = r(¢7Y(E)) + [E-E].

We shall distinguish three cases.

Case 1: r(Eg) = r(E).
Since
r(Eo) < r(E—{e.)) <r(E),
we also have r(E—{e,}) = r(E). As F, contains ¢, and e,, we have
IFo—fei}] = r(B)—1 <r(E~{e,})-

Consequently there exists a maximum independent set Fj, which does not contain
the point e; and satisfies

14:() DF0—161;= Fo.

Thus Fy = F§ and may write:

Fol = IFo )= IF5 | = r(E) = r(¢7 (E)+|E-E]

Case 2: r(E,) = r(E) — 1. Every maximum independent set thus contains e; or e,.
Further, we have

[FoNEg| = |Fol =2 = r(E) — 2 <r(Ey).

Thus there exists a point a € Eg such that (FoNEy) U {a} is an independent set

of cardinality r(E,) = r(E)—1; let Fj be a maximum independent set which contains

this set. Since F§ is maximum, it contains ¢; or e, for example:

Fo = (FoNEo) U {a,e,}-
Clearly F, D Fy, so Fy = Fy and we may write:

|76 | = IFol = r(E) = r(¢™Y(E)) + [E-E|.

Case 3: r(E,) = r(E)—2. Every maximum independent set thus contains both e; and
eg. We have ﬁo OF,s0
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[Fol = IFol-1 = r(E)—1
= r(Eo)+1 + r(¢7 B+ |E~E, |
In each of these cases, the set fo is maximum for ¥

Q.E.D.

Let HYLH?, ... HP be hypergraphs on a set X of vertices; their join is the hyper-
graph

H=H'VH'V -+ VH®
defined by the family

H={E'UE*J --- UE?/E'eH"E’cH", . .. ,EP€H").
H is clearly a hypergraph on X.

Theorem 7. If (E,#)(E,%%,..,(E, ) are matroids of rank r';r%, ... P respec-
tively, thesr hypergraph-join i3 a matroid of rank

F(E) = jr‘ncir;:(rl(A)+ co4rP(A)+ [E—A).

Make p identical copies E',E?,....EP of the set E, and consider the map ¢ of
iLﬁJIE‘ into E which maps each ef; €E’ to the corresponding e, €EE. M= (UEi ,VY")
is clearly a matroid, and its rank is

r(X) = rY{(EY+r{EN+...4+rP(EP).
From Theorem 6, the image of this matroid under the map ¢ is also a matroid M,

P —
which is exactly the join V F}; the rank of the matroid-join M is thus
=1
#(E) = mi AN+ E-A
#(E) = min(r(¢"(A)+|E-A])

= min(35 r (A)+ IE-A ).

im=l

Corollary 1 (Edmonds, 1968; Nash-Williams, 1968). For a mairoid M = (E,F) the

minimum number of independent sets required to cover F i3



232 Hypergraphs

p(M) = ACE [ r{A) ]

By definition, p(M) is the least integer k such that the join MV MYV --- VM
of k matroids identical to M is of rank |E|, or, from Theorem 7, the least integer k
such that

ACE( (4) D I
This is equivalent to:

min(kr(4)- uh=o,

or
kr(A) = [A|>0 (ACE),
or
dal
k> oy (ACE, A%Q).
We thus have

p(M) = ACE[r(A)]

Corollary 2. If M = (E,¥) 1s a matroid, the mazimum number ky of mazimal
tndependent pasrunse disjoint sets is

ko = min _E“Zﬂ_
°" ack_|r(BE)—r(4) |
r{A)»r(E)

Indeed, kg is the largest integer k& such that the matroid-join of k£ matroids identi-
cal to M is of rank kr(E), or

félé(b'(AH [E-A)) = kr(E).

Thls 18 equlvalent to

or
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k(r(E)—r(A)) < [E-A| (ACE)

giving us the stated formula.

Corollary 3. Consider a matroid M = (E,¥) and a sequence ky,ky,....k, with
r(E) 2k 2k 2 - 2k >0 i)k,- = |E|
T
Let k; be the number of k;’s which are 2> j. The set E can be partitioned into q
independent sets F\,Fy,...,F, with |F;| = k; for each i if and only if

Y k> [E-A| (ACE).
i>r(A)

Consider the k;-section M(,,i), defined by the family
Firy = {F/Fe¥, IFI<k}.

This is 2 matroid of rank r*(A) = min{r(A),k; }, and the matroid-join
g
M= v My,
Y M)
is of rank |E |. Thus
i A)+E-AD = IEI
i“é%‘,.‘é' (A)+E-A]) =[]
This is equivalent to
Smin(r(A)kiHE-A|2 [E]= 3k = & (ACE).
i=1 i=1 >0
Hence
r(4)
sk -k < E-al (ack)
>0 =1

giving us the stated condition.

Corollary 4. The chromatic number of the hypergraph HM consisting of the circuits
of a matroid M = (E,¥) of rank r is equal to

x{(HM) = max [g(%l)-] .

ACE
AwQ
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Indeed, a set FF C E is independent if and only if it contains no circuits. Thus a
partition (AI,AQ,...,Aq) is a colouring of the hypergraph HM if and only if Aj,AgyAy
are independent sets; thus x(HY) = p(M) and corollary 1 gives the stated formula.

The preceding results allow us to obtain rapidly some results for graphs, originally

proven by direct but much longer methods.

Application 1 (Tutte, 1961). The set of edges of a simple connected graph
G = (X,E) contains k pairwise disjoint spanning trees if and only if, for every par-
tition P of X, the number of edges mg(P) which join vertices in distinct classes of
the partition satisfies
mg(P) 2 k(1P |-1).
1. If there exist k spanning trees H,,...,H) in G, pairwise edge-disjoint, then for a
partition P of the vertices,

myg(P) 2 [Pl-1 (i=1,2,..k).
Thus
k
mg(P) 2 Y my(P) 2 k(|P|-1).
i=1
2. If the stated condition holds, consider the matroid M = (E,¥) on E defined by
the family of forests F|,Fy,....,F; CE of the graph G; if r(A) denotes the rank of M
and if A C E defines a partial graph of G having p connected components, forming a
partition
P = (X],X2,...,Xp)
of X, we have
r(E)—r(A) = (n=1)~(n—p) = p—1 = [P|-1.
Thus, from the conditions in the statement, we have
[E—A| 2> mg(P) 2 k(|P|-1) = k(r(E)—r(A)).
Hence,
k < min

ACE
r(A)»r(E)

r(E)-r(4) |
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Thus, from Corollary 2 to Theorem 7, there exist £ disjoint spanning trees in G.

Application 2 (Nash-Williams, 1964). The edges of a simple graph G = (X ,E) may

be coloured with k colours in such a way that no cycle s monochromatic 1f and only

if for every set A C X the number mqg(A,A) of edges having both ends tn A satisfies
mg(A,A4) < k(|4 |-1)

In other words, the chromatic number of the hypergraph G° formed by the cycles
of edges of G is equal to

1. If the edges of G are coloured thus with k colours 1,2,...,k, let m;(A,A) be the
number of edges of colour 7 having both ends in A; since these edges form a forest,
m;(A,A) < |[A|-1. Thus

mg(A,A) = m(A,A)+..+m(A,A) < k(A |-1)
as stated.

2. Conversely, suppose that the condition of the Theorem is satisfied. Consider
the matroid (E,¥) formed by the family of forests of the graph G, and let r be its
rank. If the partial graph (X,F) of G generated by F CE has p connected com-
ponents (X ,F;),(X2,F),-.-(X,,Fp) Which are not isolated points, then

kr (F)—F; | > k(IX; F1)-me(X;.X;) > 0.
Hence
kr(F)=IF | = 3 (kr(F)—IF: ) > 0,
=1
or
N
k2 max |
Fe

Thus, from Corollary 4, it is possible to colour the edges of G with k colours so

that no cycle is monochromatie.

Application 3. If G is a simple graph of mazimum degree h, it is possible to colour

1ts edges with [%]'+1 colours so that no cycle 18 monochromatic.
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Indeed, let G =(X,E) and let A CX. Suppose |[A|>1 and a €A, and set
A = A—{a}). Then

n |—1 T ™me(4,4) = |X| (ma(A,A)+mg(4,6))

1
|X|(IA|_+'AD<_“

From Nash-Williams' Theorem (Application 2), it follows that:

X(G°) < (4] +1.

Thus it is possible to colour the edges of G with h “+1 colours so that no cycle of G
9 Y

is monochromatic.
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