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FOREWORD 

For the past forty years, Graph Theory has proved to be an  extremely useful tool 
for solving combinatorial problems, in areas as diverse as Geometry, Algebra, Number 
Theory, Topology, Operations Research and Optimization. It was thus natural to try 
and generalise the concept of a graph, in order to attack additional combinatorial 
problems. 

The idea of looking at a family  o f  sets from this standpoint took shape around 
1060. I n  regarding each set as a "generalised edge" and i n  cal l ing the family itself a 
"hypergraph", the initial idea was to try to extend certain classical results of Graph 
Theory such as the theorems o f  Turcin and Kgnig. Next, i t  was noticed that th i s  gen-  
eralisation often led to simplification; moreover, one single statement, sometimes 
remarkably simple, could uni fy  several theorems on graphs. It i s  with this motiva- 
tion that we have tried in this book to present what has seemed to us  t o  be the most 
significant work on hypergraphs. 

I n  addition, the theory of hypergraphs i s  seen to be a very useful tool for the 
solution o f  integer optimization problems when the matrix has certain special proper- 
ties. Thus the reader will come across scheduling problems (Chapter d), location prob- 
lems (Chapter 5), etc., which when formulated in terms o f  hypergraphs, lead to gen-  
eral algorithms. I n  this way specialists in operations research and mathematical 
programming have also been kept in mind b y  emphasizing the applications of the 
theory. 

For pure mathematicians, we have also included several general results on set 
systems which do not arise f r o m  Graph Theory; graphical concepts nevertheless pro- 
wide an elegant framework for  such results, which become easier to visualize. 

For students in pure or app l i ed  mathematics, we have thought it worthwhile to 
add at the end o f  each chapter a collection o f  related problems. Some are still open 
but many are straight forward applications of the theory to combinatorial designs, 
directed graphs, matroids, etc., such consequences be ing  too numerous to include in 
the text itself.  

We wish especially to thank Michel Las Vergnas, and also Dominique d e  Werra 
and Dominique de Caen, for  their help in the presentation. W e  express our thanks 
also to the New York University for  permission to include certain chapters of this 
book which were taught in New York during 1985. 

Claude Berge 

Note: The longest pro0 f s ,  and those which are particularly difficult,  are indicated i n  
the text by an asterisk; they can easily be skipped on first reading. 



TABLE OF CONTENTS 

Chapter 1: General concepts 

1. 
2. 
3. 
4. 
5. 
8. 
7. 
8. 

Dual hypergraphs 
Degrees 
Intersecting families 
The coloured edge property and Chvital’s conjecture 
The Helly property 
Section of a hypergraph and the Kruskal-Katona Theorem 
Conformal hypergraphs 
Representative graphs 
Exercises 

Chapter 2: Transversal sets and matchings 

1. Transversal hypergraphs 
2. The coefficients .r and 7‘ 

3. .r-critical hypergraphs 
4. The Ktjnig property 

Exercises 

Chapter 3: Fractional transversals 

1. Fractional transversal number 
2. 
3. 
4. Greedy transversal number 
5. Ryser’s conjecture 
8. 

Fractional matching of a graph 
Fractional transversal number of a regularisable hypergraph 

Transversal number of product hypergraphs 
Exercises 

Chapter 4: Colourings 

1. Chromatic number 
2. Particular kinds of colourings 
3. Uniform colourings 
4. 
5. 
8. 
7. Kneser’s problem 

Extremal problems related to the chromatic number 
Good edge-colourings of a complete hypergraph 
An application to an extremal problem 

Exercises 

1 

1 
3 

10 
15 
21 
26 
30 
31 
39 

43 

43 
53 
59 
64 
72 

74 

74 
83 
93 
99 

103 
105 
113 

115 

115 
120 
122 
130 
137 
146 
148 
150 



Contents vii 

Chapter 5: Hypergraphs generalising bipartite graphs 

1. Hypergraphs without odd cycles 
2. Unimodular hypergraphs 
3. Balanced hypergraphs 
4. Arboreal hypergraphs 
6. Normal hypergraphs 
6. Mengerian hypergraphs 
7. Paranormal hypergraphs 

Exercises 

Appendix: Matching8 and colourings in matroids 

References 

155 

155 
162 
171 
186 
193 
198 
208 
213 

217 

237 



INDEX OF DEFINITIONS 

affine plane, ch.2, $2  
anti-rank s ( H ) ,  ch.1, J 1  
arboreal hypergraph, ch.5 $4  

Baranyai theorem, ch.4, $ 5  
balanced hypergraph, ch.5, $3  
balanced hypergraph (totally), ch.5, $3 

canonical 2-matching, ch.3, $ 2 
chromatic number x ( H ) ,  ch.2, $1, (ch.4, $1) 
chromatic number (strong) 7 ( H ) ,  ch.4, $ 2  
chromatic index q ( H ) ,  ch.1, $4 
chromatic index (fractional) q*(G), ch.2, 54 
Chvital conjecture, ch.1, $4 
co-arboreal hypergraph, ch.4, $ 4  
coloured edge property. ch.1, $4  
k-colouring, ch.4, $ 1 
colouring (good), ch.4, $2 
colouring (equitable), ch.4, $2  
colouring (strong), ch.4, $2  
colouring (regular), ch.4, $2  
colouring (uniform), ch.4, $2  
complete, r-complete (hypergraph) K i r  ch.1, $2  
connected hypergraph, ch.1, $2  
covering, ch.2, $ 4  
covering number p ( H ) ,  ch.2, $4  
8-covering, ch.3, 51 
8-covering number p,(H), ch.3, $1 
critical vertex, cb.2, $3  
7-critical hypergraph, ch.2, $3  

cycle of length k ,  ch.5, $ 1 
B-cycle, ch.5, $ 7  
cyclomatic number p ( H ) ,  ch.5, $4  

degree d H ( s ) ,  ch.1, $2  
degree (maximum) &.(IT), ch.1, $2  
8-degree d,&r), ch.4, $2 
&degree (maximum) Ap(H) ,  ch.4, $1 
dependent set, Appendix, $ 1 
(n,k,X)-design, ch.2, 52 
distinct representatives, Appendix, 1 
dual hypergraph H*, ch.1, $1 
duplication, ch.5, $3 

edge, ch.1, $1 
Erdos problem, ch.4, 56 

s-cut, ch.5, $7 

Erdos, Chao-Ko, Rado (theorem of), ch.1, 53 

fan F,, ch.2, $1 
fan (generalized), ch.2, $1 
Fournier-Las Vergnas (theorem of), cb.5, $ 1 

graph G ,  ch.1, $1 
Gupta property, ch.5, $ 7  

Helly property, ch.1, $ 5  
k-Helly, ch.1, $ 5  
hereditary closure H, ch.1, $4  
hypergraph, ch.1, $ 1 

incidence matrix, ch.1, 51 
independent set, Appendix, $ I 
intersecting family, ch.1, $3  
interval hypergraph, ch.1, $ 5  

5'-joint, ch.5, $8 

Kneser number 7,(H),  ch.4, $7 
Konig property, eh.2, $4 
Kruskal-Katona (theorem of), ch.1, $ 6  

line-graph L ( H ) ,  ch.1, $8 
linear hypergraph, ch.1, $2  
LovLz inequality, ch.5, $4  
LovLz hypergraph, ch.2, $ 1 
LovLz theorem, ch.5, $ 4  

matching, ch.2, $4  
matching (fractional), ch.3, $ 1 
matching number u(H) ,  ch.2, $4 
k-matching number u k ( H ) ,  ch.3, $ I 
mengerian hypergraph, cb.5, $7 
multigraph, ch.1, $1 

normal hypergraph, ch.5, $5 
number of edges rn(H), ch.1, $1 
order n(H), ch.1, $1 
paranormal hypergraph, ch.5, $8 
partial hypergraph, ch.1, $1 
partial hypergraph (generated by A )  H / A ,  

complete r-partite hypergraph I Y ~ , ~ ,  ,.,,", , 
ch.4, $1 

ehl.,  $ 4  



Definitions ix 

polyomino, ch.2, $4  
positional game on H, ch.4, $ 3  
projective plane, ch.2, $2  

quasi-regularisable hypergraph, ch.3, $ 3  

Ramsey numbers R(p,q), ch.3, $ 6  
rank of a hypergraph r(H), ch.1, $1 
rank of a matroid, Appendix, $1 
regularisable hypergraph, ch.3, $ 3  
regular hypergraph, ch.1, $2 
representative graph L(N), ch.1, $ 8  
Ryser conjecture, ch.3, 55 

k-section [H]b, ch.1, $6 
separable, ch.1, $ 2  
Seymour theorem, ch.2, $4 
simple hypergraph, ch.1, $1 
Sperner theorem, ch.1, $2 
stability number cr(H), ch.4, 5 1 
stability number (strong) b(H), ch.2, $4  
k-stability number E h ( H ) ,  ch.3, $1 
stable set, ch.2, $1 
k-stable (strongly), ch.3, 5 1 
stable (strongly) set, ch.2, $ 4  
star H ( z ) ,  ch.1, $2  

8-star, ch.4, $ 1  
k-star, Appendix, $1 
Steiner system, ch.1, $2  
Sterboul conjecture, ch.5, J 1 
sub-hypergraph (induced), ch.1, 5 1 
sub-hypergraph (partial), ch.1, J 1 

transversal set, ch.2, $ 1 
k-transveresal T ~ ( H ) ,  ch.3, $ 1 
transversal (fractional), ch.3, $ 1 
transversal hypergraph TTH,  ch.2, $1 
transversal number T ( H ) ,  ch.2, $ 2  
transversal number (associated) r’(H), ch.2, $ 2  
transversal number (greedy) i(H), ch.3, 54 
k-transversal number T ~ ( H ) ,  ch.3, $1 
transversal number (fractional) r *(H), ch.3, $1 
Tur in  number T(n,p,r), ch.4, 54 

uniform hypergraph, ch.1, $ 1 
r-uniform hypergraph, ch.1, $ 1 
unimodular hypergraph, ch.5, $2  
unimodular matrix (totally), ch.5, 92 

vertex, ch.1, $1 
vertex-colouring lemma, ch.2, $ 1 



List of standard symbols 

. . .  

Set of real numbers 
Set of integers 2 0 

Set of all integers 
The empty set 
Cardinality of the set A 

Set of z such that ... 
For every x 
There is an 2 

a is an element of the set A 

a is not an element of the set A 

Union of A and B 
Intersection of A and B 
A minus B (elements of A not belonging to  B )  
The set A is a subset of set B 
A is not contained in B 
Cartesian product of A by B 
(set of pairs ( a , b )  with a € A  and b E B )  
Property (1) implies property ( 2 )  

Binomial coefficient “ p  choose q” 

The integer p is congruent t o  g modulo k 

Integral part of - (largest integer 5 -) 
P Smallest integer 2 - 
Q 

Matrix in which the element in the i t h  
row and j t h  column is a3 
Determinant 
Neperian (natural) logarithm 

} 

P P 
Q 4 

For the notations specific to graphs, see the reference: Graphs (C.  Berge, Graphs, 

North Holland, 1985). 



Chapter 1 

General Concepts 

1. Dual Hypergraphs 

Let X = {x1,z2, ..., 2,) be a finite set. A hypergraph on X is a family 
H = (E1,E2, ..., E m )  of subsets of X such that 

A eimple hypergraph (or "Sperner family") is a hypergraph H = (El,EZ, ..., Em) 
such that 

The elements z1,x2,...,x, of X are called verticee, and the sets E1,E2,  ..., Em are 
the edges of the hypergraph. A simple graph is a simple hypergraph each of whose 
edges has cardinality 2; a multigraph (with loops and multiple edges) is a hypergraph 
in which each edge has cardinality 5 2. Nonetheless we shall not consider isolated 
points of a graph to be vertices. 

A hypergraph H may be drawn as a set of points representing the vertices. The 
edge E j  is represented by a continuous curve joining the two elements if bj I = 2, by 
a loop if Bj I = 1, and by a simple closed curve enclosing the elements if bj 1 2 3. 

One may also define a hypergraph by its incidence matrix A = ((a:)), with 
columns representing the edges El,E2,  ..., Em and rows representing the vertices 
x1,z2 ,..., x,, where uj  = 0 if xi $? E j ,  a j  = 1 if zi € E j  (cf. Figure 1). 
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0 
5 
0 
0 
0 
0 
I 
0, 

Figure 1. Representation of a hypergraph H and its incidence matrix 

The dual of a hypergraph H = (El,&,, ..., Em) on X is a hypergraph 
H *  = (X1 ,X2 ,  ..., Xn) whose vertices el ,e2,  ..., em correspond to the edges of H ,  and with 
edges 

Xi = { e j / z j a j  i n  H }  

H*  clearly satisfies both conditions (I) and (2). 

It is easily seen that the incidence matrix of H* is the transpose of the incidence 
matrix of H and so we have (H*)* = H .  

Figure 2. The dual hypergraph o f  the hypergraph in Figure 1. 

As for a graph, the order of H ,  denoted by n ( H ) ,  is the number of vertices. The 
number o f  edges will be denoted by m(H) .  Further the rank is r(H) = max /Ej I, the 

anti-rank is 8 ( H )  = min bj I; if r ( H )  = s(H) we say that  H is a uniform hypergraph; 
I 

i 
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a simple uniform hypergraph of rank r will also be called r - u n i  f o r m ,  and in this case it 
will be understood that there is no repeated edge. 

For a set J C {1,2, ..., m }  we call the family 

H' = ( E j / j E J )  

the partial hypergraph generated by t he  set J .  The set of vertices of H' is a nonempty 
subset of X .  

For a set A C X we call the family 

HA = (EjnA/l<j<m, EjnA#@) 

the sub-hypergraph induced by t h e  set A. (We define partial sub-hypergraphs etc. in a 
similar fashion). 

Proposition. The  dual of a subhypergyaph of H is  a partial hypergraph of t h e  dual 

hypergraph H*. 

In the case of hypergraphs of rank 2 these reduce to  the familiar definitions for 
graphs. All the concepts of graph theory may thus be generalised to  hypergraphs 
which will allow us to find stronger theorems, and applications to objects other than 
graphs. Further the formulation of a combinatorial problem in terms of hypergraphs 
sometimes has the advantage of providing a remarkably simple statement having a 
familiar form. 

A stronger result may be much easier to  prove than the weak result! 

2. Degrees 

The other definitions from graph theory which may be extended without ambi- 
guity to  a hypergraph H are the following: 

For x E X ,  define the s tar  Hfz) with centre z to be the partial hypergraph 
formed by the edges containing z. Define the degree d H ( z )  of z to  be the number of 
edges of H ( z ) ,  so d H ( z )  = m(H(z)). 

The maximum degree of the hypergraph H will always be denoted by 

A(H) = maxdH(z). 
Z C Y  

A hypergraph in which all vertices have the same degree is said to be regular. 
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Note that A(H)  = r (H*) ,  and that the dual of a regular hypergraph is uniform. 

For a hypergraph H of order n ,  the degrees dH(x i )  = di in decreasing order form 
an n-tuple d ,  2 d ,  2 * - . 2 d,  whose properties can be characterised if H is a sim- 
ple graph (Erdds, Gallai [1960], cf. Graphs ,  Ch. 6 ,  Th. 6) .  In general 

Proposition 1. An n-tuple d ,  2 d ,  2 * * - 2 d, i s  the  degree sequence o j  a un i -  

f o r m  hypergraph o f  rank  r and order n (possibly un'th repeated edges) i f  and only i f  
n C di i s  a mul t ip le  o f  r and d, 2 1. 

i - 1  

Proof. Given such an n-tuple d, 2 d ,  2 * 

of a hypergraph H one by one on the set { ~ ~ , 2 ~ , . . . , 5 , } .  

- 2 d n ,  we wish to  construct the edges 

In the first step, associate with each vertex xi a weight d! = d; and form the first 
edge El  by taking the r vertices of greatest weight. In the second step, associate with 
vertex xi the weight 

Form E ,  by taking the r vertices of greatest weight, etc. If C d i  = m r  we obtain H 
with the edges E1,E2 ,..., Em, and dH(x; )  = di for i = 1,2 ,..., n.  

A hypergraph is connected if the intersection graph of the edges is connected. 
Then we have 

Proposition 2 (Tusyadej [1978]). An n-tuple d ,  2 d ,  2 
sequence o f  a connected u n i f o r m  hypergraph o f  rank  r i f  and only  i f  

* - 2 d, i s  t h e  degree 

n 

i -1  

( 1 )  C d ,  i s  a multiple o f  r ,  

( 2 )  di 2 1 (i = 1,2 ,..., n) ,  
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C d;  
d ,  < m  = -. (4) 

r 

(For extensions to non-uniform hypergraphs, cf. Boonyasombat [1984]). 

Theorem 1 (Gale [1957], Ryser [1957]). Given m integers rl,r2, ..., rm and an n-tuple 

o f  integers dl  2 d ,  2 - * * 2 d,, there exists a hypergraph H = (E l ,E2 ,  ..., Em) on a 

set X = {zl,z2, ..., xn} such that d H ( q )  = di for i 5 n and Bj I = rj  for j 5 m i f  

and only i f  

m 

j -  1 

(2) C r j  = dl+d2+ ...+ d ,  . 

Proof. We deduce this immediately from the theory of network flows (corollary to  
theorem 3, Ch.5 in Graphs). Indeed, construct a network flow with vertices the points 
j = 1,2 ,..., m and z1,z2 ,..., z,, with a source a and a sink z .  The arcs are 

- 
- 
- 

It suffices to  show that there exists an integer flow satisfying the capacities, 
saturating each of the arcs (j,z) entering the sink z ,  that is to say that the maximum 
flow which can enter set { z ; / i € I }  is always greater than or equal to  the sum Cdi, for 

all I C {1,2, ..., n} .  (Further, we note that thanks to  the network flow theorem we may 
always suppose that  such a flow never leaves empty an “entry” arc or an “exit” arc.) 

all arcs ( a , j )  with capacity r j  

all arcs (zi,z) with capacity d; 

all arcs (j,zi) with capacity 1. 

i E I  

Open Problem. Find a necessary and sufficient condition for a n  m-tuple ( r j )  and 

an n-tuple ( d i )  to be respectively the B, I and the d H ( 2 ; )  o f  a simple hypergraph H .  

Let r,n be integers, 1 5 r 5 n. We define the r-uniform complete hypergraph o f  

order n (or the r-complete hypergraph) to  be a hypergraph denoted K i  consisting of 
all the r-subsets of a set X of cardinality n. We may now state in a complete form 
the celebrated Sperner’s theorem [1926]; in fact the inequality (I) ,  which allows for a 
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simple proof was discovered (independently) much later by Yamamoto, Meslialkin, 
Lubell and BollobAs. 

Theorem 2 (Sperner [1928]; proof by Yamamoto, Meshalkin, Lubell, Bollobas). Every 

simple hypergraph H of order n satisfies 

Further, the number o f  edges m ( H )  satis f ies 

For n = 2h even, equality in (2) is  attained i f  and only i f  H i s  the hypergraph 

K,". For n = 2h-1 odd, equality in (2) i s  attained i f  and only i f  H is the hypeygraph 

K," or the hypergraph K,"+'. 

Proof. Let X be a finite set of cardinality n. Consider a directed graph G with ver- 
tices the subsets of X ,  and with an arc from A C X  to  B C X  if A C B  and 
IA I = D1-1. 

Let E E H ,  the number of paths in the graph G from the vertex 0 t o  the vertex 
~ 

E is B I!, thus the total number of paths from 0 to  X is n! 2 C (B l)!(n- I)! (as 
EEH 

H is a simple hypergraph, a path passing through E cannot pass through E' E H ,  
E' # E). We thus deduce inequality (1). 

For the second part, 

whence 

We immediately deduce inequality (2). 

Let H be a hypergraph satisfying equality in (2). Then for all E E H ,  
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If n = 2h is even, (3) implies that H is h-uniform, and since m(H) = (i)  we have 

H = K,", and the proof is achieved. 

If n = 2 h + l ,  (3)  implies that  h 5 15 h + l  for a11 E € H .  Let X ,  be the set 
of vertices in G which represent edges of H with cardinality k; the  set Xh IJ Xh,, is a 
stable set of G ,  and m(H)  = Bh UXh+l] .  

entering the image rXh of Xh is IrXh I(h+l). Thus 
The number of arcs of G leaving Xh is equal t o  bh I(n--h); the number of arcs 

Irxh I(h +I) 2 cxh I(n -h ) I  

or 

2h +I-h lrxh I >  h+l K h  I = I x h  1% 
If xh is non-empty and is not the set Ph(X) of all h-subsets of X ,  the above h e -  

quality is strict (because the bipartite subgraph of G generated by the h-subsets and 
(h+l)-subsets is connected), whence 

m(H)  = b h  I+ k h + l  I 5 kh I+ lPh+~(x)-~Xh I . 

Thus, equality in (2) is possible only if Xh = 125 or Xh = Ph(X) ,  i.e. if H = K," or 
K,h+'. 

Q.E.D. 

For extensions of Theorem 2 see: Erd6s [1945], Kleitman [lQSS], Meshalkin [1963], 

Kleitman [1965], Greene, Kleitman 119761, Katona llQSS], Hochberg, Kirsch [1970], 

Erd&, Frankl, Katona [19S4]. 

To generalise graphs without "pendent" vertices, we consider the following class 
of hypergraphs; a hypergraph H is said to  be sepuruble if for every vertex x, the inter- 
section of the edges containing z is the singleton {.} i-e. if n E = {.}. 

E E H ( z )  

Corollary. I /  an n-tupple d ,  2 d ,  2 * * * Ld,, of positive integers i s  the degree 

sequence o/ a separable hypergruph H = (&,...,Em) then 
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Essentially H is separable if and only if its dual H* is a simple hypergraph, which 
implies, by Theorem 2, 

Q.E.D. 

To generalise simple graphs, we say that  a hypergraph H = (El,E2, ..., Em) is 
linear if wi n E j  I 5 1 for i # j .  For example, the hypergraphs of Figures 1,2 are 
linear. 

We have immediately 

Proposition 3. The dual o j  a linear hypergraph is also linear. 

points el,e2, as then, in H ,  El 3 {zl,z2}, E, 3 {z1,z2}, contradicting wlflE2 I 5 1. 
Indeed, if H is linear, two edges Xi and X j  in H *  cannot intersect in two distinct 

Theorem 3. For every linear hypergraph H of order n, we have 

If i n  addition, H is r-uni  farm, then the number of edges satisfies 

The bound in (2) is attained if and only if H is a Steiner system S(2,r,n). 

For, the number of pairs x ,y  which are contained in a same edge of H is 

whence we have (1). If H is r-uniform, (2) follows. 

A Steiner system S(2,r,n) is an r-uniform hypergraph on X ,  with bl = n,  in 
which every pair of vertices is contained in exactly one edge. A necessary and suffi- 
cient condition for the existence of an S(2,3,n) system, due to T.P. Kirkman (18471, is 
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that  n = 1 or 3 (mod 6). 

To exclude some values of r it is easily seen that the following are necessary con- 
ditions for the existence of S(2,r,n) systems: 

These conditions are necessary and sufficient for r = 3,4 (Hanani). For r = 6 
these conditions are sufficient with a single exception: no S(2,6,21) system exists. Wil- 
son [1972] has further shown that  if r is a prime power and if n is sufficiently large 
then (1) and (2) are necessary and sufficient. 

For all questions on existence and enumeration of S(2,r,n) systems, see Lindner 
and Rosa [1980]. We give here a list of S(2,r,n) systems known for small values of r 
and of n: 

De Pasquale [1899], Brunel [1901], Cole [1913] 
De Pasquale [1899], Brunel (19011, Cole (19131 
Cole [1917], White (19191, Fischer (19401 
Witt (19381 
Deherder (19761 
Wilson [1974] 
Witt [1938] 
Wilson [1974] 
Brouwer, Rokowska [1977] 
McInnes [1977] 
McInnes [1977] 
Rokowska [1977] 

We deduce that  the bound in (2) of Theorem 3 is the best possible for n = 7, 
r = 3; or for n = 9, r = 3; etc. 
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3. Intersecting Families 

Given a hypergraph H ,  we define an intersecting fami l y  t o  be a set of edges hav- 
ing non-empty pairwise intersection. For example, for every vertex x of H ,  the star 
H ( x )  = {E/EEH, x e }  is an intersecting family of H .  The maximum cardinality of 
an intersecting family, which we denote A,-,(H), thus satisfies 

&(W L Fg IWx) I = A(H).  

In a multigraph, the intersecting families are just the stars and the triangles (perhaps 
with multiple edges). 

Theorem 4. Every hypergraph H o f  order n with n o  repeated edge sat is f ies  

b ( H )  5 2”-‘. 

Further, every maximal  intersecting fami l y  of the hypergraph of subsets of a n  n-set 

has cardinality 2”-’. 

Proof. Let A be a maximal intersecting family of the hypergraph of subsets of X ,  
where I = n. 

If B,  $? A then there exists in A a set A, disjoint from B ,  (by the maximality of 
A ) ;  thus X - B ,  3 A,, whence, for every A E A ,  (X-B,) n A # 0. By virtue of the 
maximality of A ,  we deduce that  (X-€3,) E A .  Conversely, if (X-B,) E A ,  we have 
B ,  $? A .  Hence B --+ X-B is a bijection between P(X)  - A and A ,  whence 

1 IA I = y IP(X) I = 2 ” 4 .  

Lemma (Greene, Katona, Kleitman [1975], anticipated by Bollob6s). Let x1,x2,...,xn 

be points in that order on a circle and let A = (A1,A2, ...,&) be a f ami l y  of circular 

intervals o f  point8 such that 

(3) A, &Aj f o r  a16 i , j  , i # j .  



General Concepts 11 

Equality i s  attained in (5) i f  and only i f  A i s  a family  of circular intervals o f  cardi- 

nali ty m each having a point in common. 

(*) Proof. Let Al be a set of minimum cardinality in A .  From (2), A ,  n Ai # 0 for 
i # 1; and from (3), these A ,  n Ai are intervals with one and only one of their ends 
coinciding with an end of A,.  From ( 3 )  these intervals A ,  n Ai are all different. Thus 
the number of possible intervals of this form is 5 2( b, 1-1). From (1) and ( 2 )  two sets 
A ,  n A, and A ,  nAi with i # j ,  i # 1, j # 1 cannot constitute a partition of A, ;  

thus only half of these possible intervals can occur, which gives us m-1 5 blI-l. 
Thus, for all i ,  hi 12 bl 12 m, so we have (4) and (5 ) .  

Finally, equality in (5) implies 

So we have h, I = 1.1, I = m ,  for 1 5 i 5 m. Thus the Ai are intervals of length 
m whose initial end-points are m successive points on the circle. Conversely if the Ai 

satisfy (I), (2), (3) and are all intervals of length m, then clearly we have equality in 

(5)- 

Theorem 5 (Erdcs, Chao-KO, Rado 119611, proof by Greene, Katona, Kleitman [1976]). 

Let H be a simple intersecting hypergraph of order n and o f  rank r 5 n / 2 ;  then 

n 
2 

Further we have equality in (2) when H i s  a star o f  KL (and only then if r < -). 
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Proof. Let X = {xl,x2, ..., xn} be the vertex set of H .  For any permutation T of 
1,2, ..., n ,  denote by H ,  the set of edges of H which are intervals for the circular 
sequence xn(1),2,(2), . . . ,2n(n),~,(l) .  For E E ff, put 

P(E) = I{.lr/EEH,)I. 
From the lemma, 

We then have 

Let E,  be an edge of H ,  with cardinality @, I = h ,  and let zo be an element of Eo. 
Since E, is also an edge of the hypergraph K,h(zo) = HI, and since from the lemma we 
have equality in (3) for H’, we have equality in (4) for H’, and 

We may thus write, using (4), 

Thus we have (1). 

n 
2 

Finally, every E E H satisfies I 5 r 5 -, so 

(2) follows. 

Q.E.D. 

For extensions to Theorem 5 see Schijnheim [l968], Hilton and hlilner 119671, Hil- 
ton [1979], ErdGs, ChaeKo,  Rado [1961], Bollobb [1974], Frankl [1975], Frankl [1976]. 
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If no restriction is made on the rank, then by analogous methods we obtain: 

Generalisation (Greene, Kleitman, Katona [1976]). Let H be a simple hypergraph of 

order n .  If H i s  intersecting, then 

(2) n ( H ) < (  nn ). 
1,1+1 

141.1 
Further, equality is attained in (2) for H = K,  . 

Remark. Theorem 5 shows that 

More precisely, we shall show that  in the r-complete hypergraph KL, the maximum 

intersecting families are: for r < -, the stars of the form KL(s); for r = -, the maxi- 

ma1 intersecting families; for r > -, the set of edges of KL. 

- 

n n 

2 2 
n 
2 

n 

2 
For r < - the proof of Theorem 5 implies that the only maximum intersecting 

families are stars. 

For r = -, let Ho be a maximal intersecting family of Kir: if E E H o  then n 
2 

- 

X-E e Ho. 
If E e Ho then there exists an edge Ej E H o  which does not meet E (by maximal- 

ity of Ho) thus X-E = E j  EH,. Thus b, 1 = -m(Ki,). Hence all maximal 

intersecting families have the same cardinality. 

1 
2 
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Theorem 8 (Bollob6s [1965]). Let H = (El,Ez,  ..., E,,Fl,Fz, ..., F,) be a hypergraph of 

order n with 2m edges such that Ei n F j  = 0 i f  and only if i = j .  Then 

Further, we have equality i n  (1) if for some integers r,s with r+s = n ,  we have 

(Ei,Ez, ..., Em) = K i ;  (F1,FZ ,..., F,) = K i .  

(*) Proof. Inspired by an idea of Katona, we may prove the result as follows. Let X 

be the vertex set of H ,  and let Y be the set of pairs (Sj,Tj) with S,,T, CX, 
Sj,Tj # 0, Sj n Ti = 0. Form a graph G on Y as follows: two vertices (Sj,Tj) and 
(sk,Tk) are adjacent if S, n Tk = 0 or sk n Tj = 0. Given a permutation T on X 
and a set S C X ,  denote by ,!? the smallest interval of the sequence 
0 = (7~(1),7r(2), . . . ,7r(n)) which contains the set S, and put 

Y(T) = {(S,T)/(S,T)EY; snr=r25; is before T in 0). 

If the vertices (Sj T.) and (sk,Tk) of Y(T) are non-adjacent then 3, n = 0, 
z k  n Fk = 0, Sj n Tk + 0, ,!?k n Tj # 0 which is a contradiction. Thus Y(T) is a 
clique of G .  

'1 

Note that  if in a graph G on a set Y we consider P cliques C1,Cz, ..., Cp and a 
stable set S C Y  we obtain, by counting in two different ways the number of pairs 
(y,Ci) with y E S and y E Ci, 

c I{i/ywi)I= 5 IcinsISp 
Y €S i-1 

As the (Ej,Fj) for J' = l , . . , ,m constitute a stable set of G we have 

Further, for two disjoint sets E,F C X 
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This equality, together with (2) gives us relation (1) which was what we had to 
prove. 

4. The coloured edge property and Chvital's Conjecture 

Let H = (El, ..., Em) be a hypergraph. The chromatic index of H is the least 
number of colours necessary to  colour the edges of H such that two intersecting edges 
are always coloured differently. This number q ( H )  has been extensively studied for 
graphs. 

If &(H) = k ,  then at  least k distinct colours are needed t o  colour the edges of a 
family of k intersecting edges; thus 

q ( H )  2 &(H) 2 A(H) .  

We say that H has the coloured edge property if q ( H )  = A(H) ,  i.e. it is possible to  
legally colour the edges of H with A ( H )  colours. 

Example 1. Let X be a set of individuals; suppose that certain individuals wish to  
have meetings during the day, each meeting being defined by a subset E j  of X .  We 
suppose that each individual wishes to  attend k meetings. Then we can complete all 
the reunions in k days if and only if the hypergraph H = (E1,E2, ..., Em) has the 
coloured edge property (each colour of an optimal colouring allows us t o  define the 
meetings of a day). 

Example 2: Bipartite graphs. Let H be a bipartite multigraph defined by a parti- 
tion (Xl,X,) of X and some edges E with P f l X ,  I = 1, B f l X 2  I = 1. A well known 
theorem of K&ig states that H has the coloured edge property. 

Example 3: Graphs. Let G be a simple graph, and let G be the multigraph obtained 
from G by adjoining a loop t o  each vertex. Vizing's theorem says that 
q(G)  5 A(G)+1 = A(G) .  Then we may colour the edges of G with A ( G )  colours: this 
is the coloured edge property. 
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E x a m p l e  4: r -complete  h y p e r g r a p h s  of order a mul t ip le  of r. All complete 
graphs K,, of order 2p even have the coloured edge property; this is an old theorem of 
Lucas [1892] which he formulated in the following way: a residence of 2p girls go for a 
walk every day in rows of two. Each girl refuses to  find herself twice with the same 
partner. Can you organise the walks for 2p-1 days? Each of these walks is deter- 
mined by a colour of the edges of the complete graph K2,. Place the vertices 
O J ,  ..., n-1 on a circle as in Figure 3, the first colour being determined by the segments 
of this figure, the others obtained by rotation of the segments about the centre 0. In 
1936 in Berlin, a student of Schur, R. Peltesohn, submitted a thesis showing that a 
school of 3p girls can walk every day in rows of 3, that is to say the complete hyper- 
graph K &  has the coloured edge property. 

n -  

n - 3  

1 

n .  n 

1 

n 
- + I  - 
2 2 

Figure 3 

For p = 3 this result had been discovered 40 years earlier by Walecki, who had 
obtained the 28 walks for 9 girls P , & , a , b , e , d , e , f , g  by decomposing the 7 tables shown 
in Figure 4. Finally, in 1975, Baranyai put a final point on this area of research by 
showing clearly and simply that KL has the coloured edge property if and only if n is a 
multiple of r .  (For a proof, see $5, Chapter 4). 
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7 

P e  f 
s a Q  
b c d  

Figure 4. The seven tables determining the c( oring of the edges o f  K i .  

Example 5 .  An interval hypergraph is a hypergraph whose vertices are points on a 
line, and each edge is a set of points in an interval. It is easy to see that  such a hyper- 
graph has the coloured edge property. This result is also a special case of a more gen- 
eral theorem which we shall prove in Chapter 5. 

Let H = (E1,E2,...,Em) be a simple hypergraph on X :  its hereditary closure H is 
the hypergraph on X whose edge set is the set of all non-empty subsets F C X  such 
that F C Ei for a t  least one index i .  

All families ( F i / j E f )  of non-empty subsets of X such that  F C Fj =+ F = Fk for 
some k are called hereditary: clearly we may write this in a'unique way as the heredi- 
tary closure of a simple hypergraph H .  

Not all hereditary hypergraphs satisfy the coloured edge property (e.g. 1273, I?,", 
ifo). Nonetheless, in 1974 Chvital made the important conjecture: 

Chvital's Conjecture. Every hereditary hypergraph fi satisfies A,,(fi) = A(fi). 

In other words, in every hereditary hypergraph there is always a star amongst 
maximum intersecting families. We shall show various cases of this conjecture. 

Theorem 7 (Berge (19761). Let H be a star. Then H has the coloured edge property. 

Proof. Let H be a simple hypergraph on X ,  all of whose edges contain a vertex zo. 

Assume the theorem to be true for all hypergraphs having fewer than m ( k )  edges. Let 
A be a maximal subset of X of the form A = E U F with E,F El?. By the maximal- 
ity of A ,  we have zo € A .  Set 
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8 = {E/E&,EUF=A for some F&} 

1. Observe that  8 consists of the sets Ex € 8  with so € E x  and of the sets of the 
form A-Ex; thus we can colour 8 with d B ( x O )  colours, using the same colour for 
Ex € 8  as for A-Ex. Thus if fi = 8 we obtain a colouring of H in a number of 
colours equal to the degree of so in 8 and we are done. 

2. Suppose H # 8:  we shall show that H-8 is an hereditary hypergraph. 

Let E E f i  - 8 and E’ C E .  Since E’ E f i  it suffices to  show that E‘ $? 8 .  Oth- 
erwise, E’ U F’ = A for an F’ E H .  By maximality of A ,  we have E U F’ = A ;  thus 
E E 8 ,  a contradiction. 

3. We now show that the maximal edges of H - 8 contain xo. For, otherwise 
there exists some E E m a x ( f i - 8 )  with so $? E .  Since H is a star, 
E U {so} = Eo EH. Thus Eo $? H - 8 (by maximality of E);  thus Eo E 8 ,  thus 
Eo U Fo = A for some Fo E H .  Thus E U (FoU{so})  = A and E € 8 :  contradiction. 

4. By the induction hypothesis, the edges of H - 8 can be coloured with d2-s(xo) 
colours so, by using part 1 above, we may write: 

A(@ I q(H)  I dfi-s(xo) + d ~ ( 3 0 )  = dfi(xo) I A(H) 

Thus equality holds throughout. This shows that  xo is a vertex of maximum degree in 
H and that q ( H )  = A(@. 

Q.E.D. 

The colouring of the edges of the hereditary closure of KA is related t o  a well 
known problem in Operations Research, the “cutting-stock problem”, which was solved 
by Gilmore and Gomory in [1901]; in this problem we wish to cut, from a stock of rods 
of length n,  k, poles of length 1, k, of length 2, ..., kr of length r ,  and to  minirnise the 
total number of rods. 

Theorem 8 (Baranyai). Let r 5 n be integers. I?; has the coloured edge property i f  

and only i f  i t  i s  possible to  solve without waste the cutting stock problem with 

ki = ( i )  for  i = l,Z,...r, that i s  t o  say, there exists an integer solution (xi) t o  the sys- 

t e m  

n 

xi 3 0, 

xi i s  the number o f  i-subsets to colour with j ,  
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9 izj = n ( j  = 1,2, ...I 
i - 1  

It is clear that  this condition is necessary; it is also sufficient, as we shall show 
later (Corollary to  Baranyai's Theorem, $5, Chapter 4). 

Just as the r-complete hypergraph K; generalises the complete graph, we may 
generalise the complete bipartite graph by the r-parti te complete hypergraph 

KL,,n I,,,,, n, defined as follows: let X' ,X2 ,..., X' be disjoint sets with p. I = ni for 
i = 1,2 ,..., r .  

of the form { z ~ , z ~  ,..., z'} with Z' E X ' ,  z2 E X 2  ,..., Z' €Xr. 
The vertices are the elements of X' U X 2  U . * . U F, and the edges are all sets 

Theorem 8 (Berge, Johnson (19771). The  r-parti te complete hypergraph KLI,nI,,-,,n, 

and i t8  hereditary closure have t h e  coloured edge property. 

Proof. 

1. Let H = KL,,n, ,nr,  with 1 5 nl 5 n2 * - * 5 n,, r . 2  2. We shall show that 
we can colour the edges of H with A(H)  = n2n3 ... n, colours. We denote the elements 
of Xk by 3:: = O,& = 1, ..., x i k  = nk-l. As usual, denote by [p]k  the integer 5 k-1 

congruent to  pmodulo k. Associate with each edge Z = zlz '...z' of H the (r-1)-tuple 

85) = ( [ ~ 2 + ~ 1 ] , 1 , [ ~ 3 + ~ 1 ] , , ,  * * * t[zr+z']n,) 

If two distinct edges 5 = z'z '...zr and 
lowing cases occurs: 

(i) 

= y'y2...y' intersect, then one of the two fol- 

z' = y' and then there is an i 2 2 with zi # y', so 

[zi+z'In, # [d+y ']n ,  and 85) # 4Y); 
(ii) z1 # y1 and then there is an i 2 2 with zi = y i ,  so 

[zi+z1In, z [ Y ' + Y ' ] ~ ,  and 8.1 # 8Y). 
We may consider the map 5 -+ 4F) as a colouring of the edges, and the number 

of distinct colours used is at  most n2n3 * * * n, = A(KLl,n2, ,n,). 
Q.E.D. 
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2. We shall show that H can be coloured with A(H) colours. For i = 1,2, ..., n,  
consider an additional vertex a', and put Y' = X' U {a'>; consider the hypergraph 
H' = KLl+l,n2+l, , , n , + l  determined by the classes 9, I = ni+l. 

For each edge E of H there is an edge F of H' defined by 

F = E u {a'/~nx'=@}. 
Thus there is a bijection between the edges of H and those of HI. As we have 

shown that the r-partite complete hypergraph has the coloured edge property, we can 
colour the edges of HI with 

A(H') = (n2+l)(n3+l) ...( n,+l) 

colours. If we colour each edge E of H with the colour of the corresponding edge F of 
H', it is clear that two edges of H which intersect have different colours. Hence 

q(k) 5 q(H') = A(H') = A(H) 5 g(H) .  

Thus q ( H )  = A ( 2 )  and the hypergraph H has the coloured edge property. 

Q.E.D. 

The main hypergraphs H for which it has been shown that &(I?) = A(k )  are the 

1. H i s  a star (Schgnheim [1973]). In this case, Theorem 7 shows that f i  has a 

following: 

stronger property, the coloured edge property. 

2. H i s  2-uniform (Vizing). 

3. H i s  3-uniform (Sterboul [1974]). In this case it can also be shown that  the 
maximum intersecting families of 

- &a) (star); 

- {ab ,ac,bc,abc}; 

- {ab,ac,ad,abc,abd,acd,bcd} 

- 

have one of the following structures: 

{abx,,abx2 ,... abxp, acxl ,... acxp, bcxl ,... bcxp, ab,ac,bc,abc}. 

4. H i s  linear. 

If H is uniform, see Sterboul [1974]; 



General  Concepts  21 

For all H ,  see Stein [1983]. 

5. H is of degree A(H) = 2 (Stein, SchGnheim (19781, Wang and Wang (19831). 

6. H i s  a n  r-part i te  complete  hypergraph. In this case Theorem 9 shows that fi 
has the stronger coloured edge property. 

n 
2 

7.  H is t h e  complete  hypergraph KL with r 5 - (from Theorem 5). 

Example 4 suggests the following conjecture: 

Conjecture. If H i s  l inear t h e n  H h a s  t h e  coloured edge property .  

This conjecture is true if H is a graph (Vizing); if H is a projective plane on 7 

points 1,2,..,7, we can colour the edges of H with A(& = 10 colours in the following 
way: 

colour 1: 123, 45, 6, 7 

colour 2: 147, 56, 23 

colour 3: 156, 34, 27 

colour 4: 246, 37, 15 

colour 5: 257, 13, 46 

colour 6: 345, 12, 67 

colour 7: 367, 14, 25 

colour 8: 17, 36, 24, 5 

colour 9: 16, 35, 47, 2 

colour 10: 57, 26, 1, 3, 4. 

5. The Helly property 

Let H = (El,E2, ..., Em) be a simple hypergraph. We say that  H has the Helly  

property  if every intersecting family of H is a star, i.e. for J C {1,2, ..., m},  

E~ n E~ z 0 

nEj z 0. 

(j,k EJ) 

implies 

J E J  

Hence a graph has the Helly property if and only if its is triangle-free; hyper- 
graphs with the Helly property have also other properties which generalise those of tri- 
angle free graphs. 

Example 1. Let H be an interval hypergraph: its vertices are points on a line, and its 
edges are intervals of points. A theorem of Helly shows that H has the Helly property. 

Example 2 (Algebra). Let ( X , g  be a lattice, i.e. an ordered set such that for each 
pair ( a , b )  there exists a least upper bound a v b and a greatest lower bound a A b .  
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Let H be a family of intervals of the form 

E(a,b) = {x/a<z<b}. 

Then it can be shown that  H has the Helly property. If X is the set of natural 
numbers, and if the edges of H are arithmetic progressions, the Helly property is 
known as the “Chinese Remainder Theorem” (cf. Ore [1952]). 

We shall say that a hypergraph H = (E1,E2, ..., Em) is k-Helly if for every set 
J C {1,2, ..., m}, the following two conditions are equivalent: 

(Dk) I C J ,  11 I 5 k, implies n Ei # 0 
i E I  

Clearly if J satisfies (D) then it also satisfies (Ilk); if H is not k-Helly there are 
also sets J which satisfy ( D k )  but nbt (D) .  

Clearly, a hypergraph i s  2-Helly i f  and only i f  it satisfies the Helly property. 

Note also that if a hypergraph is k-Helly, we have (Dk+l) =+ (Dk) + (D); thus a 
(k+l)-Helly hypergraph is also k-Helly. 

Example. Let H be a hypergraph such that if each vertex is a point of Rd and each 
edge is the set of points contained in a convex set: an interval hypergraph corresponds 
to the case d = 1. A theorem of Helly states that such a hypergraph in Rd is (d+l ) -  

Helly. 

Theorem 10 (Berge, Duchet [1975]). A hypergraph H i s  k-Helly i f  and only i f  for 

every set A of vertices un‘th b I = k + l ,  the  intersection of the edges E, with 

DjnA I 2 k i s  non-empty. 

Proof. 

1. Let H be a k-Helly hypergraph on X ;  let A be a subset of X with b I = k+l .  
Set 

J = { j /Dj jnA 12-k). 

j € J  
We shall show that  n E, # 0. 
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Case 1. 

G of the vertices of A versus the edges (E j / j€J )  satisfies 

I J 1  5 k. We have n E j  # 0 since otherwise the bipartite incidence graph 
J E J  

IJ Ik 5 dG(j) = m(G) 5 ( k 1-11 I.1 I = ( IJ k l ) ( k + l )  
j € J  

which implies 1.J I 2 k + l :  a Contradiction. 

Case 2. 

(from Case 1); thus J satisfies (Dk) and hence (D). Thus 

IJ [ 2 k + l .  In this case each set I C J with 11 15 k satisfies n E i  # 0 
i E I  

2. Let H = (El,E2, ..., Em) be a hypergraph such that for each A C X  with 
I = k + l ,  the family ( E j / ( E j n A  ILk) has a non-empty intersection. We shall show 

The proof is by induction on IJ I. Clearly this is true for IJ 15 k, so assume 

that H is k-Helly, that  is for every J C {1,2, ..., m}, (Dk) * (D). 

1.J I > k ;  let jl,j2,...,jk+l be distinct elements of J .  Then the condition (Dk) implies 

(VI c J +i}, I1 I<k): SfEj + 0 
By the induction hypothesis this implies 

Let a1 be an element in this intersection. The elements ~ ~ , a ~ , . . . , a k + ~  are different 
(otherwise we are done). For A = {al,a2,...,ak+l}, 

( E j n A I L k  ( j E J )  

whence 

Q.E.D. 

Corollary. A hypergraph H has the Helly property if and only i f  for any three ver- 
tices a1,a2,a3, the family of edges containing at least two of the vertices ai has a 

non-empty intersection. 

Application: Family of subtrees of a tree. Let G be an acyclic connected graph 
on X ,  i.e. G is a tree. Consider a family H of subsets of X which induce a subtree of 
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G .  We shall show, with the help of the preceding corollary, that  H has the Helly pro- 
perty. To see this, consider three vertices a ,  b ,  c of G .  If p[z,y] denotes the unique 
path in the tree G connecting the vertices z and y it is easy to  see that the three 
paths p / u , b ] ,  plb,c] and p\c,a] have a common vertex zo (otherwise G would have a 
cycle). This vertex zo belongs to every edge of H containing two of the points a,b,c.  

Thus H has the Helly property. 

(Note that if G is a path P, we obtain Helly’s Theorem). 

Theorem 11 (Tuza [1984]). Let H = (E1,E2, ..., Em) be a s imple  k-Helly hypergraph 

of order n. If min Bj I 2 k+1 then 
J 

(*) Proof. 

1 .  We shall show first that every edge E j  contains a vertex a, such that Ei-{uj} 

is not contained in any edge other than Ej.  Indeed, if this is not the case, there exists 
an edge Eo = {ul,u2, ..., u,.} with r 2 k+l ,  such that, say, E,-,-{ai} C Ei for 
i = 1,2, . . . ,r .  Since H is a simple hypergraph, we have Eo fl Ei = Eo-{ui} for 
i = 1,2 ,..., 1’. Thus 

However, the intersection of r-1 of the sets Eo,EI, ..., ET is non-empty. Since 1.-1 2 k ,  

and since H is k-Helly, we have also: 
r 

n E~ # 0. 
j -  1 

A contradiction follows. 

2.  Thus every edge E, contains a vertex a, such that 

(Ej-{a,}) n (X-Ei )  # 0 for all i # j 

Set 

Ej = Ej-{aj} 

F; = X-Ej.  

Thus we have 



General Concepts 25 

E! n F! = g 

El n F,! # 0 if i # j 

We may now apply Theorem 6 and 

3 1  

The theorem follows. 

Corollary (Bollobis, Duchet [1979]). Let H be a simple k-Helly hypergraph of order 

n with min W j  I 2 k+2 and max Bj I = r 5 lL. Then 
j 2 3 

n -1 
(1) m ( H )  L (r-l)* 

Proof. Every E E H  satisfies: 

( El- ,-I1) - < (n-1)  r-1 . 

Hence 

Inequality (I)  follows. 

For a hypergraph W with the Helly property, more precise results can be proved: 

Theorem 13 (BollobL, Duchet [1983]). Let H be a simple hypergraph of rank r 2.3,  

r 5 L, with the Helly property. Then 
2 

Further, equality holds in (1) i f  and only i f  H is  a star of KL. 

Theorem 14 (Bollobris, Duchet [1983]). Let H be a simple hypergraph of order n 2 5 

with the Helly property. Then 
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Further, equality holds in (1') i f  and only i f  one of the following i s  true: 

(i) 

(ii) 
(iii) n = 5 and H is a star of K:, or i s  the bipartite complete graph K2,3 m'th one 

n = 2h is even and H i s  a star of K,h; 

n = 2h+l i s  odd 2 7 and H is a star of K,h+'; 

class of 2 vertices and one of 3 vertices. 

6. Section of a hypergraph and the Kruskal-Katona Theorem 

Let H be a simple hypergraph on X of rank r ,  and let Ic 5 r be a positive integer. 
Define the k-section of H to  be a hypergraph [H]k whose edges are the sets F C X  

satisfying either I < /c and F = E for some 
E E H .  

I = k, and F C E for some E E H ;  or 

Observe that [H]k is a simple hypergraph on X. Further its rank is k. 

For k = 2, the 2-section [HI, is thus a graph; if H contains no loops then [HI, is a 
simple graph which is obtained by joining two vertices of X if they belong to the same 
edge of H .  If H is a simple r-uniform hypergraph with m edges, what can we say 
about the number of edges of [HI,-,? 

The best possible lower bounds for all m were obtained independently by Kruskal 
[1963] and Katona [1968]. The proof was simplified by Daykin [1976], and that  which 
we now give, shorter still, is due to Frank1 [1984]. We need two preliminary lemmas. 

Lemma 1. Let m and r be positive integers. Then there exist integers a,.,ar-,,...,a8 

such that 

Further the ai 's are d e f i n e d  uniquely by  ( 1 )  and  (2). In particular, a ,  i s  the largest 

integer such that 
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(*) Proof (by induction on r ) .  For r = 1 ,  we have 1 = r 2 s 2 1 so s = 1 and 
a, = m; thus the decomposition (1) exists and is unique. Assume now the existence 
and uniqueness of decomposition (1) for r-1. Let a, be the largest integer such that 

m-(:) 2 0 .  Then by the induction hypothesis, 

a,-l > > . . > a, 2 s. 
We must have a, > a,-l since otherwise we could write 

a,+l 
m 2 (7) + (:I;) 2 (0) + (,“il) = ( r ). 

This contradicts the definition of a,. Hence the existence of decomposition ( 1 )  is pro- 
ven. 

To show uniqueness, suppose there exist two distinct decompositions of m: 

-=(a :>+ +(:)=(:)+ . - .  +(:) 
Observe that 

If a,  < b, then 

This implies m = contradicting the definition of r .  

Hence a, = b,, and as the decomposition of m - (:) = m - (:) is unique 

(induction hypothesis) the two decompositions of m are identical. 

Lemma 2 (Frank1 (19841). Let H be an  r-uniform hypergraph on X and let z1 E X .  
There exists an r-uniform hypergraph H‘ on X with m(H’) = m ( H ) ,  

m([H’],-l) 5 m([H],- ,)  and satisfying 
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(*) Proof. For a vertex z # zl, put 

(E-{z}) u { X I }  if z EE, z1 st E 

ff,E = tE otherwise 

P u t  a,H = {a,E/EEH}. It is easy to  see that [a,H],-, C a,[H],-,. By repeating 
the operation cry on azH as many times as necessary we get a hypergraph H’ with 
m(H’) = m ( H ) ,  m([H‘],-l 5 m([H] , ) ,  and a,H’ = H’ for all z # zl. 

Theorem 14 (Kruskal, Katona). Let H be an r-uniform hypergraph with 

a, > a,-1 > a * > a, 2 s 2 1. 
Then 

(*) Proof (by induction on r and m) .  

1. We may assume that H satisfies 

(simply by replacing H by the hypergraph H’ defined in Lemma 2). Set 
Hl = (E-{zl}/EEH(zl)). Then 

2. The theorem holds trivially for r = 1 or m = 1; proceed now by induction on r 

and on m. 

Suppose first 
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By applying the induction hypothesis to  the hypergraph H ,  (less some edges if the ine- 
quality is strict), we obtain 

= (2,) + * * . + (,",) 
which is what we had to show. 

Suppose now that 

As a consequence we can write 

From (l), and applying the induction hypothesis on m to  N-H(x , ) ,  

which contradicts (4). 

Corollary. 

r > k 2 2. If a is the largest integer such that m ( H )  2 (f) then 

Let H be an r-uniform hypergraph and let k be an integer with 

4 W I k )  1 (;) 

Proof. Let H I  be a partial hypergraph of H with m ( H l )  = (:). From Theorem 14, 
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m ( 1 ~ 1 I r - 1 )  2 (,!I) 

Let H ,  be a partial hypergraph of [HI],-, with m ( H 2 )  = By Theorem 14, 

m ( ~ 2 I r - 2 )  2 (,.Q2)9 

m(IHl!J L (;I. 

etc. Finally, m([Hr-k]k)  2 (i). Since [HI, 3 [Hr-& we also have 

Q.E.D. 

7. Conformal Hypergraphs 

We say that a hypergraph H is conformal if all the maximal cliques of the graph 
[HI2 are edges of H .  If H is simple, it is conformal if and only if the edges of H are 
the maximal cliques of a graph. 

More generally, consider an integer k 2 2. Every edge A of a hypergraph H satis- 
fies the property: the edges of [HI, contained in A constitute a k-complete hyper- 
graph. If every set A C X maximal with this property is an edge of H the hypergraph 
is said to  be k-conformal. Hence a hypergraph is conformal if and only if it is 2-con- 
formal. 

Proposition. A hypergraph H i s  k-conformal i f  and only i f  for every set A C X  

the following two conditions are equivalent:’ 

( c k )  

(C) 

every S C A with IS I 5 k i s  contained in some edge of H ,  

the set A i s  contained in an edge  of H .  

Observe that (C) always implies (C,). 

Lemma. A hypergraph i s  k-con formal i f  and only i f  i t s  dual i s  k-Helly. 

Proof. In the hypergraph H = (El ,E2,  ..., Em) the set A = { z j / j E J }  satisfies the con- 
dition (C,) if and only if in the dual hypergraph H* = ( X 1 , X 2 ,  ..., X”) the set J satis- 
fies 

(Dk)  I C J ,  ]I  I 5 k implies n X i  # 0 
i € I  
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Similarly, the set A satisfies Condition (C) if and only if in the dual hypergraph H*,  
the set J satifies 

Thus (C,) is equivalent t o  (C) if and only if (Dk)  is equivalent to  (D). 

Theorem 15. A s imple  hypergraph H is k-con fo rmal  i f and only  i f  for  each partial 

hypergraph H’ C H having k + l  edges, t he  set {z/z U r , d H i ( z ) > k }  i s  contained in a n  

edge o f  H .  

Proof. From Theorem 10, the dual hypergraph H* = (X,,X,, . . . ,Xn) is k-Helly if 
and only if for a set F = { e j / j E J }  with IJI = k+1, the intersection of the Xi with 
B; fl J I 2 k is non-empty. Or, again, for each H‘ = {Ei/j€F} with IJ I = k + l  there 
exists an edge of H which contains the set 

{z/dH’(”) a). 
Corollary (Gilmore’s Theorem). A necessary and su f f i c i en t  condition f o r  a hyper- 

graph H t o  be conformal  is tha t  f o r  a n y  three edges E1,E2,E3, t h e  hypergraph H has  

an edge containing the  set 

( E m , )  u (E ,nE3)  u ( E , ~ E , )  

It suffices to put k = 2 in the statement of Theorem 15. 

8. Representative Graphs 

Given a hypergraph H = (E,,E,, ..., Em) on X ,  its representative graph, or line- 

graph L ( H )  is a graph whose vertices are points el,e2,  ..., em representing the edges of 
H ,  the vertices ei,e, being adjacent if and only if Ei n Ej # 0. 

Example 1. The representative graph of a simple graph G was characterised by 
Beineke 119681: a graph is an L ( G )  if and only if it does not contain as an induced sub- 
graph any of the graphs G1,G2, ..., G9 shown in Figure 5. 

Example 2. The representative graph of a multigraph G was characterised by Ber- 
mond and Meyer 119731: a graph is an L ( G )  if and only if it does not contain any of 
the graphs G{,G&, ..., G; shown in Figure 6. 
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Figure 5. The 9 forbidden configurations for the representative graph of a simple 

graph. 

Example 3. The representative graph of a multigraph without triangles or loops is 
characterised by: each vertex appean in at most 2 maximal cliques. 

Example 4. The representative graph of a bipartite multigraph is characterised by: 
each vertex appears in a t  most two maximal cliques, and every elementary odd cycle 
contains two sides of a triangle. 

Example 5. If H is a family of intervals on a line, there is a characterisation of L ( H )  
due to  Gilmore and Hoffman (cf. Graphs, Chapter 16, Theorem 12) : it is a triangu- 
lated complement of a comparability graph. This concept has a simple interpretation: 
if m individuals were present during various intervals of time in a meeting room, a 
detective who demands of each person whom he has met can trace the “graph of meet- 
ings”: if nobody lies, the graph represents a family of intervals. 

We do not know any similar characterisation for the representative graph of a 
family of convex sets in the plane, but we do know that every graph represents convex 
sets in the 3-dimensional space (Wegner [1065]). 
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Figure 6. The 7 forbidden configurations for the representative graph of a multi- 

graph. 

Proposition 1. The representative graph of a hypergraph H i s  the 2-section (H*I2. 
Further, the following two properties are equivalent: 

(i) H satis f i e 8  the Helly property and G i s  the representative graph of H ;  

(ii) the maximal edges of H* are ;he maximal cliques of G .  

Clearly the graph [H*], is isomorphic to L ( H ) ,  but [H*I2 can have loops if H* has 
loops. 

For the other part, if H has the Helly property, H* is conformal; thus (i) implies 
that  G = [H*], has as cliques the maximal edges of H*. Similarly (ii) implies (i). 

Observe that if G = L ( H )  and if H does not satisfy the Helly property i t  can 
happen that H* does not contain the maximal cliques of L ( H ) .  For example, if H is 
the hypergraph H 2  in Figure 8, L ( H )  is the graph G in Figure 8; the maximal cliques 
of G are not the edges of H*. 
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Propos i t ion  2. Every graph i s  the representative graph of a linear hypergraph. 

A simple graph G on { x ~ ,  ..., xn}  is the representative graph of a linear hypergraph 
(X1,X2, ..., X n )  if we take for Xi the  set of edges of G adjacent t o  the vertex x i .  

Propos i t ion  3. A graph G i s  the representative graph of a n  r -un i form hypergraph 

i f  and only i f  G contains a fami l y  C of cliques with the following properties: 

(no) 
(n,) 
(n2) 

(Ha) 

each clique of C is of  cardinality 2 2; 

every edge of G i s  contained in at least one clique o f  C ; 

each vertex of G appears in at most r cliques o f  C ; 

f o r  each vertex x which is covered by exactly ctiques o f  C ,  the intersection 

o f  these cliques is {x} .  

Indeed, consider the r-regular hypergraph C’ obtained from C by adjoining loops, 
which is always possible because of (I&,). Let H be the dual of the hypergraph C’. By 
(n,) we have L ( H )  = [IT*], = [C]  = G. By (&) the hypergraph H has no repeated 
edges: it is thus an r-uniform hypergraph. 

Proposition 4. A graph G i s  t he  representative graph of a linear r -un i form hyper- 

graph i f  and only i f ,  in G there ezists a fami l y  C of cliques satisfying (no), &) and 

(n:) each edge i s  contained in exactly one clique of C . 

Let C’ be the r-regular hypergraph obtained from C by adding loops, which is 
possible from (&). Let H be the dual hypergraph of C’. From (II;), L ( H )  = G ,  the 
hypergraph C is linear and hence its dual H is linear (Proposition 3, §3). 

One can ask if it is possible to  characterise L ( H )  by a finite family of forbidden 
subgraphs in the case r # 2. In fact, Nickel, then Gardner, then Bermond, Germa, 
Sotteau [I9771 exhibited an infinite family of forbidden configurations for a representa- 
tive graph of a %uniform hypergraph. 

The graphs G,(t) ,  G,(t) ,  G3( t )  of Figure 7 constitute infinite families of minimal 
excluded configurations for the representative graph of a 3-uniform linear hypergraph. 

Nonetheless, it can be shown that 

Theorem 16 (Naik, Raq Shrikhande, Singhi [IQSZ]). There exists a finite f a m i l y  7, 
of graphs such that every graph G un’th minimum degree 2 69 i s  the representative 
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t copies 

i 

r copies 

Figure 7 
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graph of a linear buni form hypergraph i f  and only i f  G contains n o  member o f  33 
as an induced subgraph. 

More generally, they show the existence of a cubic polynomial f(k) with the pro- 
perty that for each k there exists a finite family 3k of forbidden graphs such that 
every graph G of minimum degree 2 f ( k )  is the representative graph of a linear 
k-uniform hypergraph if and only if G does not contain a member of 3k as an induced 
subgraph. 

By way of example, we can check the preceding propositions on the graph G of 
Figure 8 which is, at one and the same time, the representative graph of the hyper- 
graphs H,,  H ,  and H ,  of Figure 8. 

" 
d C 

Figure 8 

'9' b H ,  

cde e 

We shall denote by n(G) the minimum order of those hypergraphs H with 
G = L ( H ) ;  for example, for the graph G in Figure 8, R(G) = 2 since G = L(H,) .  

The determination of n(G) brings us back to the determination of the chromatic 
number by the following result. 

Lemma. Let G be a graph on {x1,x2, ..., x,} without isolated verticea, and let (??be the 

graph whose vertices correspond to the edges of G ,  the vertices corresponding to the 

edges [a,b] and [x,y] of G being adjacent i f  and only i f  {a,b,x,y} i s  not a clique i n  G 

(i.e. at least one of ax,ay,bx,by is not an  edge of G). Then the minimum order n(G) 
of the hypergraphs for which G is the representative graph is equal to the chromatic 



General Concepts 37 

number of c. 
Proof. 

1. We shall show that to  each q-colouring (TI, . . . ,gq) of the vertices of F with q 

colours we may associate a hypergraph H = (X1,X2, ..., Xn) of order q such that 
G = L ( H ) .  

Indeed, the set g. of vertices of coloured with colour i is stable; if [ a , b ]  is an 
edge of G belonging to  $, the vertex a is adjacent to  each end of any edge in q. The 
ends of the edges of g, thus generate a clique Ei of G.  The hypergraph 
C = (El ,E2,  ..., Eq)  is such that each edge and each vertex of G is covered by at  least 
one of the Ei. Thus the dual hypergraph H = (X1,X2, ..., Xn) of C satisfies 
L ( H )  = [C], = G,  and H is of order q. 

2. We shall show that to each hypergraph H = (XI, ..., Xn) of order q for which 
G = L ( H ) ,  we may associate a q-colouring (Sl,Sz, ..., Sq)  of the vertices of c. Indeed, 
denote by Ek the set of vertices of H which belong to exactly k of the sets Xi.  We 
have 

q =  pii+ WI+ 1 ~ 3 1 + - - -  

To each e € E l ,  which belongs to  exactly one set Xi(+ associate the 1-clique {xi(e));  to 
each e € E 2 ,  which belongs to exactly two sets Xi(e) and X,ce), associate the 2-clique 
{ Z ~ ( ~ P X ~ ( ~ ) }  of G;  to each e of E3 belonging to exactly three sets Xi(=), Xire,, Xkce, ass@ 

ciate the 3-clique { Z ~ ( ~ ) , Z , ( ~ J , ~ ~ ( ~ ] }  of the graph G;  etc. 

We have thus defined in G a family (E1,E2,  ..., E q )  of q cliques and it is evident 
that  each edge [q ,x j ]  of G belong to  a t  least one of these (since Xi n X j  contains a 
point of H ) .  Denote by gl the set of edges of G contained in the clique El, by sz the 
set of edges of G contained in E2 which are not already contained in El; etc. The 
family (g1,g2, . . . ,<) is then a q-colouring the vertices of G. 

It follows from points 1 and 2 that the chromatic number of c is equal to the 
least order of a hypergraph H such that G = L ( H ) .  

Theorem 17. Let G be a simple graph without isolated vertices, without triangles, 
with m edges; the minimum order of the hypergraphs for which G i s  the representa- 

tive graph is n(G) = m. 
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Indeed, the graph c defined in the lemma is the clique K,; the minimum order 
n(G) is thus m, the chromatic number of c. 
Theorem 18 (ErdGs, Goodman, P6sa [1966]). Let G be a graph of order n without 

isolated points; then 

Further, for each n ,  this bound i s  the best possible. 

Proof. 

1 .  Indeed, we know (cf. Graphs, Theorem 5, Chapter 1 )  that  we can always cover 
the edges and the vertices of a graph G by a family of 2-cliques and 3-cliques 

C = (El&,, ..., Ek) with k 5 [-1; since G = [C], is the representative graph of the 

dual of the hypergraph C ,  and since this dual is of order I c ,  we have 

n 2  
4 

n2 
W G )  5 5 [41’ 

which gives us ( 1 ) .  

2. We show that for every n ,  we can have equality in ( 1 ) .  

If n = 2Ic is even, take for G the complete bipartite graph K k , k ;  since it has no 
triangles or isolated vertices we have, from Theorem 17 

n2 n2 = k2 = - = - 4 [ 4 1. 
If n = 2k+l is odd, take for the G bipartite complete graph K k , k + l  which gives 

Thus we can have equality in (1 ) .  
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Exercises on Chapter 1 

Exercise 1($1) 

Give conditions that a simple graph must satisfy in order that is dual is also a 
simple graph. 

Exercise 2 ($1) 

Define an “interval hypergraph” to  be a hypergraph whose vertices can be 
represented by points on a line in such a way that  the edges are intervals of the line. 
Show that if an interval hypergraph is simple then its dual is also an interval hyper- 
graph. Show that  a subhypergraph of an interval hypergraph is an interval hyper- 
graph. 

Exercise 3 ($1) 

For two integers n 2 r 2 2 the r-uniform complete hypergraph of order n is the 
hypergraph KL whose vertex set is a set X of cardinality n,  and whose edges are all 
the r-subsets of X .  What is the rank of K; and of its dual (KL)*? 

Exercise 4 ($3) 

Let H be an intersecting family of order n ,  of rank r = max Bi I and anti-rank 
I 

s = mjnBi  I. Hilton [1975] showed that 
I 

n-1 
4 H )  5 c (r-J* 

1-6 

Show that this result generalises the ErdEs, C h m K o ,  Rado Theorem. 

Exercise 5 ($3) 

Show how Theorem 6 implies relation (1) of Sperner’s Theorem (Theorem 2). 

Exercise 6 ($3) 

Let H = {El,&, ..., Em} be a hypergraph satisfying 

Ej @‘k ( j f k )  
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Ej f l  Ek # (21 

Ej U Ek # x. 
Show that H' = (E, ,E,  ,..., E,,X-E, ,..., X-Em) is a simple hypergraph. Deduce the 
following inequality (SchGnheim [lQSS]): 

and this bound is best possible. 

Exercise 7 ($3) 

Show as in the lemma: 

Let A = (AI ,A2,  ...,Am) be a family of m circular intervals on a circle of n points 
with 

(i) IAi I > n/2 ;  

(ii) A; f l  Ag # 0 (i#j) 

(iii) A, &Aj ( i + j )  

Then we have m 5 n ,  with equality if A is the family A k  of distinct circular intervals 

having fixed cardinality k > -. n 

2 

Exercise 8 ($3) 

Let A be a family of circular intervals satisfying conditions (2) and (3) of Exercise 
7, and for A € A ,  put: 

Show that Cp(A) 5 n .  

Exercise 0 ($3) (Open Problem) 

Let H be a hypergraph on X of order n ,  let Ic 2 2 and t 5 n be integers. Erdiis 
and Frank1 119791 conjectured that 

I c {1,2 ,..., m } ,  Ir I = k 

implies 
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and if m is the maximum with this condition then H = {F /FCX,  pFnYl<s} for an 
integer s and for a set Y of cardinality t+ks. 

Katona showed that the conjecture is true if k = 2, t # 1. Frank1 [1979] showed 
k2k that the conjecture is true for k > 2, t < - 
150 ' 

Exercise 10 (54) 

Show, using the methods of proof of Theorem 7, that if H is an hereditary hyper- 
graph, the graph L ( H )  (complement of the representative graph) admits a matching 
covering every vertex, except a t  most one in each connected component of odd order 
(Berge [1976]). 

- 

Exercise 11 (55) 

Show, using Theorem 5, that  the dual of an interval hypergraph has the Helly prc- 
perty. 

Exercise 12 (55) 

Consider integers a l  < ml,az < m2, ... ,ak < mk. Show that  the system 

x E ai mod mi for i = 1,2, ..., k 

has a solution x if and only if every pair (i,j) with 1 5 i < j 5 k satisfies 

ai E a j  mod lem (mi,mj). 

(Use Corollary to  Theorem 10). 

Exercise 13 (55) 

Show that for k 2 3, every simple graph is k-Helly. 

Exercise 14 (36) 

Using Frankl's lemma (Lemma 2 of Theorem 14), prove the following result, due 
to LovLz (which generalises the corollary to Theorem 14): 

Let H be an r-uniform hypergraph and let z be a positive real number such that 
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z(z-1) ...(Z--T+ 1) 
m ( H )  = 

T !  

Then 

Exercise 15 ($8 )  

Let d ( m )  be the minimum cardinality of a set X having the property that  every 
graph of order m is the representative graph of at least m distinct subsets of X .  Show 
(by induction on m )  that 

d(2)  = 2 

d(3)  = 3 

d ( m )  = [,] if m 2 4  
m2 

(Erdiis, Goodman, P6sa [1966]). 
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Transversal Sets and Matchings 

1. Transversal hypergraphs 

Let H = (El, ..., Em) be a hypergraph on a set X .  A set T C X is a transversal of 
H if it meets all the edges, that  is to say: 

(i = 1,2, ..., m )  T n Ei # 0 
The family of minimal transversals of H constitutes a simple hypergraph on X 

called the transversal hypergraph of H ,  and denoted by TrH.  

Example 1. If the hypergraph is a simple graph G ,  a set S is stable if it contains no 
edge, that is, if its complement X-S meets all the edges of G. Thus, 

Tr G = {X-S/S is a maximal stable set of G}. 

Example 2. The complete r-uniform hypergraph KL on X admits as minimal 
transversals all the subsets of X with n-r+l elements. Thus 

Tr(KL) = IT,”-‘+’ 

Example 3. Let us consider the complete r-partite hypergraph K;l,na,.,,n, in which 
the set of vertices is X’ U X 2  U . . * U Y and the edges are the r-tuples 
{z1,z2, . . . ,z‘} with z1 EX’,z2 E X 2  ,..., z‘ c. Clearly X’,X2 ,..., Y are all minimal 
transversals. If there existed a minimal transversal T # X1,X2,  ..., Y, there would exist 
for every i a vertex ai E X ’  - T. The set {a1,a2, ..., a‘} would not meet T ,  and since it 
is an edge of the hypergraph, we have a contradiction. Therefore there are no other 
minimal transversals besides X1,X2,  ...,Jcr, and consequently: 

Tr(KL,,n n,) = W ’ , X 2 , * * * X ) *  

Example 4. Let G be a transport network, i.e. a directed graph with a “source” a 
and a “sink” z (cf. Graphs, Chap. 6). An edge of H would be a set of arcs of G mak- 
ing up an elementary path from a to z. Clearly, H is a simple hypergraph, and TrH 
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is the set of minimal “cuts” between a and z .  

Generalizing the “arc-colouring lemma” which has proved its effectiveness in the 
study of transport networks (example 4), we can state: 

Vertex-colouring lemma. Let H = (E1,E2,  ...) and H’ = (F1,F2, ...) be two simple 

hypergraphs on a set X .  Then H’ = TrH if and only i f  every pair (A ,B)  with 

A,B C X ,  A U B = X ,  A r l  B = 0, satifies: 

(i) there en’sts either an E E H contained in A or an F E H’ contained in B ;  

(ii) these two cases cannot happen simultaneously. 

Proof. 

1. Let H‘ = T r H ,  and consider a bipartition (A,B) of X .  If A contains an 
E E H ,  we have (i). If not, then X - A  = B is a transversal of H and therefore con- 
tains a minimum transversal T E TrH.  Thus T is an edge F of H’ and F 3 B;  we 
therefore again have (i). Moreover (ii) is obvious. 

2. Let H’ and H” be two simple hypergraphs such that every pair (A,B) satisfies 
(i) and (ii) with H and H’ on the one hand, and H and H” on the other. We show 
that this implies H’ = H”. (As we have (i) and (ii) with H and H” = TrH from (l), 
this certainly shows that H’ = TrH) .  

If not, there exists a set F’ E H’ - H“. As the pair (X-F’,F’) satisfies (ii) with 
H ,  H’, there is no edge E E H  contained in X-F’; and as the pair (X-F‘,F’) satisfies 
(i) with H ,  HI’, there exists an F” E H” such that F” C F’. On the other hand X-F“ 

does not contain an edge E E l i ,  (as above); since the pair (X-Ff’,F“) satisfies (i) 
with H and H’, there exists a F: E H’ with F: C F“. 

Thus, fl  C F” C F‘; and as H’ is a simple hypergraph Fi = F’, thus F‘ E HI’: a 
contradiction. By symmetry there cannot exist a set F” E H” - H’ either. 

Therefore H’ = H”. 

If we take for H” the hypergraph T r H ,  which is possible from (l), we get 
H’ = Tr H ,  which gives the proof. 

Corollary 1. Let H and H’ be two simple hypergraphs. Then H‘ = Tr H if and only 

if H = Tr H’. 
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Indeed H‘ = T r H  if and only if every pair (A ,B)  satisfies (i) and (ii) with H,H’; 
that is every pair (B,A) satisfies (i) and (ii) with H’,H; that is H = TrH’. 

Corol la ry  2. Let H be a simple hypergraph. Then Tr (TrH)  = H .  

(From Corollary 1). 

Application: P r o b l e m  of the keys of  the safe. An administrative council is com- 
posed of a set X of individuals. Each of them carries a certain weight in decisions, and 
it is required that every set E C X carrying a total weight greater than some threshold 
fixed in advance, should have access t o  documents kept in a safe with multiple locks. 
The minimal “coalitions” which can open the safe constitute a simple hypergraph H .  
The problem consists in determining the number of locks necessary so that by giving 
one or more keys to  every individual, the safe can be opened if and only if a t  least one 
of the coalitions of H is present. 

If TrH = (Fl,F2, ..., Fm), and if the key to  the i - th  lock is given t o  all the 
members of Fi, it  is clear that every coalition E E H  would be able to  open the safe; 
on the other hand, if A C X  does not contain any edge of H ,  the individuals making 
up the set A will not be able to open the safe, since A is not a transversal of TrH 
(Corollary 2). The minimum number of locks that are necessary is therefore m(TrH) .  
In particular if all the n members of the administrative council have the same weight, 
and if the presence of r individuals is necessary in order to  open the safe, the number 
of locks necessary is 

We now propose to  study the transversal hypergraph of an intersecting hyper- 
graph. If H and H’ are two simple hypergraphs on X ,  we write H C H I  if every edge 
of H is also an edge of H‘; we write H = H‘ if H C H’ and H’ C H .  We write H < H’ 
if every edge of H contains an edge of H‘. Therefore: 

H C H’ =) H <HI. 

Finally we denote by a x ( H )  the chromatic number of H ,  that  is to say the smal- 
lest number of colours necessary to “colour” the vertices of H such that no edge of 
cardinality > 1 is monochromatic. 

Lemma 1. ZJ H and H’ are simple hypergraphs on X ,  then 
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Indeed, since H < HI, every edge Ei of H contains an edge F of H'; since H' < H ,  
the edge F of H' contains an edge E j  of H .  Hence 

Ei > F  > E j .  

Since H is a simple hypergraph, i = j, and hence every edge of H is an edge of 
H'. By symmetry, H = H'. 

Lemma 2. A simple hypergraph H without loops satis fies x ( H )  > 2 i f and only i f  
TrH < H .  

Indeed, if x ( H )  > 2, we have TrH 4 H .  Otherwise there exists a T ETrH con- 
taining no edge of H .  But then the bipartition (T,X-T) is such that no edge of H is 
contained in a single class; it  is therefore a bicolouring of H ,  and that contradicts 
X(H)  >2* 

Conversely, if T r H  4 H ,  we have x ( H )  > 2. Otherwise there exists a bicolouring 
(A$)  of the vertices of H .  From the vertex colouring lemma, B contains a set 
T E T r H ,  and since TrH < H ,  we have also B 3 E for an E E H ,  which contradicts 
the fact that (A$)  is a bicolouring of H .  

Lemma 3. A hypergraph H is intersecting i f  and only i f  H < Tr H .  

For if H is intersecting, every E E H  is a transversal of H ,  and therefore E con- 
tains a minimal transversal T E Tr H ,  so H < Tr H .  

Conversely, if H < T r H ,  every E E H  contains a transversal of H ,  and therefore 
meets all the edges of H ,  that is, H is intersecting. 

Theorem 1. A simple hypergraph H un'thout loops satisfies H = TrH i f  and only 
i f :  

(i) X(H) > 2; 

(ii) H is intersecting. 

This is obvious from Lemmas 1, 2 and 3. 

Corollary. Let H be a simple intersecting hypergraph un'thout loops. Then either 
x ( H )  = 2, or x ( H )  = 3 and every hypergraph H' obtained from H by replacing an edge 
E by a new edge of the form E U {x} m'th x EX - E i s  bicolourable. 
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For if x ( H )  > 2 ,  we have H = Tr H from Theorem 1. As E is a transversal set of 
H ,  and hence of H’, we have E U{z} 6 TrH’ so that H’ # TrH’ and hence x(H’) = 2, 

from Theorem 1.  

A 3-colouration of H can be obtained from a bicolouring of H’ by replacing the 
colour of a y E E  by a third colour not already used. Therefore x ( H )  = 3. 

We give a few examples of hypergraphs H for which H = Tr H .  

Example 1. The complete r-uniform hypergraph KB-, satisfies Tr(Kgr-i) = Ki,.-, . 

Example 2. The finite projective plane P7 on 7 points satisfies Tr(P7) = P7, for it is 
an intersecting family and non-bicolourable: If one wanted to  colour the vertices with 
two colours + and -, the last vertex to  be coloured could not be given either + or - (cf. 
Figure 1). ? 

Figure 1. Figure 2. 

Example 3. The “fan” of rank r is a hypergraph F,. having r edges of cardinality 2 

and one edge of cardinality r ,  arranged as in Figure 2.  It is an intersecting family and 
non-bicolourable; therefore TT(F,) = F,. 

Example 4. Lovasz’s hypergraph L, is a hypergraph defined by r sets of vertices 
X’ = {z:}, 2 = {z:,zz}, X 3  = {zf,zi,z:}, * * , X‘ = {zip; ,..., z:}, and having as 
edges all the sets of the form 

X’ 

Clearly, L, is an intersecting family. Moreover x(L,) > 2. Otherwise there exists a 
bicolouring (A,B),  and at least one of the sets r’ is monochromatic (in particular X’, 
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which has cardinality 1); let i be the largest integer such that  X’ is monochromatic. 
Then there exists a monochromatic edge of the form X’ U {xi:’, ..., xi,}, which con- 
tradicts the fact that  (A,B)  is a bicolouring of L,. 

Therefore, by virtue of Theorem 1,  Tr(L,) = L,. 

Example 5. In the same way, using Theorem 1, we show that the hypergraph 
L3 = (X-E/E E L3) satisfies Tr = g. 

Example 6. The “generalised fan” is a hypergraph H having as edges r distinct sets 
E l ,  EP, ..., E, with Ei n Ej = {zo} for i # j and 2 = B, I 5 B2 I 5 * * * 5 Br I, to 
which are added the edges of the complete r-partite hypergraph on ( E l  - {z,}, 
E,  - Go}, * * , E, - {x,}). We show in the same way that T r H  = H .  

We shall represent by a diagram the different envisaged properties which general- 
ise, for a hypergraph H ,  the relation H = TrH.  We shall prove those implications in 
this diagram which have not already been proved by the preceding propositions. 

Proposition 1. For a simple hypergraph H ,  the following two conditions are 

equivalent: 

6) 
(ii) 

H has no loops and x ( H )  > 2; 

Tr H i s  intersecting and i s  not a star. 

For if ( i )  holds, then Tr H .( H (from Lemma 2), and the hypergraph H’ = Tr H is 
not a star. Thus H‘ = TrH < H = TrH’ and hence H’ is intersecting (from Lemma 
3). The converse is proved in the same way. 

Proposition 2. Every hypergraph H with property (7) satisfies property (8). 

We note that  if H satisfies property ( 7 )  it has no loops and is simple. 

Since x(H-E)  = 2, there exists a bicolouring ( A $ )  of H-E, and E is mono- 
chromatic in this bicolouring. Suppose for example that E C A .  If we change the 
colour of an arbitrary point x of E ,  a new edge E ’ E H  will become coloured B ,  
whence E n E‘ = {z}. From this (8 )  follows. 

Proposition 3. Every simple hypergraph H without loops having property (2) satis- 

fies property (8). 
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( 8 )  ( V E E H ) ( V X E E ) ( ~ E ’ E H ) :  
EnE‘= { x }  

I \  I 

(9) ( v x ) ( % ~ H ( x ) ) :  
( E , / x E X )  has all edges 

Figure 3. 

(H simple and without loops) 

Since every E E H  is a minimal transversal of H ,  the set E-{z} is disjoint with 
some edge E’ E H ,  whence E n E’ = {z}. From this (8) follows. 

Proposition 4 (Seymour [1974]). Let H be a hypergraph on X with property (7) and 

let A C X ;  then there i s  n o  bipartition (Al ,A2)  ofA into two transversal sets of HA. 

We note that  since H satisfies property (7), it has no loops and is simple. Sup- 
pose that such a bipartition (A,,A2) exists and consider the partial hypergraph 
H’ = (E /EEH,EnA=@) .  We have H‘ # 0, for if not then (Al,A2) would extend to  
a bicolouring of H .  We have H‘ # H ,  since A # 0. Thus from property (7), the 
hypergraph H‘ has a bicolouring (Bl,B,) and Bl U B, C X - A .  Since H has no loops, 
E E H’ implies 
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E ~ B , z @ ,  E ~ B , # @ .  

E ~ A , + @ ,  E ~ A , + @ .  

Furthermore E E H-HI implies 

Thus (A,UB,,A2UB2) generates a bicolouring of H ,  which contradicts (7). 

Propos i t ion  5 (Seymour [1974]). L e t  H be a hypergraph on X w i t h  proper ty  (7). 

E v e r y  A C X m e e t s  at  least  I edges o f  H ,  with equal i ty  possible  o n l y  i f  A = @ or 

A = X .  

(*) Proof. We consider three cases. 

Case 1. A = 0 the result is trivial. 

Case 2. A = X ;  the incidence matrix M of H defines a system of m ( H )  = m linear 
equations: M*z = 0. If m < I = n ,  we have m linear equations with n > m unk- 
nowns, and hence there exists a solution (z1,z2, ..., 2,) # 0. 

Let A = {z i / . i  #O}, A+ = {xi/”; >O}, A- = {xi/zi <O}. 

Clearly (A+,A-) is a bipartition of A into two transversal sets of HA, which con- 
tradicts Proposition 4. Hence m > n ,  and the result follows. 

Case 3. A # X ,  A # 0. We put 

H I  = {E/E EH,E CAI 

H” = {E/E EH,E n A = (3). 

Since A # X ,  A # 0, we have H‘# H ,  HI’ # H .  Thus there exists, from (7), a 
bicolouring (A,,A,) of H’ and a bicolouring (Bl ,B2)  of H”. Since (AlUBl,A2UB2) 
cannot define a bicolouring of H (since x ( H )  > 2) we have 

H # HI U H” 

Thus there is an edge E, E H - (H’U H”) that is to  say with: 
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Suppose that the set A does not meet more than [ edges of H .  We see as in 
Case 2 that there exists on A a real function z(z), not identically zero, such that  

c z(z) = o  ( E W - E , )  
zEEnA 

Put  Z(z) = z(x) if x € A  and Z(z) = 0 if z p A .  Then 

C E ( z )  = 0 (EEH-EO). 
z EE 

We cannot have C t(z) = 0, since the sets A+ = (z/Z(z)>O} and A- = {z,G(z)<O} 

would contradict Proposition 4. Suppose for example that 
z CEO 

c t(.) > 0. 
z EEo 

We then have, by virtue of Proposition 4, E,  fl A- = 0. 
The hypergraph H ,  = {E/E E H ,  E C X - ( A + U A - ) }  is bicolourable (since 

H I  # H ) ,  and admits a bicolouring (Bl ,B2) .  

The set A+ U B ,  is a transversal of H ;  for we have either E E H ,  or 
E n A+ # 0. Since Tr H C H ,  there exists an edge El E H contained in A+ U B,. 

If El C B,, then El E H,, which contradicts the fact that (B1,B2) is a bicolouring 
of H,. Hence E ,  fl A+ # 0, and consequently 

c .(z) >o. 
z €El 

Thus El = Eo, and consequently 

By the same arguments we obtain 

As B, and B2 are disjoint, (2) and (3) give Eo C A+ C A ,  which contradicts (1). 

Proposition 8. Every hypergraph H with propertg (7) satisfies property (9). 

For the preceding proposition shows that the bipartite graph G = (X,H;r)  of the 
vertex-edge incidence of a hypergraph H with property (7) satisfies lr.4 12 I for 
every A C X .  From Kijnig's Theorem, this condition implies that  to  wery x E X  we 
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can make correspond an edge E, E H ( s )  such that the E, are distinct edges. Then (7) 

implies the condition (9). 

We deduce that m ( H )  L n ( H ) .  The case where m ( H )  = n ( H )  is characterised 
by the following theorem. 

Theorem 2 (Seymour 119741). Let H be a hypergraph with property (71, and with 

m ( H )  = n ( H ) .  Consider for every x E X  an edge E, E H ( x )  such that the E, for 

x E X  are distinct edges. Then the directed graph G def ined  on X by making an arc 

from x t o  y i f  2/ EE,, is  strongly connected and has no euen elementary circuits. 

Conversely, i f  G = (X,T) is a directed graph on X which i s  strongly connected and 

without euen elementary circuits, the hypergraph HG = ({x}Urz/z€X) i s  a hyper- 

graph on x with property (7) and with m(HG) = n(HG). 

The proof arises from the previous propositions (cf. Seymour [1974]). 

Corollary. If H satisfies property (7) with m ( H )  = n ( H ) ,  then i t s  dual H* also 

satisfies property (7) un’tk m ( H * )  = n(H*) .  

For in this case the maximum matching of the bipartite vertex-edge incidence 
graph establishes a bijection between the set of vertices of H and the set of edges of 
H .  The graphs GH and GH* therefore have the same properties. 

Algorithm to determine TrH. If H = (E,,E, ,..., E m )  and H’ = (F,,Fz ,..., Fmf) are 
two hypergraphs, put: 

H U H’ = (E1,E2, ...,E,,FI,Fz,...,F,,) 

H v H r  = (EiUFj / i<m,  j<m‘) 

Min  H = (E/E€H;(VFEH,FCE):  F=E)  

Hence we have 

(1) Tr(HUH’) = Min(TrHVTrH’)  

Indeed, To is a transversal of H U H’ if and only if To is a transversal of H and a 
transversal of H’, i.e. 

TO 3 T U F ,  T E T r H ,  F ETrH’. 

Or, equivalently: 
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To E T r H  V TrH’. 

The formula (1) follows. 

No polynomial algorithm for determining T r H  is known (it belongs to  the class of 
NP-complete problems). Nevertheless, for hypergraphs with a few vertices we have at  
hand many methods that are sufficiently effective (Maghout [ l Q G G ] ,  Lawler [1966], Roy 
[1970], etc.). We could use formula (1 )  in the following manner: 

Put  H = (E,,E, ,..., Em) and Hi = (E,,E, ,..., Ei) .  Determine successively TrH, ,  TrH,, 

..., Tr Hi,  ..., by the formulas: 

T r H ,  = ({zVz=,) 

T r H ,  = Tr(H,U{E2})  = Min(TrHl  V ({z}/z €&)) 

TrHi = Min Tr(Hi-,U(Ei}) 

= Min (Tr H,  V ({z}/x E Ei )) 

etc. ... 
Finally we obtain Tr Hm = Tr H .  

2. The coefficients T and T’. 

For a hypergraph H we denote by r ( H )  the transversal number, that is t o  say, 
the smallest cardinality of a transversal; similarly, we denote by T’(H) the largest car- 
dinality of a minimal transversal. Clearly: 

r ( H )  = min IT1 5 max IT1 = r‘(H). 
T E R H  T a H  

Example 1: The finite projective plane of rank r. By definition, a projective 
plane of rank r is a hypergraph having r2  - r + 1 vertices (“points”), and r2 - r + 1 
edges (“lines”), satisfying the following axioms: 

(1) every point belongs to exactly r lines; 

( 2 )  every line contains exactly r points; 

(3) two distinct points are on one and only one line; 

(4) two distinct lines have exactly one point in common. 

Projective planes do not exist for every value of r (for example, if r = 7), but it is 
known that if r = pa + 1, with p prime, p 2 2, cy 2 1, there exists a projective plane 
of rank r denoted p G ( 2 , p 0 )  built on a field of p a  elements. For example, the projec- 
tive plane with seven points (“Fano configuration”) is PG(2,2). 
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It is clear that  in a projective plane every line is a minimal transversal set of H .  

In the projective plane of seven points there are no others because H = T r H  (given 
that  any two edges meet and that  the chromatic number of this hypergraph is > 2 ) .  

For the projective planes of rank r > 3, we have 7 ( H )  = r ,  but there exist other 

minimal transversats which are all of cardinality 2 r + 2 (Pelikan 119711). Hence 
-r‘(H) > r  + 2. 

rank r satisfies 7’(H) 2 r + G. 
On the other hand, Bruen [1971], has proved that every projective plane H of 

Indeed, the minimal cardinality of a transversal T which is not a line is given by 
the following table for the different known projective planes of rank r 5 9. 

minlTl - - 12 ? 

Example 2: The affine plane of rank k. 

By an aff ine plane is meant the subhypergraph H of rank k obtained from a finite 
projective plane of rank k + l  by suppressing the points of a given line. Every edge of 
H is called a line, and two lines of H which have an empty intersection are said to  be 
parallel. 

Thus an affine plane of rank k satisfies the following properties: 

Every line contains k points; 
Every point belongs to  k + l  lines; 
There are k 2  points and k2 + k lines; 
Two distinct points have one and only one line in common; 
Two distinct lines have either no points in common (“parallel”), or a common 
point (“secant”); 
Parallelism is an equivalence relation which partitions the set of lines into k+l  

classes of k edges each; 
Through every point not belonging to a given line, there passes one and only one 
line parallel to  the given line. 

Bruen and Resmini [1983] showed that for an affine plane H of order 9, we have 
T ( H )  5 29 - 1, and Brouwer and Schrijver [1976] showed that for the affine plane H 

constructed on a field of q elements, we have T ( H )  = 29 - 1. Finally Jamison [I9771 
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has shown that for the hypergraph H on the vector space with a base e1,e2, . . . ,en 
constructed on a field K of q elements and having as edges the planes 
{Cziei/Eaizi = b }  we have r ( H )  = n(q-1) + 1. This cardinality is obtained with the 
obvious transversal T = {kei/kEK, i = 1,2, ..., n} ,  but it is shown that  we cannot do 
better than that. 

E x a m p l e  3: The (n,k,X)-configuration. This is by definition a k-uniform hyper- 
graph H of order n such that every pair of vertices is contained in exactly X edges. 
From this definition we easily deduce that 

n -1 
H is regular and of degree A(H) = X- 

k-1 ' 
(i) 

(ii) H has m(H) = A edges. 
k(k-1) 

For certain known (n,k,X) configurations, the transversal number 7 is given by the fol- 
lowing table. 

7 1 7  4 4 7 6 

Theorem 3. Let H = (E1,E2, ..., Em) be a hypergraph on X with T' (H)  = t ,  and let k 
be a n  integer 2 1. If k < El I 5 E2 I 5 - . 5 Em 1, and if every k-tuple of X is 

contained in at  most X edges of H ,  then 

Proof. Let T be a minimal transversal of H .  For every E T ,  there exists an edge E, 
such that  E, n T = {z}. Since E, # Ey for z # y, the family H' = (E,/zET) is a 
partial hypergraph of H .  

By counting in two different ways the pairs (A$)  where E EH' and where A is a 
k-tuple of X - T contained in E ,  we obtain 
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from whence, a fortiori, 

Corollary 1. Let H be a hypergraph of order n with no loops, and  put s = min Bi I 
and A = A ( H ) .  Then 7 ' (H)  5 [ - Furthermore, this bound i s  the best pos- 

sible for s = 2. 

Indeed, Theorem 3 with k = 1 gives 

. For s = 2, the equality is obtained with the Turan Whence T ' ( H )  = t 5 - 
graph. 

n A  
A+s -1 

Corollary 2. Let H be a linear hypergraph of  order n with min IEi I = s > 2. Then 

1 1 
2 2 

7 ' (H)  5 n + -(s2-3s+1) - -~4n(~~-3~+2)+(~~-3~+1)~. 

Proof. Theorem 3 with k = 2 and 1 = 1 gives 

t(s,'> I ( y )  
that is to  say 

t2  - t(s2-3s+2n+1) + (n2-n) 2 0. 
Equality gives a quadratic equation which has two solutions t' and t", and we note 

that t' < n < t". Since T ' ( H )  5 n, we have also 7 ' (H)  5 t'. The result follows. 

Corollary 3 (Erdss, Hajnal [1966]). Let H be a tinear Sun i form hypergraph of order 

n ;  then 
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1 1  
T ( H )  5 n - V 2 n  +T + T .  

This follows from Corollary 2 with s = 3. 

Theorem 4 (Meyer [1975]). Let H be a hypergraph with min Di I = s > 1, and sup- 
pose that the vertices o f X  are labelled in such a way that 

d H ( z l )  5 d H ( z 2 )  I ’ * ’ 5 dH(”n)* 

Then the number r l ( H )  = t satisfies 

t n 

i- I i - 1  
C Id~(~i )+s-11  I C ddz i ) .  

Proof. Using formula (1) of the proof of Theorem 3 with k = 1, we obtain 

c (L%-b}I) I C d H ( Z ) .  
z ET zEX-T 

(1’) 

n 
This implies: t(s--1) 5 C d H ( z i ) .  The stated inequality follows easily. 

i - t + l  

We note that Theorem 4 generalises Corollary 1, and, in the case of graphs, gen- 
eralises the theorem of Zarankiewicz (Graphs, chapter 13). (For an independent proof 
by induction, see Hansen, Lorea [1976]). 

Theorem 6 (Berge, Duchet [1975]). Let H = (El,&, ..., Em) be a hypergraph on X .  
Let E,  = X  - E,. We have r’(H) I k i f  and only i f  the hypergraph 
H = (E1,E2, . . . ,Em) i s  k-conformal. 

- 
_ -  

Proof. To say that  
two conditions are equivalent: 

is k-conformal, is to  say that for every A C X  the following 

Let us consider the negations of these conditions, that is: 
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(ck) (3s C A ,  1.91 5 k)(VEj E H )  : E, n S # 0. 

To say that is k-conformal is to  say that (Ek) is equivalent to  (E) .  On the other 
hand, to  say that  r‘(H) 5 k, is equivalent t o  saying that every transversal A contains 
a transversal S with IS I 5 k; that  is to  say: (z) + (Fk). 
Since we have always (ek) =+ (c), we have r’(H) 5 k if and only if (Ek) is equivalent 
to  (z), that is to say if and only if E is a k-conformal hypergraph. 

Corollary 1. Let H be a simple hypergraph on X and let k be an integer 2 2 .  We 

have r’(H) 5 k i f  and only if for every partial hypergraph HI C H with k + l  edges 

there exists an  edge E E H contained in the set {x/dH,(x) > 1). 

Proof. From Theorem 15 (Chapter l), the k-conformity of H is equivalent t o  saying 
that  for every z’ C E with k + l  edges, the set 

A = {z/zUr, d g , ( z ) > k } .  

is contained in an edge E of H.  Since 

dE,(x) = I - d ~ , ( z )  = (k+l) - dH,(x) 

this condition is also equivalent to: 

{z/x€X, ~ H I ( Z )  5 l} = A C E. 
From this the stated result follows. 

Corollary 2. Let H be a simple hypergraph with r ( H )  = t 2 2. The hypergraph 

T r H  i s  uniform i f  and only i f  for every hypergraph H’ C H of t+l edges, there 

exists an  edge E E H contained in  

{x/xUr, d H i ( z )  > I}. 
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3. 7-critical hypergraphs 

We say that  a hypergraph H = (E1,E2, ..., Em) is r-critical if the deletion of any 
edge decreases the transversal number, that is to  say, if 

r(H--E,.) < r ( H )  (j = 1,2, ..., nz) 
Since we cannot have ~ ( H - E J . )  <7(H)- l ,  this is equivalent to saying that if H is 
7-critical with r ( H )  = t+l,  then r (H-E)  = t for every E E H .  

Example 1. The hypergraph K;,, is 7-critical, since T ( K ; + ~ )  = t + l  and if E is an 
edge of K;+,, the hypergraph K;+,-E has a transversal X-E of cardinality t . 

Example 2. Consider the family A of all the (r-1)-tuples of a set X with t+r-1 ele- 
ments; with every A € A ,  let us associate a new point YA, these points forming a set Y 

with cardinality (tTLyl). Consider the hypergraph H = (AU{yA}/AEA) on S U Y.  

Clearly, 7 ( H )  = t + l ;  since H-(AU{y,}) has  a transversal X - A  of cardinality t ,  the 
hypergraph H is 7-critical. 

For r = 2, the concept of a 7-critical graph is due to  Zykov in 1949. The sys- 
tematic study started in 1961 with an article by Erd6s and Gallai, who showed that a 
7-critical graph G without isolated vertices satisfies 27(G)-n(G) 2 0. 

Examples of 7-critical graphs are shown in Figures 4 and 5. 

r = 4  
2 r - n = 2  

K = 5  

2 r - n = 3  

Figure 4 Figure 5 
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Proposition 1. Every 7 -critical hupergraph i s  simple. 

For if H = (E l ,  ..., E m )  is 7-critical and not simple, there exist two indices i and j 
with Ei C E j .  An optimal transversal of H-Ej has r(H)-1 vertices, and since it 
meets Ei it also meets E,. Therefore 7 ( H )  5 7(H) - l ,  a contradiction. 

Proposition 2. Every hypergraph H vrith r ( H )  = t+ l  has as a partial hypergraph, a 

r-critical hypergraph H’ with 7(HI)  = t+l.  

Indeed, t o  obtain H’ it is enough to remove from H as many edges as one can 
without changing the transversal number. 

In a hypergraph H a vertex z is said to  be critical if 

(1) T(H-H(x ) )  < 7 ( H ) .  

We note that (1) is equivalent to: 

(2) T(H-H(x ) )  = 7(H)- l .  

Indeed, if ( 1 )  holds then the hypergraph Hl = H - H ( x )  has a transversal Tl  of cardi- 
nality 7(H)- l .  The set T, lJ {z} is a transversal of H and, since its cardinality is 
7 ( H ) ,  it is a minimum transversal. From this we obtain (2). 

Conversely, if (2) holds, let T be a minimum transversal of H containing x .  Then 
T-{x} is a transversal of H-H(z )  of cardinality 7(H)-l, from which ( 1 )  follows. 

Proposition 3. Every vertex of a .r-critical hypergraph i s  critical. 

Let H be a 7-critical hypergraph and let x be one of its vertices. Since x is con- 
tained in an edge, E say, 

~ ( H - H ( x ) )  5 7(H-E)  < 7 ( H ) .  

Thus z is a critical vertex. 

Example 1. Let us consider a simple graph G = (X ,E) ,  connected and without 
bridges. Let H be the hypergraph whose vertices are the edges of G and whose edges 
are the elementary cycles of G. Through every edge of a graph without bridges there 
passes a cycle; hence H is a simple hypergraph on E .  

For eo EE there exists a maximal tree ( X J )  with eo E F which spans G ;  we have 
r ( H )  = m(G)--n(G)+l, and every cc-tree of G is a transversal of H .  Therefore E-F 

is a minimum transversal of H containing eo. Thus every vertex of H is critical. 
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E x a m p l e  2. The analogous situation holds also for a strongly connected digraph Go. 

Let H be the hypergraph whose vertices are the arcs of Go and the edges are the ele- 
mentary circuits of Go (for example, take Go to be the Mzbius ladder represented in 
Figure 6 ) .  

Here the edges of H are: 

El  = {ab ,bd ,dc ,ca}  

E2 = {ab,bf  , f e , e a }  

E3 = { a b , b f ,  f e , e d , d c , a c }  

E,  = {ab ,bd ,dc ,c f ,  f e , e a }  

E5 = { C f , f e , e W c )  

Figure 6 

It is easy to  see that  7 ( H )  = 2 and that every vertex of H belongs t o  a transversal of 
cardinality 2. Hence every vertex of H is critical. By way of an exercise the reader 
can verify Proposition 4 with this example. 

Theorem 6 (Tuza [1984]) .  Le t  H = (E, ,E2,  ..., Em) be a 7-cr i t ica l  hypergraph with 

7 ( H )  = t+l. T h e n  

Proof. For every edge Ej there exists a set Tj ETr(H-Ej)  of cardinality t .  Clearly 
Ej n Ti = 0 if and only if i = j ;  thus from Theorem 6 ,  Chapter 1, 

The stated inequality follows. 

Corol la ry  1 (Bollobas [1965];  Jaeger, Payan [1971]) .  L e t  H be a 7-cr i t ica l  hypergraph 

of r a n k  r ,  w ' t h  7 ( H )  = t+l; t h e n  t h e  n u m b e r  of i t s  edges s a t i s f i e s :  
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m ( H )  I ( r f t ) .  

Moreover this bound i s  attained with the hypergraph Kl+r. 

Proof. Let E E H .  Since I 5 r we have 

Thus 

The stated inequality follows. 

We verify immediately that equality holds for H = K[+T.  

Corollary 2 (Theorem of ErdGs, Hajnal and Moore). If G is a simple graph o f  order 
n with a(G) = k and a(G-Ej) = k+l for every edge E,, then 

n-k+l 
m ( G ) I (  2 1. 

Since every maximum stable set of G is the complement of a minimal transversal 
G and vice versa, we have T ( G )  = n-k, .r(G--Ej) = n-k-1 for every j. The stated 
inequality then follows from Corollary 1. 

The following result is a theorem of Gyarfas, Lehel, Tuza [1980], which extends a 
theorem of Hajnal (Graphs, Theorem 8, Chapter 13). 

Theorem 7. Let H be a .r-critical hypergraph on X with 7 ( H )  = t+l.  Let A be the 
set of subsets A of X such that A $! H and A U {x} € H  for some x E X .  For 
x E X  and Y C X ,  put 

rx = {A/AEA,AU{~)EH) 

IY= urx 
2 EY 

Then every set S C X such that IS fl E I 5 1 for all E E H satisfies IrS I 2. IS I. 

(*) Proof. Let S be the family of S C X such that IS n E l  5 1 for every E E H .  
We shall suppose that  there exists in S a set S which satisfies IrS I € IS 1, and which 
is minimal with respect t o  this property. We shall then deduce a contradiction. 
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From the Ktinig-Hall theorem (Graphs, Theorem 5, Chapter 7) this means that 
the bipartite graph G = ( X , A ; r )  has no matching of S into A ,  but for every y E S  
there exists a matching of S - {y} into A .  Since in G the degree of a point of X is 
2 1, and since IrS I < IS I, there exists a set A. E rS and two distinct points y1,y2 E S 

such that 

A0 u {Yl} = El EH, 

A0 u {YJ = E2 EH, 

v1 ES 

Y2 ES. 

Since T ( H - E , )  = t ,  let Tl be a transversal set of the hypergraph H-E, having cardi- 
nality t ,  Since T, n E l  = 0, we have yr 9 T,, and consequently 

T~ n A z 0 ( A E ~ Y , ,  A Z A ~ )  

0 element of T 

Figure 7 

Because of the minimality of S, we have lrYl> for every Y C S - {y,}, and 
hence there exists a matching of S - {y,} into rS. This matching makes correspond 
to every y E S - {yl} a set A(y) E ry;  and, since IrS I = IS I - 1, every A E rS is the 
image of some r/ E S  - {yl}. 

Consider a set T2 obtained from TI by replacing every vertex y ES - {yl} which 
belongs to  TI by a vertex chosen arbitrarily from the set A(y). 
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We note that if an A E rS satisfies T ,  n A = 0, then all the points y E S - {yl} 
joined to A in G are elements of I",. Hence 

T2 f l  A # 0 (AErS). 

Since S E S this implies that 

T, n E z 0 ( E E H , E ( I S # 0 ) .  

It follows that  T, is a transversal of H ,  and since IT2 I 5 IT, I = t we have a con- 
tradiction. 

4. The K6nig property 

A matching in a hypergraph H is a family of pairwise disjoint edges, and the max- 
imum cardinality of a matching is denoted u(H). 

A matching can also be defined as a partial hypergraph Ho with A(Ho)  = 1. 

We note that  for every transversal T and for every matching Ho, 

ITn E I 1 1 ( E  m0) 
Thus Do I 5 IT I, from whence 

Y ( H )  = max Do I 5 T ( H ) .  

We say that H has the Kb'nig property if v ( H )  = 7 ( H ) .  

A covering of H will be a family of edges which covers all the vertices of H ,  that 
is to say a partial hypergraph H ,  with S(H,) = min dH,(z) 2 1. We write 

Z E X  

p(H) = min D, I. 
Finally, a strongly stable set of H is by definition a set S C X  such that 

IS fl El I 5 1 for every E E H ,  and we write 

@H) = max IS I. 
It is seen immediately that p ( H )  = T(H*) ,  E(H) = Y(H*) ;  for this reason we say 

that  H has the dual Kb'nig property if p ( H )  = E(If) .  

Example 1: The r-partite complete hypergraph. If nl 5 n2 _< . * * 5 nr, the 
hypergraph KL,,n,. . , ,", has the K6nig property since T = n1 and Y = n,. It also has 
the dual K6nig property since p = n, and 5 = n,. 

Example 2: Semi-convex polyominoes. A polyomino P is a finite set of unit 
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squares in the plane arranged like a chessboard with some of its squares cut out. With 
every polyomino P one can associate a hypergraph whose vertices are the unit squares 
of P and whose edges are the maximal rectangles contained in P. 

It is easy to  see that this hypergraph P has the Helly property and is conformal. 

Moreover, if P is “semi-convex”, that is to  say if every horizontal line of the plane 
intersects P in an interval, the hypergraph P has the Kiinig property (Berge, Chen, 
Chvatal, Seow [lQSl]) and the dual Kiinig property (Gyiiri [1984]). The smallest 
polyomino P with u(P) # r ( P )  is shown in Figure 8. 

Figure 8. 

Polyomino with u = 6 and r = 7.  
Figure Q. 

Polyomino with p = 8 and E = 7. 

Figure 10. Semi-convex polyomino with u = r = 3, p = E = 7. 
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Example 3: Paving with bricks. Consider the integers a 5 6 ,  p 5 q ,  and a rec- 
tangular chessboard of dimensions p X q ,  which is to  be paved with bricks of dimen- 
sions a X b.  What is the maximum number of bricks that  one can place on the chess- 
board? 

We can consider the hypergraph H whose vertices are the unit squares and whose 
edges are all the rectangles of dimension a X b ;  the answer to the problem is then 
v (H) .  Brualdi and Foregger [1974] have proved that H has the Kdnig property for 
every ( p , q )  if and only if a is a divisor of b.  For example, for a = 2, b = 3, there 
exists a chessboard of dimensions 9 X 6 which determines a hypergraph H with 
v ( H )  = 9, 7(N) = 10, thus not satisfying the K6nig property (Figure 11). 

t(H) = 10 

I 
p = 9  

Figure 11. The squares marked un’th a cross represent an optimal transversal o f  H .  

If one wishes to pave with bricks of dimension a X b a “truncated” chessboard, 
we have, in general, neither the Kdnig property nor the dual Kdnig property; neverthe- 
less, the truncated chessboard of 24 squares represented in Figures 12 and 13 satisfies 
these two properties with bricks of dimensions 1 X 4, as the reader can easily verify. 
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& ( H )  = 8 

I . . . . . . . . . . . . . . . . . .  ..................... 

I ....................... y: 

Figure 12. Figure 13. 
Zhe squares marked un’th a cross constitute 

a transversal of H and consequently 
this matching i s  ia  optimal. 

‘Ihe squares marked with a circle constitute 
a strongly stable set and consequently 

this covering is  optimal. 

Example 4: Hypergraph of subtrees of a tree. Let G be a tree on 
X = {z1,z2, .... z,}, and let N = (E1,E2 ..... Em) be a family of subsets of X which 
induce a subtree. We have seen that H has the Helly property. It follows from the 
theory of perfect graphs that H also has the Kijnig property. 

Let us give a proof by induction on 7 ( H )  = t for the equality v = 7. If t = 1, it 
is clear that v = 7. So, we may assume that H has an optimal transversal 
T = {z1,z2 ..... z t }  with t 2 2. 

Let S C X  be a minimal set such that the subgraph Gs is a tree containing T. 
Furthermore, let us choose T such that IS I is minimum. A pendent vertex z1 of the 
tree G s  is therefore in T. 

Since T is a minimal transversal of H ,  the partial hypergraph 
Hl = ( E / E W , E n T = { z 1 } )  is non-empty; there exists an edge El ENl such that 
El n (S-{zl}) = 0 (by the minimality of IS I). 

The hypergraph HI= H-H(z l )  has a transversal of cardinality t-1. Thus 
v(H’) = t-1 (by the induction hypothesis). An optimal matching of H’ augmented by 
the edge El, forms a matching of H with cardinality t ,  and hence v ( H )  2 t = 7(H). 
We therefore have vfH) = ?(H) .  

Example 5: Bipartite multigraphs. A famous theorem of Konig states that  a 
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bipartite multigraph has the Kdnig property, and also the dual Kdnig property. 

For non-bipartite graphs, those having the Kdnig property have been character- 
ised by Sterboul and this result will be proved later on (Chapter 4, Theorem 6). 

Example 6: Interval hypergranhs. A theorem of Gallai states that an interval 
hypergraph has the Kdnig propcr:y This follows also from Example 2 or Example 4 

above. We shall see later on tha-v I t  also has the dual Kdnig property. 

Example 7: The hypergraph of circuits of a digraph. Let Go be a strongly con- 
nected digraph, and let H be the hypergraph whose vertices are the arcs of Go and 
whose edges are the elementary circuits of G,. 

If Go is planar, a theorem of Lucchesi and Younger in [1978] shows that  the 
hypergraph H has the Ktjnig property. If Go is non-planar, the hypergraph H does not 
in general have the Kdnig property: for the graph Go of Figure 6 we find that 
v ( H )  = 1 and T ( H )  = 2. Younger has also conjectured that if Go is planar, the hyper- 
graph TrH has the Kdnig property; Kahn [1984] has shown that  for Go planar the 
hypergraph H I  of minimal length circuits of Go has its transversal hypergraph T r H ,  

with the Kdnig property. 

Theorem 8 (Seymour 119821). A linear hypergraph H with n ( H )  vertices and m ( H )  

edges without repeated loops satisfies 

(*) Proof. Let H be a linear hypergraph with m(H) = m ,  n ( H )  = n.  Let p ( H )  = p 

be the least integer 2 -. Thus m 
n 

m 
n 

p-1 < -. 
We show that u ( H )  2 p. As this is trivial for p = 1, we may assume that  p ( H )  2 2 

and prove the result by induction on m .  
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1. We can suppose that for every E E H ,  there are a t  least ( p - 2 )  

H which meet E .  
I+n+l edges of 

For if not, the hypergraph H ,  = (F /FEH,Fn  E =a) satisfies 

m-m(H1) < ( p - 2 )  IE I+n+l 
Hence, from (2), 

m ( H 1 )  > n(p-l)+l--(p-2) @ 1-n-1 = (n-F l)(p-2). 

In this case 

By virtue of the induction hypothesis the hypergraph H,, which is linear, satisfies 
v(H,) 2 p - 1 .  By adjoining E t o  a matching of H ,  with p - 1  edges we obtain a 
matching of H with p edges, and the theorem is proved. 

2. 

Let x E X .  The sets E-{x} with E E H ( x )  are pairwise disjoint (by the linearity of 
H ) ;  since their union has a t  most n-1 points, and only one of them can be empty, we 
have b ( x )  I 5 n.  Thus the maximum degree of H is A ( H )  5 n.  

If S c X ,  IS 15 p-1, there exists an edge E E H with E n S = 0. 

Using (2) we see that the partial hypergraph HI = ( E / E € H , E n S # @ )  satisfies 

m ( ~ ’ )  5 IS ~ A ( H )  5 (p-1)n < m = m ( ~ )  

Thus there is an edge E E H  - H’, and E n S = 0. 

3. We shall define progressively distinct edges Fl,Fz, ..., FP and distinct vertices 
xl,xz, ..., xp by the following rules: 

(I) F,  is an edge of maximum cardinality; x1 is a point of F,  with the smallest 
degree. 

(11) For i > 1, Fi is an edge such that Fi n {Z~,~~,...Z~-~} = 0 with the smallest 
cardinality (from assertion 2 above such an edge exists); xi is a vertex of Fj for which 
&(x) is maximum. 

Put  

Pi I f i  
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We note that if j E Ji there exists a unique edge E € H i  which satisfies xi E E and 
that  this edge E has at least j ,  elements. Thus 

n - 1 2  c (FI-l)= c ((EI-l)+C c (BI-1) 

2 c f i -  C I +  C ( f j - 1 )  

Z, EE E €Hi j l i  EEH, 
Z,EE 

EEH, E a :  j € J ,  

= fi hi I- CHi” I+ C (fj-1) 
j E J ,  

From this (3) follows. 

4. We show 

From assertion 1 above the number of edges of H which meet Fi is at least 
( ~ - 2 ) f i + n + l .  For x € P i ,  

1H(z) I I 1H(xi) I. 
Thus 

(P-Z)fi+n+l 5 f i (  Wi I+ IJi I-1)+1* 

From this (4) follows. 

5. We show that 



Transversal Sets and Matchings 71 

D! 1 > P -i+c (f j-1) 
j < i  

(5) 

6. We shall define a sequence of edges EI,E2 ,..., Ep one by one; if E1,E2, . . . ,Ei-l 
have been defined, we take Ei EH: so that Ei n Zi = 0, where 

zi = {x1vxz,*-*vzi-l} U IJ (Ej-{zj}) 
j<i 

Such an edge Ei exists, for the sets (E-{zi}/E €If:) are pairwise disjoint and there are 
at least 1+ IZi I of  them from (5); thus at  least one of them is disjoint from Zi. 

Ei EH! C Hi), and (Ej-{xi}) n Ei C Zi n Ei = 0. 
Every edge E,  with j < i  is disjoint from the edge Ei since x, f Ei (because 

Thus (E1,E2, ..., E p )  is a matching, and hence v(H)  5 p .  

Q.E.D. 

Corollary (Theorem of DeBruijn and ErdGs, completed by Ryser [1970]). Let 
H = (El,Ez, ..., Em) be a family of distinct subsets of X ,  where I = n ,  such that 

wi n E j l =  1 for i # j .  Then m 5 n .  Furthermore, if m = n ,  we have one of the 

folloun’ng eases: 

(0 H is a projective plane of rank r 2 3; 

(ii) H = ({1},{1,2},{1,3},...,{1,n}), n 2 1; 
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(iii) H = ({1,2},{13}, . . . ,{l,n),{2,3,...,n}), n 2 3. 

Inequality m 5 n is obvious since, from Theorem 8,  

m 
v ( H )  = 1 2 -  

n 

We note that  by using this result, Seymour has also shown that if H is a linear 
m hypergraph H and satisfies v ( H )  = --, then we have either (i), (ii), (iii) or n 

(i.1 H = K,,, where n is odd and 2 5 .  

Exercises on Chapter 2. 

Exercise 1 (s2)  

Show that if H has the Helly property and if we put 

Hi = {E/E €H,E CX-Ej} 

then T ( H )  5 max m(Hi). 
I 

Exercise 2 ($2 )  

Let H be an r-uniform hypergraph of maximum degree A = 2.  The upper bound 
for 7 ( H )  has been determined by Sterboul [1970]: 

if r is even, it is [[+I+]; 
if r is odd, it is [*] 3r+l or [L]. 3r +1 

Try t o  construct hypergraphs for which this bound is obtained. 

Exercise 3 ( $ 2 )  

If H is a 3-uniform regular of degree A = 3, then 

Show that this bound is the best possible. (Henderson, Dean (19741). 

Exercise 4 ($2) Let H be a hypergraph without loops on X .  For every Y C X ,  define 
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H / Y  = (Ei/E; E H ,  Ei CY). 

Put  T ( H )  = 0 if H is “empty” (having no edges), and suppose that  

WM 5 JXl ( Y C X )  

Show that for every maximal transversal T = {x1,x2, ..., q}, there exist distinct ele- 
ments yl,yz ,..., yt of S = X-T scch that [xl,yl],[z2,y2], . . . ,[zt,yt] are the edges of the 
graph [HI,. (Lehel [l982]). 

Hint: Consider the bipartite graph G = (T,S;r)  formed by the edges of [HI,. The par- 
tial hypergraph H ,  = (Ei/Ei EH,Ei C A  U r G A )  has a transversal T, with 

To = Tl U (T-A) is a transversal of H and ITo 12 IT1 implies that IrGA 12 l.4 1, 
from which the theorem follows. 

Exercise 6 ($4) 

Show that the hypergraph P defined by a polyomino (Example 2, 3 4) is confor- 
mal. Show that there exists a vertex of degree 1. Show that there exist distinct ver- 
tices xl,xz ,..., x, such that xi € E i  for i = 1,2 ,..., m.  

Exercise 6 ($4) 

Show that the hypergraph P defined by a semi-convex polyomino (Example 2, $ 4) 

has a set S C X which is a transversal and is strongly stable. 

Exercise 7 ($4) 

Use the results of Seymour to prove the “friendship theorem” (Erdds): if in a set 
of n individuals, any two of them have exactly one friend in common, then there exists 
someone who is a friend of all the others. 



Chapter 3 

Fractional Transversals 

1. Fractional transversal number 

Let s be a positive integer. An s-matching of a hypergraph H on X is a func- 
tion q on the edges of H such that  for each edge E ,  q ( E )  €{0,1,2, ..., s}, and for each 
vertex x ,  

c q w  5.. 
EEH(z)  

The value of an s-matching is C q(E);  we denote by u , ( H )  = max C q(E)  the 

maximum value of the s-matchings of the hypergraph H .  Clearly, for s = 1, an 
s-matching is a matching and u l ( H )  = u(H). 

E € H  9 EEH 

A fractional matching is a real-valued function q such that 

(1) O l d E )  I1 (E EH) 

(2) c q(E)<1 (. EX) 
E E H ( z )  

We denote the maximum value o f  a fractional matching of H by: 

u*(H)  = max C q(E) .  
f EEH 

Example: Consider a truncated checkerboard, for example that  of Figure 1 which has 
27 squares. We wish to  place a number of rectangular cards of dimension 2 X 3 on the 
board so that each card covers exactly 6 squares (or “polyominoes” of shape 2 X 3). 

What is the maximum number of polyominoes which we may place on the board SO 

that  no two of them overlap? If we let H be the hypergraph on the set of squares of 
the board whose edges are the sets of squares which may be covered by a polyomino, 
the answer is v(H) .  Here u ( H )  = 3, and a matching of value 3 is shown in Figure 1. 
More difficult is the following problem: What is the maximum number of polyominos 
which may be placed on the board in such a way that no square is covered more than 
twice? The answer is v Z ( H ) .  Here uZ(H) = 7, and a 2-matching of value 7 is shown in 

Figure 2. A more detailed study shows further that  v*(H)  = -. 7 
2 
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v ( H )  = 3 

Figure 1 

v,(H) = 7 

Figure 2 

For an integer k 2 1 we define a k-transversal of H to  be a function p on X 
such that for each vertex z, p ( z )  E {0,1,2, ..., k} (the “weights”) and 

The value of a k-transversal p is c p(z ) ,  and we shall denote by T ~ ( H )  the 
z€x 

minimum value of the k-transversals of H .  Clearly, for k = 1 a k-transversal is a 
transversal and 7 ,(If) = 7(H) .  

A fractional transversal of H is a real function p ( z )  such that  

(1) 0 I P ( Z )  51 (. E X )  

( 2 )  c P ( Z ) l l  ( E  E H )  
Z € E  

The fractionat transversal number of H is the minimum value 7 *(H)  of the frac- 
tional transversals of H ;  this number will be our principal subject of study in this 
chapter . 

Example. If H is the graph C, (a cycle of length 5 )  we see immediately that p ( z )  1 

is a 2-transversa1, and r 2 ( H )  = 5 .  Further p ( z )  = 0.5 is a fractional transversal, and 
T *(H)  = 2.5. Further, v,(H) = 2, v 2 ( H )  = 5 ,  v*(H)  = 2.5. 

Remark: Let H = (El,E2 ,..., Em) be a hypergraph on X = {z1,z2 ,..., z,} and let 
A = ((a:)) be the incidence matrix of H :  
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A fractional matching may be interpreted as a vector q = (qlrq2, ...,qm) of the 
polyhedron: 

G? = {%am, 9 20, Aq F 1) 
This polyhedron in m-dimensional space is thus called the matching polytope of H ,  
and a matching is a vector of Q whose coordinates are either 0 or 1. Similarly, a frac- 
tional transversal may be interpreted as a vector p = ( p l , p 2 ,  . . . ,p , )  of the polytope: 

p = {P/PER”, P > 0,  A*P 2 1). 
This polyhedron is called the transversal polytope. 

Theorem 1 (Berge, Lov&z, Simonovits). Every hypergraph H satisfies: 

These inequalities are called the ”fundamental inequalities”; the expressions “max” (or 
“min”) imply that  the upper (or lower) bound is attained. 

ua (HI 
Proof. 1. u(H) = min -. 

8 

If HI is a matching of size v(H), the hypergraph sH‘ obtained from H by repeat- 
ing each edge s times is an s-matching: thus u,(H) > s u ( H ) .  The equality is satisfied 

= u ( H ) .  for s = 1, so indeed min - v m  
8 

2. m i n m  <max mom 
s - A(H‘) 

Let H” be a maximum matching of H ;  we have 

mo<max m(H’) 
A(H”) - H I G H  A(H’) 

u ( H )  = 

v* (HI - < sup -. 
A(HI) - 9 

3. max 
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m H  m H  Let H" C H be such that 4 = gm -&$. If we set e = A(H"), then 
A(H ) 

m(W) - ~ ( H ' I )  v s ( H )  v S W )  <- 5 y P  7 ma' A(H') A(HI') - s 

4. sup - = max - - - v ( H ) .  
8 8  S 

2 

S 
Let z = ( z l , z Z ,  ..., 2,) be a maximum s-matching of H .  Since - E Q ,  we have 

Conversely, let g be a fractional matching with C qi = v*(H) .  Since such a q will 
be an extremal point of a polyhedron Q defined by linear inequalities with integer coef- 
ficients, we may assume that the qi 's  are rational. Let z be a vector such that 

zi 
qi = -; s,z1,z2 ,..., z, integers 2 0  

S 

Since z = (zl,z2, ..., 2,) 2 0 and A z  = A(sq) = sAq 5 s.1, the vector z is an 
e-matching, whence 

- v*(H) ,  and Consequently, from (11, - - v, (HI 

5. v * ( H )  = r *(H) .  

This is an immediate result of the duality theorem in linear programming: 
min C pi = max C q,. 
PEP 9 EQ 

k ( H )  ' k l H )  
6. r * ( H )  = min - = i n f  - 

k k '  
Let p be a fractional transversal with pi = r *(H) .  We may assume that  the 

coordinates of p are rational (since the extremal points of the polyhedron P have 
rational coordinates). Let t = ( t l , t2 ,  ..., tn) be such that  
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ti 
p i  = ; t , , t ,  ,..., t ,  integers 2 0. 

Since A*p 2 1 we have A*t 2 k: thus t is a k-transversal, whence 

C t i  7k(H) 
7 * ( H )  = - 2 - k k ’  

2 r * ( H )  and consequently Conversely, every integer k satisfies - 7k(H) 
k 

T & ( H )  inf - = min - 
k k  k k  

7. min 5 min--1A-L, 
k s(HA) 

Let A be a set of vertices of H. Put  

s = s(HA) = min Bi flA 1. 
I 

Then the characteristic function of the set A is an s-transversal, whence r , ( H )  5 
and consequently 

I 

Since this is true for all A X ,  

Let T be a minimum transversal of H; we have 

9. max - k(H) = r ( H ) .  
k 

Let T be a minimum transversal and let t (x)  be its characteristic function: 

Foe each integer k ,  the function kt(z)  is a k-transversal; thus 
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whence: 

Corollary 1. A hypergraph H with the Kdizig property contains k disjoint edges i f  

the only i f  

ks(HA) 5 b I (A  cx) 
Indeed, for a hypergraph H satisfying v ( H )  = r ( H )  we have v ( H )  = min 1.11 

A G X   HA) * 

Hence v ( H )  2 k ,  which i s  equivalent to  the condition stated. 

Corollary 2, A hypergraph H having the Kdizig property contains a set of k vertices 

which meet every edge i f  and only i f  

k A ( H r )  2 m(Hr)  (H‘ C H ) .  

(Similar proof). 

1 
r 

Corollary 3. Every r-uniform regular hypergraph has p ( x )  = - as a n  optimal 

fractional transversal. 

Indeed, consider a regular r-uniform hypergraph H of order n. By counting the 
number of edges in the bipartite edge-vertex incidence graph in two different ways we 
see that  m ( H ) r  = A ( H ) n .  Thus, from Theorem 1, 

n 1 

r r 
Thus 7 * ( H )  = - and consequently p ( z )  = - is optimal. 

For example, for the complete hypergraph KL, Corollary 3 gives 

n 
r 

7 *(KL) = -, 

and we have 

n n 
r 

v(Ki)  = [y]  5 7 *(KL) = - I T(KL) = n-r+l. 

As another example, for the cycle C,, Corollary 3 gives 
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and we have 

(C,) = 3. 
5 
2 

u(C,) = 2 57*(C5) = - = 7 

Theorem 1 may equally well be applied to  the dual hypergraph H*; it then has a 
totally different interpretation. 

For an integer k 2 1, a strongly k-stable function is a function f which assigns to 
each vertex 2 of H an integer f (z) E {0,1,'2, ..., k} such that 

c f (z )  5 k  (E  E H )  
x EE 

We denote by Zk(H)  the maximum value of C f (z )  for the strongly k-stable func- 
x € x  

tions of H .  It is clear that, for k = 1, a strongly k-stable function may be identified 
with a stable set, and Cl(H)  = q H ) .  

Proposition 1. I f  H* i s  the dual of H then 

Ek(H) = u ~ ( H * ) .  

Indeed, a strongly k-stable function on H defines a k-matching of H*, and vice 
versa. 

Proposition 2. Let H be an r-uniform hypergraph of order n ,  and l e t  X,k,k' be 

integers m'th k+k' = Xr. Then 
- 
C Y ~ ( H )  = X n  = 7p(H) .  

Indeed, f is a k-stable function if 

c f ( z )  5 k  (E E H )  
z EE 

This is equivalent t o  saying that the function p ( z )  = A- f (z) satisfies 

C p ( z )  = Xr - C f (z) 2 Xr - /c = k' 
z € E  z EE 

This means that  p is a k'-transversal of H .  Further 
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c f (z)  = An - c P ( Z )  
z € x  Z O C  

Thus 

Ck(H)  = max C f (z) = An - min C p ( z )  = An - Tk,(H). 
Z E X  S E X  

Observe that if the hypergraph is a graph G ,  we may set A = k = k' = 1 to obtain the 
well known equality 

a(G) + T ( G )  = n. 

For an integer s 2 1, an s-covering of H is a function g which assigns to  each edge E 
an integer g(E) E {0,1,2 ,..., s} such that 

c g(E)  2s (z E X ) .  
E E H ( z )  

We denote by p , ( H )  the minimum value of an s-covering of H .  

Proposition 3. If H* is the dual of the hypergraph H ,  then 

P k W  = Tk(H*). 

Indeed, an s-covering of H corresponds in H* to an s-transversal, and vice-versa. 

Proposition 4. 

integers such that s+t = Ah. Then 

Let H be a regular hypergraph with A(H)  = h ,  and let A,s,t be 

P,(H) = Am - v t ( H )  

Indeed, the hypergraph H* is h-uniform, and from Propositions 1, 2 and 3, 

p , ( H )  = T , ( H * )  = Am - %(H*) = Am - v t (H) .  

By duality we obtain: 

Theorem 1'. Every hypergraph H satisfies: 

Corollary. The edges of a hypergraph H un'th the dual Kdizig property are coverable 

with k edges i f  and only i f  
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Indeed, if @H) = p ( H )  we have 

This is equivalent to  the stated condition. 

Example: Consider the celebrated problem of Gauss: what is the maximum number of 
queens which may be placed on an 8 X 8 chessboard such that no two lie in the same 
row, column or diagonal. If we consider diagram A we see that  it is possible to place 8 
queens in such a manner, and 8 is clearly the maximum. In other words, the hyper- 
graph H on the set of squares, whose edges are the rows, columns and diagonals of the 
chessboard, satisfies q H )  = 8. Clearly p ( H )  = 8, since the 8 columns constitute a 
covering, and the hypergraph H has the dual KGnig property: q H )  = p ( H ) .  

More difficult is the following problem: what is the minimum number of queens 
necessary to  cover every row, column and diagonal a t  least once? Clearly v ( H )  = 14, 

since we may form a matching with the 7 white diagonals parallel to the leading white 
diagonal and the 7 black diagonals parallel to  the leading black diagonal. Further, we 
also have T(H) = 14, a transversal of 14 elements being represented in diagram B. 
Hence v ( H )  = T ( H ) ,  and the hypergraph H satisfies the KGnig property. 

Note that  this is not the same as the domination problem: what is the minimum 
number of queens necessary to  dominate all the squares? The answer is 5, and the 
solution of diagram C corresponds to  a maximal strongly stable set of minimum weight: 
thus Z ( H )  = 5. 

We may also ask the question: is it possible to place 16 queens in such a way that 
each row, column and diagonal contains at most two queens? Since 
$ ( H )  = 2 q H )  = 16 this is clearly possible if we allow two queens to  occupy the same 
square. However, diagram D gives as a solution a 0-1 vector, that  is to say an optimal 
strongly 2-stable “set”. 

Finally, we may consider the problem: does there exists a 2-transversal which is a 
set of 28 queens, all placed on different squares? An optimal 2-transversal with 0-1 

coordinates is represented in diagram E. 
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A 

Q ( H )  = 5 

C 

TI (If) = 28 

B 

6 ; ( H )  = 16 

D 

E 

Figure 3 

2. Fractional matchings of a graph 

We now suppose that the hypergraph is a simple graph denoted by G = (X ,E) .  
From Theorem 1, we have 
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Theorem 2. Every graph G satisfies 

Further, there exists a maximum 2-matchingI H C 2 G  whose connected com- 
ponents are isolated vertices, pairs of parallel edges, and odd cycles. 

For such a 2-matching H, there exists a minimum fractional transversal t such 

that t (x)  = 0 if x is a n  isolated vertex of H; t(x)  = 0, t ( y )  = 1 (or t ( x )  = t(y) = -) 

if x and are the endpoints of a pair of parallel edges of H; t (x)  = - if x belongs 

to  a n  odd cycle of H .  

1 
2 

1 
2 

Proof: Let H C 2 G  be a %matching with m ( H )  maximum. Each connected com- 
ponent of H which is a path of even length or an even cycle may be replaced by pairs 
of parallel edges without changing m(H). No component of H is a path of odd length, 
since we could then augment m ( H )  by replacing it by pairs of parallel edges. We may 
thus suppose that  H is of the indicated type. 

1 
2 

We now label each vertex of G with a 0, a 1 or a -, step by step, according to  

the following rules: 

(1) 

(2) 

(3) 

(4) 

an isolated vertex of H is labelled 0; 

a vertex which is adjacent in G to a vertex labelled 0 is labelled 1; 

a vertex which is adjacent in H to  a vertex labelled 1 is labelled 0; 

each vertex which cannot be labelled by rules 1, 2, 3 is labelled -. 

Observe that  an odd path starting at  an isolated vertex of H followed alternately 
by edges of G-H and double edges of H cannot terminate in an isolated vertex of H: 
otherwise, by replacing in H the double edges of this path by the path itself we obtain 
a 2-matching H' with m(H') = m(H)+l ,  contradicting the maximality of H. Simi- 
larly, an odd path of this type cannot terminate in an odd cycle of H. Finally an odd 
path of this type cannot contain any other vertex labelled 0. 

1 
2 

Hence a single label t (z )  may be given to  each vertex x and t indeed takes the 
values given in the statement. From rule 2, the function t (x)  is a fractional transversal 
of G ,  and, by Theorem 1, we obtain: 
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Thus we have equality throughout, which shows that t ( z )  is a maximum fractional 
transversal of G ,  and that 

Theorem 3 (Lov&z [l975]). Every graph G satisfies 

1 
7 *(G 1 5 Z(4G )+7 (G 1). 

Proof: Let T be a minimum transversal of the graph G = ( X , E ) ;  the set S = X--T is 
then a maximum stable set. Let k be the maximum number of disjoint edges having 
an end in S. From KGnig’s Theorem on maximum matchings in bipartite graphs (cf. 
Graphs, chapter 7), there exists a subset A, of S such that 

IS-A, I+ l r G A o  I = min ( IS-A I+ lrcA I) = k .  
A C S  

Put  

0 if z € A ,  

t ( z )  = 1 if z ErGAo I 1; if z EX-(A,UrGAo) 

Clearly, t ( z )  is a fractional transversal of G;  whence: 

27 *(G)  5 2 C t ( z )  = (TI+ IrGAo I+ IS-A, I 
z a  

= 7(G)+k 5 7 ( G )  + v ( G )  

from which we deduce the result. 

Corollary. For a graph G the following conditions are equivalent: 

(1) 7 *(G) = T ( G )  

(2) u(G) = 7 ( G )  

Proof: Since, from the fundamental inequalities, (2) implies (l), it  suffices to  show that 
(1) implies (2). Let G be a graph satisfying (1); from Theorem 3, 
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We thus have equality throughout, which implies (2). 

Remark: It is not true that T * ( G )  = u(G) implies v (G)  = 7(G).  

7 *(K4) = v(KJ = 2, but T ( K ~ )  = 3. 

For example, 

An optimal %matching H of the form given in Theorem 2 determines an optimal 
fractional matching q ;  the set of edges e of G with q ( e )  # 0 defines a partial subgraph 
of G whose connected components are: isolated vertices, isolated edges and odd cycles. 
Such an optimal fractional matching is said to be canonical. Balinski [1970] showed 
that  the canonical matching are the extreme points of the matching polytope. We 
have: 

Theorem 4 (Uhry [1975]). Let G = ( X , E )  be u graph, and let q be a canonical frac- 

tional matching such that the set of edges e wi th  q ( e )  = - is  min ima l  wi th  respect 

t o  inclusion. Then we obtain a m a x i m u m  matching M of G on taking the union o f  
Mo = { e / q ( e )  = 1) and all the Mi’s where Mi denotes a m a x i m u m  matching of the 

odd cycle pi o f  { e / e € E ;  q(E)#O}. 

1 
2 

1 
2 

(*) Proof: Let p1,p2, ... be the odd cycles formed by those edges e with q ( e )  = -; 

denote by Xi the set of vertices of pi and set X o  = X - U Xi .  

Clearly Mo is a maximum matching of the subgraph Gxo. We shall show that 
iyl  

M = Mo U M ,  U M ,  U * * * is a maximum matching of G. 

Suppose that the matching M is not maximum. From the alternating path lemma 
(cf. Graphe, chapter 7 §I), there exists an alternating path p[u,6] between two vertices 
a and b unsaturated by M .  In the subgraph of G induced by X o ,  the edges of M form 
a maximum matching, and consequently the chain p[a,b] meets at least one of the Xi’s, 
say X,.  Further, since the subgraph of G induced by X 1  contains a single unsaturated 
vertex by M ,  one of the ends of p[a,b]  is in X - X I ,  say b .  Let a’ be the last point of 
the path p[a,b] which is in X , .  

Since no edge of M joins X ,  and X-X,,  we may suppose perhaps after modifying 
the maximum matching M ,  of X I ,  that a’ is unsaturated: in other words we may sup- 
pose that  a’= a .  
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Case 1: a EX1, b EX,. 

- 
PI 

Figure 4 

For every set F c E ,  denote the characteristic function of F by &(e) and let 

otherwise 

Clearly q f ( e )  is a fractional matching of H .  Since 

, ' W e )  = %(el, 
1 

2 qf is also an optimal fractional matching. A s  q' has fewer edges weighted - than q ,  

this contradicts the definition of q. 

Case 2: a EXl, b EX,. 

Let 

(q(e)  otherwise 

Clearly q' is a fractional matching H ,  and 

Cq'(e) - C q ( e )  = 1 - - > 0. 1 
2 

This contradicts the optimality of q. 
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In each case we obtain a contradiction, which shows that the matching M is max- 
imum, as required. 

The following theorem may be used to characterise those graphs G for which 
v ( G )  = r *(G). Let M be a maximum matching of the graph G = (X ,E) .  A cycle p 

of G is said to  be isolated by M is no edge of M joins p and X - p .  Let s ( M )  be the 
maximum number of pairwise disjoint odd cycles of G isolated by M .  

Theorem 6 (Balas [1981]). E v e r y  graph G s a t i s f i e s :  

Proof: Let q be a canonical fractional matching having a minimal set of edges e with 

q ( e )  = 2; let p1,p2, . . . ,p, be the odd cycles generated by these edges. The match- 

ing M obtained from q as in the statement of Theorem 4 satisfies 

7 * (G)  - v ( G )  = C q ( e )  - IM I = - < - max s ( M )  

1 

s 1  

e 2 - 2  M 

(since M isolates the cycles p l ,p2 ,  . . . , p 8 ) .  

Further, suppose there exists a matching M’ with IM I = lM’I and s(M’) > s;  
then M’ may be obtained from a canonical fractional matching q’, and 

This contradicts the optimality of q. Thus s = maxs(M) and the stated equality fol- 
lows. 

To illustrate this result, consider the graph of Figure 5. It has a maximum match- 
ing M ,  which does not isolate the pentagon, but also a maximum matching M ,  which 
does. Thus, max s ( M )  = 1, and we may thus find a fractional matching q ( e )  of value 

v (G)  + - = - (see Figure 5).  

Corollary 1. A graph G s a t i s f i e s  u(G) = r * ( G )  i f  a n d  only  i f  n o  m a x i m u m  m a t c h -  

i n g  isolates  a n  odd cycle. 

1 7  
2 2  
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Figure 5 

Indeed, in this case, max s ( M )  = 0. 
M 

Corollary 2 (LovLz (19751). Every graph G satisfies 

3 
2 (1) 7 *(GI 5 - 4 G )  

Equality holds i n  (1) i f  and only i f  G i s  the union o f  pairun'se disjoint triangles. 

Proof: It is clear that  if G consists of p vertex-disjoint triangles, then T *(G) = 2 
and v ( G )  = p ,  giving equality in (1). 

2 

If G is not of this type, let M be a maximum matching of G which maximizes 
e (M) .  Each of the s ( M )  odd cycles isolated by M contains a t  least one edge of M ,  so 

1 1 3 
.2 2 2 

7 *(G)  = v(G)  + - s (M)  5 v ( G )  + -v(G) = -u(G) 

Equality in (1) implies that each odd cycle is a triangle and contains exactly one 
edge of M .  These triangles are disjoint since any extra edge would create an alternat- 
ing path between two unsaturated vertices in distinct triangles, contradicting the maxi- 
mality of M. 

We will now prove a result which gives a characterisation of graphs G with 
T *(G)  = T(G) .  
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Let M be a maximum matching of G;  an odd cycle of length 2 k + l  containing k 
edges of M is called a l en t i l ;  its base is the vertex which is not adjacent to any of 
these k edges. 

A monocle  is the disjoint sum p1 + p2 of a lentil pL1 and an alternating path pz  of 
even length joining a vertex unsaturated by M to  the base of the lentil p1 (cf. Figure 

6)- 

unsaturated 

Figure 6. Monocles 

If two (not necessarily disjoint) lentils pL1 and p2 are joined at  the bases by an odd 
alternating path p3, their sum p1 + p2 + p3 is called a binocle (cf. Figure 7). 

v = 4  
v = 7  
r = 8  

Figure 7. Binocles 

r = S  
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Recall that  an alternating path (relative to  M )  is a sequence of distinct edges 
alternately from M (the "thick" edges) and from E-M (the "thin" edges). 

For every maximum matching M ,  we say that  a vertex is t h i n  if may be reached 
by an odd alternating path from an unsaturated vertex (and not by an even path). We 
say it is thick if it may be reached by an even alternating path from an unsaturated 
vertex (and not by an odd path). We say that it is mixed if it may be reached by an 
even alternating path and by an odd alternating path. We say that  it is inaccessible if 
it cannot be reached by an alternating path from an unsaturated vertex. Thus an 
unsaturated vertex is thick or mixed; if there are no unsaturated points then all the 
vertices of the graph are inaccessible. 

The following lemmas are, in fact, in a weaker form, general properties of match- 
ings (Gallai [1950], Berge [1967]). 

Lemma 1: Let G be a graph without inaccessible points with respect t o  a m a x i m u m  

matching M .  Then there i s  a mixed point i f  and only i f  G has a monocle. 

Indeed, the first mixed point reached by an alternating path starting at  an unsa- 
turated point is always the base of a monocle. 

Lemma 2: I f  G contains nothing but thick or t h i n  points relative to  a m a x i m u m  

matching M ,  the set T of the t h i n  vertices constitutes a minimum transversal; 

further  12'1 = v(G).  

Indeed, each vertex adjacent t o  a thick vertex is thin, thus the set T is a transver- 
sal; each edge of the matching contains a thick vertex and a thin vertex, and the unsa- 
turated vertices are all thick. Thus IT I = IA4 I = v(G).  

Lemma 3: Let C be a connected component of the subgraph of G generated by the 

inaccessible points relative to  a matching M ;  then no edge of M joins  C to X - C ,  
and each vertex of X - C  adjacent t o  C i s  a t h i n  vertex. 

(Clear). 

Theorem 6 (Sterboul [1978]; Deming [1979]). For a graph G, the  following conditions 

are equivalent: 
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(1) v(G) = 7 ( G ) ;  

(2) For every m a x i m u m  matching M ,  the graph G has n o  monocle or binocle; 

(3) There exists a m a x i m u m  matching M for which G has n o  monocle or binocle. 

(*) Proof: 

(1) implies (2). Suppose that u(G) = 7 ( G ) .  Let M be a maximum matching for 
which the graph G has a monocle p1 + /A,, where p1 is a lentil with base a and 
p,, = p[a,b]  the alternating path joining point a to an unsaturated point b .  In the 
matching M-(Mnp,,) + (/A,,-M) which is also maximum, the odd cycle p1 is isolated, 
hence max s ( M )  2 1. Thus, from Theorem 5, v(G) # 7 *(G) ,  which contradicts 
v ( G )  T(G) .  

Now let A4 be a maximum matching for which the graph G has a binocle 
pI + p2 + p[a,b] where p[a,b] is the alternating path joining the two bases of the len- 
tiles p1 and p2. 

- If a vertex of the binocle is joined by an alternating path to an unsaturated vertex z ,  

we may obtain, by interchanging the thick edges and the thin edges along an alternat- 
ing path starting at z ,  a maximum matching which isolates one of the lentils, which 
contradicts v ( G )  = r (G) .  

- Otherwise, let T be a minimum transversal of G ,  and let x be a vertex of p[a,b] 
which belongs to T. In the graph G' obtained from G by adjoining a vertex xo and the 
edge [xo,x], the matching M is still maximum (since no alternating path joins zo to  
another isolated vertex), and T is still a minimum transversal. Thus 
v(G') = lMl= 12'1 = 7(G'). By interchanging the thick edges with the thin edges 
along an alternating path [xo,x] + p [ x , b ]  we create an odd cycle p2 isolated by a max- 
imum matching M'; thus s(M') 2 1 and v(G') # 7 *(G'): contradiction. 

(2) implies (3). Obvious. 

(3) implies (1). Indeed, let G be a connected graph with v ( G )  # T ( G )  and let M be 
a maximum matching for which G contains no monocle or binocle; suppose that  G is of 
minimum order with these conditions: we now deduce a contradiction 

Case 1: G has an unsaturated point relative to  M .  
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If the set of inaccessible points is A C X ,  we have I # I. From lemma 1, G 
induced by X-A has only thick 

given by the restriction of M to F is a maximum 
(since no alternating path joins two distinct unsaturated points). From 

= lEI; moreover 7 

contains no mixed points, and hence the subgraph 
or thin vertices. The matching 
matching of 
lemma 2, the set T of thin vertices of a is a transversal with 
meets each edge joining A and X - A .  

The subgraph G'= GA admits as a maximum matching the restriction of M 

(since G contains no unsaturated vertices) and contains no monocle or binocle; thus, 
by the induction hypothesis it has a transversal with 171 = 121). The set T U T is a 
transversal of G ,  and IFUTI = IMUMI = lMI, contradicting the assumption that 

= 

- - - 
- - -  - 

v (G)  # r ( G ) .  

Caae 2: G has no unsaturated vertices relative to M .  Let G' be the graph formed by 
adjoining to G a vertex zo and an edge [zO,zl] joining zo and a vertex z1 in a minimum 
transversal T of G. Since G' has only one unsaturated point, we know, from the alter- 
nating path lemma, that M is also a maximum matching of G'. Further, T is also a 
minimum transversal of G'. Thus u(G') = lM1 < IT I = r(G'). 

The graph GI has mixed points (since otherwise we would see as in case 1 that 
v(G') = r (G') ,  a contradiction). From lemma 1 we deduce that G contains a monocle. 
Let ,ul be its lentil, and b, its base. We have b ,  # zo (since b ,  is of degree 2 2). 

Let G" be the graph obtained from the original graph G by adjoining a vertex yo 

and the edge [yo,b,]. If G" contains no mixed points we see as above that 
v(G") = T(G") which implies v ( G )  = r ( G ) :  contradiction. 

If G" contains a mixed point, the first mixed point along an alternating path from 
yo is the base of a lentil p2; clearly p2 forms a binocle of G with pl, which gives a con- 
tradiction. 

3. Fractional transversal number of a regularisable hypergraph 

Let H = (E1,E2, ..., Em) be a hypergraph on X .  For an integer k 2 0, multiplying 

the edge Ei by k consists of replacing the edge Ei in H by k identical copies of Ei .  If 
IC = 0, this operation becomes deletion of the edge Ei. 
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A hypergraph H is regular if all the vertices have the same degree; H is regularis- 

able if a regular hypergraph may be obtained from H by multiplying each edge Ei by 
an integer Ici 2 1. Finally, H is quasi-regularisable if a regular hypergraph may be 
obtained by multiplying each edge Ei by an integer Ici 20; note that  this regular 
hypergraph H' cannot contain a vertex of degree 0, since this is incompatible with the 
definition of "hypergraph". 

Some examples of graphs with these properties are given in Figure 8. 
1 

v = 2  

5 r* = - 
2 

regular 

T = 3  
v = 2  

5 
2 

T = 3  

5* = - 

regularisable 

fi 
3 4 

quasi-regularisable 

V 
non quasi-regularisable 

Figure 8 

Clearly we have: regular + regularisable + quasi-regularisable. 

Theorem 7: For an r-uniform hypergraph H = (E1,E2,  ..., Em) on X ,  bl= n ,  the 

following properties are equivalent: 

(1) H is quasi-regularisable; 

n 
(2) r ' (H)  = ;. 

Proof. 

(1) implies (2). If the hypergraph H is quasi-regularisable, there exists a regular 
s-matching HI C sH; by counting the edges of the incidence graph of the edges of H' 

in two different ways, we obtain ns = rm(H'). Thus 

1 (since t ( z )  = - is a fractional transversal of H ) .  
r 
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Thus we have equality throughout, and consequently 

n 
7 * ( H )  = 7 

(2) implies (1). Let 8 be the integer 2 1 such that 

"8 (HI " k l H )  - = max - 
S k2l k 

Let H' C sH be an 8-matching such that m ( H ' )  = ",(If). From (2), 

Thus r m ( H ' )  = n A ( H ' ) ,  which shows that the hypergraph H' is regular, thus H f  
is quasi-regularisable. 

Remark: Hence, in Figure 8, G ,  is quasi-regularisable because the matching [1,2], [3,6], 

[4,5] is perfect; the graph G, is not, since the function t ( z )  = 1 for z E{a ,b}  and 
n 5  t ( z )  = 0 for z E X - { a , b }  is a fractional transversal with value 2 < - = - 
2 2 '  

When the hypergraph is a graph we can refine Theorem 7 as follows: 

Theorem 8. For a graph G o f  order n,  the following condition8 are equivalent: 

(1) G i8 quasi-regularisable; 

n 
(2) 7 * ( G )  = -; 

2 

(3) G admits a partial graph H whose components consist of &cliques and odd 

cycles; 

l r G S  I 2 IS I for  every stable set S o f  G .  (4) 

Proof. 

(1) implies (2). 

If the graph G of order n satisfies (I), then there exists a regular multigraph 
H C kG of degree k. By counting the edges of the incidence graph of H in two dif- 
ferent ways, we obtain: 

k n  = 2 m ( H ) .  

Thus 
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since t ( z )  = 1 is always a 2-transversal of G .  

Thus we have equality throughout, and t ( z )  E 1 is an optimal 2-transversal. 

(2) implies (3). 

Let G be a graph satisfying (2). Then, from Theorem 2 

Thus v2(G) = n ,  whence (3 )  holds. 

(3) implies (4). 

Indeed, for every stable set S of G ,  

irGs I 2 IrHs I 2 Is 1. 
(4) implies (1). 

Indeed, let G be a graph satisfying ( 4 ) ;  let t ( z )  be a 2-transversal of G .  The set 
S = {zp(z)-O} is stable, and rGS C {z/t(z)=2}. Thus 

~ t ( z ) = n + ~  ( t ( z ) - l ) ? n +  IrGsl- I s I r n .  
z z 

Thus the Ztransversal t ’ ( z )  E 1 is optimal, whence, from Theorem 2, 

vdG)  TAG)  n 
---I- - 

2 2 2 

Thus vz(G) = n, which shows that  G is quasi-regularisble. 

Theorem 9. (Fulkerson-McAndrew-Hoffman Theorem). Let G be a connected graph 

o f  even order euch that every pair of  diejoint odd cycles are joined by an edge. Then 
a ncceeeary and sufficient condition for G to have a perfect matching is that every 

stable set s 8ati8fy lr& I 2 1s I. 

Proof: The condition is clearly necessary. It is also sufficient since this is condition (4) 

of Theorem 8, which implies that  G admits a partial graph whose components are just 
isolated edges and odd cycles. The cycle components may be grouped in pairs (since n 
is even) and each group of two odd cycles joined by an edge is replaceable by a perfect 
matching. We thus have the result. 
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For regularisable bipartite graphs we may easily find analogous conditions t o  those 
of Theorem 8. The following characterises regularisable graphs by the uniqueness of 
the optimal 2-transversal. Other characterisations exist, notably due to Pulleyblank 
[ISSO], [1981]. 

Theorem 10 (Berge [1978]). For a connected graph G of order n ,  the follom'ng con- 
ditions are equivalent: 

(1) 

(2) 

G is  regularisable and not bipartite; 

7 *(G) = - and t ( r )  G 1 is the unique optimal %transversal; 
n 
2 

(3) 

(4) lrGA I > 
lrGS I > IS I for every stable set S of G ;  

I /or every set A C X ,  A # 0, A # X .  

Proof. 

(1) implies (2). If G satisfies (l), there exists a regular multigraph H obtained from G 
by multiplication of edges; the 2-transversal t ( r )  = 1 is optimal for G from condition 
(2) of Theorem 8 (since regularisability implies quasi-regularisability). 

Suppose that there exists another optimal 2-transversal t'(z), that  satisfy 
t ' (X)  = n ;  we deduce a contradiction. The set A, = {r/t'(z)=O} is stable, and has 
the same cardinality as As = {z/t'(z)=S} (since t ' (X)  = n).  Further, rcAo c At. 
Since H is regular, we have 

A(H) l t l o  I = c %(",A21 = c % f ( z , A o )  I A(W I A 2  I = A(W l t l o  1 
Z € A O  2 a1 

We thus have equality throughout, so every edge with one end in A, has its other 
is thus equal to G (since G is connected) and this is a end in Ao; the subgraph 

bipartite graph with 2 classes of the same cardinality: contradiction. 

(2) implies (3). 

Let S be a stable set in G ;  there exists a multigraph H C 2G corresponding to a 
canonical 2-matching of the form indicated in Theorem 2. Since v2(G) = n ,  no com- 
ponents of G is an isolated point. Thus 

IrGs I2 IFHS I2 Is I. 
We cannot have IrcS I = IS I since this would imply the existence of another transver- 
sal t' defined by 
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0 i f x  E S  
t’(z) = 2 if x E r G S  

1 i f x  p S u rGS; 1 
t’ is also optimal (since t’(X) = n) ,  and this contradicts the uniqueness of the optimal 
2-transversal. Thus 

l r G s  I > Is 1. 

(3) implies (4). 

Let A be a set of vertices, A # 0 , X .  Let S be the set of isolated vertices in the 
subgraph GA.  If S = 0, we have mG(A,X-A) # 0 (since G is connected); thus rGA 
contains A and at least one point of X-A;  thus lrGA I > I.1 I. 

If s + 0, we have l r G s  I > IS I from (3), so 

l r G ~ 1 2  l r G s l +  b-sI> PI+ b-sl= bl- 
(4) implies (1). 

Let H be the bipartite graph obtained by taking two copies X and 3 of the set of 
vertices of G ,  and joining x E X  to  2/ €2 if and only if [x,y] is an edge of G. Every 
set A C X  with A # 0 , X  satisfies lrHA I = lrGA I > b I. 

It suffices to show that  an edge [a , i ]  of H appears in at least one perfect match- 
ing of H (since such a matching defines a 2-matching Gab of G containing the edge 
[a$], and C G a b  is a regular multigraph, which shows that  G is regularisable). 

a6 

Indeed, in the subgraph HI of H induced by X U x - {a,;}, every set 
A C X - { a }  satisfies 

lr,yA I = lrHA - {b) I >_ lrH.4 I - 1 2 I.i 1. 
Hence HI has a perfect matching (from K6nig’s theorem), so H has a perfect matching 
which contains the edge [a ,b] .  

Theorem 11 (Jaeger, Payan [1978]). Let G be a connected graph not containing a 
Kl ,3  as an induced subgraph. Then G is regularisable i f  and only if it has no “hang- 

ing” vertex, (that is  to say a vertex of degree 1 )  and is not isomorphic t o  the graph 

G, consisting of an even cycle of the form [0,1,2, ..., 2p-1,0] with a non-empty set of 
chords of the form [2i,2i+2]. 
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Proof: Observe first that the graph GI  above is KlA3-free. Since the set S = {1,3,5, ...I 
satisfies IrG1SI = IS1 and as G I  is non-bipartite, it is clear that  G, is non- 
regularisable from condition (3) of Theorem 10. 

Let G be a connected graph without Kl,3 which is not isomorphic to GI .  Suppose 
further that G has a stable set with lrGS 15 IS I. If x E S the number of edges 
between x and r G s  is mG(x,rGS) 2 2 (since G has no hanging vertices); if y E r G s  

we have m~(y ,S)  5 2 (since G has no K1,3). Thus 

2 IrGs I I 2  IS I I C m ~ ( x t r ~ ~ )  = C ~ G ( Y , s )  I 2 lrcs I. 
z €S Y€raS 

We thus have equality throughout, and consequently 

1s I = Irs 1. 
The equalities show further that for every x E S  and every y E r G S ,  

m(z,rcS) = m ~ ( g , S ) = 2 ;  thus the edges of G between S and rGS form an even 
cycle. The only possible additional edges join two vertices of r G S  and are triangular 
chords of the cycle (otherwise G contains a K1,3). 

Hence G is isomorphic to  G1, which contradicts the hypothesis. 

Thus we have shown that  IrGS I > IS I and, from Theorem 10, the graph G is 
regularisable and non-bipartite. 

4. Greedy transversal number 

Let H be a simple hypergraph; for a vertex x we denote by H(x) the set of edges 
of H which contain x. To obtain a transversal of small cardinality, we may use the 
greedy algorithm: 

1. 

2. 

3. 

4. etc. 

choose a vertex x1 of maximum degree in Hl = H ;  

choose a vertex x2 of maximum degree in H 2  = H1-Hl(x,); 

choose a vertex x3 of maximum degree in H 3  = H2-H2(x2); 

We stop when the hypergraph Hk+l has all its vertices of degree 0; the set 
T = {xl,z2, ..., zk} is then a transversal of H .  The maximum cardinality of a transver- 
sal obtained by a greedy algorithm is called the greedy transversal number, and is 
denoted by ?(IT). 



100 Hypergraphs 

The following theorem, in a slightly improved form, is a result found indepen- 
dently by Stein [1974] and by Lovasz [1975]. 

Theorem 12. FOT a h ~ ~ e r g r a p h  H of maximum degree A, 

Proof: Let T be a transversal of H with IT1 = ?(H) which has been obtained by the 
greedy algorithm; let t x  be the number of steps taken to  c h m e  a vertex of degree 1. 
If H has maximum degree A, we have 

?(H) = = i!l+tz+ ' ' ' +tx+l+ * . * + t ~ .  

For X < A, put tA+t*-,+ . * The (/c+l)-th step consists of finding a 
vertex z k + l  of maximum degree in the partial hypergraph Hk+l and we observe that 
A(Hk+l) 5 A. By counting the number of remaining edges that  all the following steps 
will remove, we obtain: 

+ t ~ + ~  = k. 

We may rewrite this as: 

1 1 1 m(Hr) 
A(H') (y - X+l)(t'+Zt,+ * * ' + X t x )  5 - 

X + 1  
These inequalities are satisfied for X = 1,2,,,.,A-1 and we obtain 
ties: 

1 1 rn(H') 
4 H ' )  

(l--)t <--ax 
2 ' - 2  

(---)(t1+2t2) 5 7 rnax 

(---)(t1+2t,+3t3) 5 7 max 

1 1  1 m(H') 
2 3  

1 1  1 m(H') 
3 4  

A(HI) 

A(H0 
....,....,........ 

a system of inequali- 

m(H') fi < max A(H) - A(H0 
1 

-(t,+t,+ * . +At,) = A 

Summing the respective sides of these inequalities, we obtain on the left 
A 

A - 1  
C t x ,  and on 
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the right, 

( 1 + ~ +  1 * - +x) 1 max m H  < (l+logA)T*(H), 
- 

whence, finally, 
A 

X - 1  
? ( H )  = C t h  5 (I+logA) 7 *(H) .  

Application: Fractional chromatic index of a graph. 

Consider a multigraph G without loops. The chromatic index q(G) is the least 
number of colours necessary to  colour the edges of G such that two edges of the same 
colour are never adjacent. The fractional chromatic index is defined to be 

Clearly q*(G) 2 A(G). 

For the Petersen graph Plo we see that  q(2Plo) = 6 (cf. Figure Q), SO 

For the odd cycle C5 we have q(2C5) = 5, so d2PlO) 
q*(Plo) = 7 = 3 = A(Plo). 

5 1 q*(c5) = 2 (cf. Figure 10); more generally, q*(C2p+l) = 2 + - > A(G). 
P 

PlO 

Figure 9 
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To obtain upper and lower bounds for q*(G), consider a hypergraph 
H = (El,,??,, . . . ,Em) whose vertices are the maximal matchings (with respect to  
inclusion) M1,M2, ... of G ,  and where 6 is the set of matchings M containing the edge 

- -  

Ec of G .  

Thus E; n E, = (21 if and only if 6 n Ej # 0. A minimum transversal T of H 

defines an optimal colouring of the edges of G ,  each point of T defining a matching of 
G in which we colour the edges with the same colour. A minimum k-transversal t ( M )  
of H defines an optimal colouring of kG with C t ( M i )  colours, each matching M; 
corresponding to  a set of t ( M ; )  distinct colours. Thus 

m ( H )  = m ( G )  

7 ( H )  = q(G) 

7 k ( W  = q(kG 

7 *(H)  = q*(G 

A(H) = v (G)  

If we further denote by &(G) the maximum number of pairwise intersecting edges of 
G (constituting either a “star” or a “multiple triangle”) we also have 

m) = &(GI 

Theorems 1 and 12 yield: 

max 
G’SG V(G ) 5 q*(G) 5 q(G)  5 (l+logv(G))q*(G). 

These inequalities may be made more precise by studying the family A of subsets A of 
X with b 12 3 and b I odd. Indeed, for every A E A we have 
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It can be shown (Seymour [1978]) that we have equality in (1) for every multi- 
graph G. 

6. Ryser's Conjecture 

We now complete our study of the relationship between the coefficients T * ( H ) ,  
v ( H )  and T ( H ) .  In the case r = 2, Corollary 3 of Theorem 5 can be reformulated as 
follows: 

Theorem 13: Let G be an r-unijorm hypergraph with r = 2. Then 

3 r2-r+l 
T *(G) 5 - u(G)  = - v(G 1 (0) 2 

Further we have equality i n  (0) i f  and only i f  G i s  the union of pairun'ae disjoint tri- 

angles. 

In the case r > 2 we have an analogous result: 

Theorem 14 (Furedi [ l S S l ] ) .  Let H be an r-uniform hypergraph, r 2 3. Then 

v ( H ) *  
r2-r+l 

(1) T * ( H )  5 7 
Equality in (i) i s  attained i f  and only i f  H i s  the union of pairwise disjoint projec- 

tive planes of rank r .  Further, i f  H does not contain p + l  pairun'se disjoint projec- 

tive planes of rank r then 

(2) T *(HI 5 (r-1) V ( H )  + 
Observe first that if H is the union of k projective planes P, of rank r ,  we have 

n(pr)  r2-r+l 
r r 

v ( H )  

v ( H )  = k ;  from Theorem 7, T *(Pr) = - = - 7 90 

r2-r+l r2-r+l 
r r 

T * ( H )  = - k = - 

Observe also that  for r = 2, the statement equivalent to  (2) is not valid, since 
T *(C,) = 2.5 # (r-1) v(C,). 

Corollary 1. Let H be an intersecting r-uni form hypergraph. Then 
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(4) 

Equality holds i n  (4) i f  and only i f  H i s  the graph K ,  or a projective plane of rank 

r 2 3 .  

ProoE Since u ( H )  = 1 we have, from theorems 13 and 14, 

If H is a K3 or a projective plane of rank r 2 3 we have, from Theorem 7 ,  

n m ( H )  

’ 
T *(H)  = 7 = 

whence 

In every other case, the inequality in (4) is strict (from Theorems 13 and 14). 

Corollary 2. If H i s  a regular r-uniform hypergraph of  order n then 

Equality hold8 in (5) i f  and only i f  H is the union o f  u ( H )  disjoint projective planes 

o f  rank r ( i f  r 2 3) or u ( H )  disjoint triangles ( i f  r = 2). 

Proof. From Theorem 7, we have 

and the result follows directly from theorems 13 and 14. Corollary 2 was conjectured 
by Ekdlob4s-Erd&, proved in the case r = 2 by Bollob&-Eldridge [1976]. 

Corollary 3. Let H be an r-uniform hypergraph, r 1 3 ,  which contains no projee- 

tive plane o f  rank r as a partial subhypergraph. Then 

T *(H)  5 ( r - l )v (H)  

This inequality is satisfied in particular for thme values of r such that no projec- 
tive plane of rank r exists (e.g. r = 7). 
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Corollary 4. Let H be an  r-uniform hypergraph whose vertex set is the disjoint 

union of sets X',p,,..,X, and whose edges E satisfy EnX' I = 1 for all i ("r- 

partite hypergraph '7. Then 

7 *(H) 5 (r-l)Y(H) 

Proof. For r = 2, H is a bipartite graph, which implies 

7 * ( H )  = r ( H )  = v ( H )  = ( r - l )v (H)  

For r 2 3 we have H C K;,,", , , , ,n,; it is easy t o  check that  the complete r-partite 
hypergraph contains no projective plane of rank r ,  thus the same is true of H ,  and 
corollary 3 gives 

7 * ( H )  5 ( r - l )v (H)  

Observe that for a bipartite graph G,  K6nig's theorem implies the stronger ine- 
quality 

r ( G )  < (r-l)v(G).  

This observation prompted Ryser [1970] to  conjecture the following: 

Ryser's Conjecture. Every r-partite hypergraph H satis fies 

7 ( H )  < (r-l)u(H).  

Remark: Theorems 13 and 14 were used by Frank1 and Fiiredi [1983] to give an upper 
m H  A as a function of r ,  and hence to generalise a theorem of Chvital and bound for 

Hansen [la761 (case r = 2) and a theorem of EbllobL 11977) (case r = 3). 
A ( H )  

6. Transversal Number of Product Hypergraphs 

Given a hypergraph H = (El,&, ..., Em) on a set X and a hypergraph 
H' = (F1,F2, ..., Fm,) on a set Y, define their product to be the hypergraph H X H' 
whose vertices are the elements of the Cartesian product X X Y,  and whose edges are 
the sets Ei X Fj with 1 < i  < m ,  1 sj Sml.  The order of H X HI is 
n ( H X H ' )  = n(H)n(H' ) ,  the rank is r (HXH' )  = r(H)r(H').  

Numerous combinatorial problems arise concerning the coefficients Y, 7 or x of 
product hypergraphs. 

Example 1: Polarised partitions (Erdijs, Rado [1956]). Consider the set of points (x ,y )  

in the plane with integer coordinates 1 5 2  sp, 15 y < q .  What is the largest 
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integer P(p,q,r,s) such that in every colouring of these points with P(p,q,r,s) colours 
there exist rs points lying in r columns and s rows, each having the same colour? If 
K i  denotes the complete r-uniform hypergraph on p points, P(p,q,r,e) is just 
X(KiXK,d)-l where x(H) is the chromatic number of H (cf. chapter 4). For example, 
~ ( K i x K i )  = 2, and a 2-colouring of the hypergraph with colours 0 and 1 is given in 
the following figure: 

1 1 1 0 0 0  

0 0 1 1 1 0  

1 0 0 0 1 1  I 0 1 0 1 0 1  

There is no 2 X 2 submatrix whose entries are all equal. 

Thus P(6,4,2,2) = x(K: XKi)-1  = 2-1 = 1. 

The numbers x(Kp'XK;) have been studied notably by Erdljs and Rado [1856], 

Chvital [1969], Reiman [la581 and Sterboul [I9721 [1983]. 

Example 2: Zarankiewicz numbers [1951]. In 1951, Zarankiewicz posed the following 
problem: what is the smallest integer t such that  every 0, l  matrix with q rows and p 

columns, with t entries equal to 1, necessarily contains a submatrix with 8 rows and r 

columns each of whose entries is l? This number Z(p,q,r,s), called the Zarankieun'cz 

number is the subject of an abundant literature (cf. Guy [1969], Sterboul [1983]). If 
4 H )  is the stability number of a hypergraph H ,  i.e. the largest number of vertices 
which contain no edge of H (cf. chapter 4), we have 

Z(p,q,r,a) = 4KiXK:)+1 = pq+l--7(KLXK,P) 

Example 3. (Hales [1973]): What is the least number of points in the rectangle of 
points (x,y) having integer coordinates 1 5 x 5 p,  1 _< y _< q ,  such that  each unit 
square contains at least one of these points? If P,, denotes the graph whose vertices 
are the integers 1,2, ..., n ,  with x,y adjacent if and only if I.-y I = 1, then the answer 
is 

- 7 P p  XP,) = r;lr;l. 
Theorem 15. For two hypergraphs H = (El,E2 ,..., Em) and H' = (F1,F2 ,..., F,,) on X 
and Y respectively we have 
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v(H)v(H’) 5 V(HXH’) 5 7 *(H)V(H’) 5 ? *(H)? *(H‘) 

= 7 *(HXH’) 5 7 *(H)7(H’)  5 7 ( H X H ‘ )  5 7(H)?(H‘) .  

Proof: 

1. If {E; / iU}  and { F j / j E J }  are two maximum matchings of H and H’ respectively, 
then, for (i,j),(i’,j’) € I  X J, ( i , j )  # (i‘J), we have 

( E ~  XF,) n ( E ~ , x  Fjf) = 0. 

v(H)v(H’) = Ir I I J  I I v(HXH’) 

Thus {Ei xFj, i EI, j € J }  is a matching of H X H’, whence 

2. If {Ei X F i / ( i , j ) E K }  is a maximum matching of H X H’, the function 

constitutes a fractional matching of H ,  since 

Hence 

v (HXH’)  = I = c Z(Ei)U(H’) 5 7 *(H)V(H‘) 
i 

3. 

4. 

We have r *(H)v(H’) 5 7 *(H)7 *(H’) from Theorem 1. 

Let q ( E )  and q’(F) be fractional matchings for H and H‘ respectively. The func- 
tion t ( E X F )  = q(E)q’(F) is a fractional matching of H x H‘, since 

c 4 E X F )  = c dE) c q’(F) 51. 
EEH(z) FEH‘(y) ;:;[;I 

Thus 7 *(HXH‘) 2 C t(Ei XF,) = c q(Ei)C q’(Fj) = 7 *(H)T *(HI). 
i.i i i 

We now show the reverse inequality. Let t ( z )  and t ’ ( y )  be optimal fractional 
transversals for H and H’ respectively. The function p(z,y) = t ( z ) t ’ ( y )  is a frac- 
tional transversal of H X H‘, since 

c P h Y )  = c t ( z )  c t’(Y) L 1 
(z>Y)EG x 4 zEE, YEF, 

Thus 
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T*(HXH')  I CP(StU) = Ct(2)Ct'b) 

= 7 *(H)7 *(H') 

2.Y z Y 

Thus 7 * ( H X H ' )  = 7 *(H)T *(H'). 

We have 7 * ( H X H ' )  = 7 *(H)T *(H') 5 7 *(H)T(H')  from Theorem 1. 

As for 2, we may show that 

5. 

6. 

7 *(H)7(H') 5 T ( H X H ' ) .  

7. As for 1, we may show that 

7(HXH') 5 T ( H ) T ( f f ' ) .  

Corollary (McEliece, Posner [1971]). Every hypergraph H satisfies 

7 *(HI = lim k m ,  
k - r w  

where H k  = H X H X - - - X H i s  the product o f  k terms equal to H .  

Proof. From Theorem 12 we may write 

7 = 7 *(Hk)  5 7 ( H k )  5 [1+logA(Hk)]7 * ( H k )  

- < [ 1 + k l o g A ( H ) ] ~ * ( H ) ~ .  

It is easy to see that  (l+klogA(H))'/k + 1 as k +OO, giving the desired result. 

The following results, sharpening the statement of Theorem 15 are due to Berge 
and Simonovits [1972]. 

Theorem 16. Every hypergraph H satisfies 

7 ( H X H ' )  
7 * ( H )  = min 

H i  7(H') 

Proof. From Theorem 15, we have 

7 ( H  XH') 
7 * ( H )  5 min 

H i  T ( H ' )  

We shall show the reverse inequality. There exists an integer k such that 

. Let t ( s )  be an optimal k-transversal for H; consider a set Y of car- 

dinality p = 7 k ( f f ) ,  and a partition (Y1,Y2, ..., Yn) of Y with k. I = t (s i )  for each i. 

7 k ( H )  7 * ( H )  = - 
k 
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The complete (p-k+l)-uniform hypergraph H' = Ki-k+' on Y satisfies r(H')  = k. 
Consider the set 

7 -  6 ({q)Xyi) 
i-1 

For each edge E of H, 

I (EXY)nTI  = C t ( z )  2 k 
z EE 

Further, since each edge F of H' is of cardinality p-k+1, the set E X F meets T,  by 
the pigeonhole principle; thus 7(HXH')  5 171 = = rk(H) .  Hence 

7(H') - k 

Theorem 17. Every hypergraph H un'th the Helly property eatis jies 

v(H X H') 
7 *(H)  = max 

H' v(H') 

Proof. From Theorem 15 we have 

v(HXH')  
4 H ' )  

7 *(H) 2 max 

We shall show the reverse inequality. There exists an integer. e such that  

Let Ho = (Ek/ku()  be a maximum 8-matching of H; thus I = v,(H) and 
A(H0) = S. 

Let Y be the set of maximum matchings of the hypergraph Ho; for k EK let Fk 
be the set of maximal matchings of Ho which contain E k .  The hypergraph 
H' = {Fk/k€K} on Y satisfies v(H') 5 A(Ho) = 8,  since H has the Helly property. 
The hypergraph H X H' admits {EkXFk/ku(} as a matching, since 

contradiction. Thus 
(EkXFk)fl(EkIXFkI) # 0 implies both E k  fl E ~ I  # 0 and F k  fl F p  # 0, which is a 

v(HXH') 2 I = v,(H) = 87 *(H). 

Hence 
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Q.E.D. 

We may relate the product of hypergraphs to  the numbers P(p,q,2,2) = x(K,XK,)- l  
defined in example 1, and to  the Ramsey number R(p,q) (the least integer m such that 
every 2-colouring of the edges of K ,  contains either a p-clique of the first colour or a 

q-clique of the second). It is known that R(p,q) 5 (pLzT2), but, with the exception 

of a few particular cases, the exact value of R(p,q) is not known. Recall that  the 
chromatic number x ( H )  is the least number of colours necessary to colour the vertices 
of H such that no edge is monochromatic (except for loops). 

Theorem 18. We have 

max x ( H X H ‘ ) =  x(K,XK,) 
x ( H K P  
x ( H ‘ ) l q  

the maximum being taken ouer hypergraphs H ,  H’ without loops. 

Proof. Let H = (Ei) be a hypergraph without loops on X with x ( H )  s p ,  and let 
H‘ = (Fj) be a hypergraph without loops on I’ with X(H’) 5 q. On H we have a 
p-colouring g(z)  €{al,%, . . . ,%} and on H’ we have a q-colouring 
g‘(y) E{fll,p2, . . . ,p,}. We shall show that we may obtain from these a colouring of 
H X H‘ with x(K,XK,)  coloun. Let Kp be a complete graph on {a1,~, . . . ,%} and 
K ,  a complete graph on {P1,p2, . . . ,pq) colour the vertices of K p  X Kp with an 
optimal colouring F(a,P) E {1,2, ...,x( K p  XK,)} .  Thus four vertices 
a,p,,ajpk,#kp,,ak& are never all with the same colour. Let @(z,y) = F(g(z),g’(y)). 
Since there exist x1,x2 E Ei and yl,y2 E Fj such that g(zl) # g(z2), g’(yl) # g’(y2) 
(since Di I > 1, I > l), the set Ei X Fj is not monochromatic in 9. Hence CP is a 
colouring of H X H’ in x(Kp X K , )  colours, whence x ( H X H ’ )  5 x(K, X K , ) .  Since 
this inequality is an equality when H = K,, H’ = K ,  we have the theorem. 

Theorem 19 (Erdtis, McEliece, Taylor [1971], anticipated by Hedrlin [ I Q S S ] ) .  We have 

max v ( H X H ’ )  = R(p+l,q+l)-1 
4 0 9  
@)lq 

where the R(p,q) are  the Ramsey numbers. 
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Proof. 1. We shall show first that v ( H )  S p ,  v(H' )  5 q implies 
v ( H X H ' )  5 R(p+l,q+l)-1. Suppose that this inequality fails for H = ( E i )  and 
H' = (Fj). Put: 

m = v ( H X H ' )  2 R(p+l,q+l). 

Let {E;XFj / ( i , j )EM}  be a maximum matching of H X H', with 1M1 = m .  Consider 
the complete graph K,  on M :  colour the edge [(i,j),(i',j')] red if Ei n Ei1 = 0 and 
blue if Ei n Ei1 # 0 (and then Fj  n Fj1 = 0). Since IMI = m 1: R(p+l ,q+l)  this 
colouring of the edges of K ,  contains either a red (p+l)-clique (and then v ( H )  > p)  
or a blue (q+l)-clique (and then v(H') > 4); in each case we have a contradiction. 

2. Consider the complete graph K ,  on M = {I,!& ..., m }  where m = R(p+l,q+l)-l. 
From the definition of Ramsey numbers, there exists a 2-colouring of the edges of K ,  
forming two partial graphs G,  G' with w ( G )  5 q and w(G') 5 p. 

The dual hypergraph H = G *  of the graph G has edges of the form: E; ={edges 
of G incident to vertex i of G); thus 

v ( H )  = w(G) = w(G' )  2 p. 

Similarly H' = (G')* has edges of the form: Fj = {edges of G' incident to vertex j of 
G'h thus v(H') 5 q. From part 1 of the proof, this implies 

V ( H X H ' )  5 R(p+l,q+l) - 1. 

For two distinct indices i , j  E M  the sets Ei X Fi and E j  X F, are disjoint, so the 
product hypergraph H X H' admits {E; XFi/i EM) as a matching, whence 

v ( H X H ' )  2 IM I = R(p+l,q+l)-1. 

Thus v ( H X H ' )  = R(p+l,q+l)-1, and the statement of the theorem follows. 

Application: Shannon capacity of a graph. 

Define the normal product of two simple graphs G = (X,E) ,  G' = (Y,F) t o  be the 
graph G X G' on X X Y where two vertices (x,~) and (x',y') are adjacent if and only 
if 

x = x' and [x,y'] E F ,  

or [x,x'] E E  and y = y', 

or [zp'] E E  and [y,y'] €8'. 
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Shannon was interested in the study of the stability number of the normal pro- 
duct of graphs. Indeed, if G is the graph of confusion at reception for a set of signals 
X and G’ the graph of confusion for a set of signals Y,  then E(GXG’) represents the 
greatest number of words zy with z E X ,  y EY which cannot be confused a t  recep- 
tion. We may also consider words of k signals (taken from X )  which form a code; the 
largest possible number of distinguishable words is then q G k ) ,  where 
G k  = G X G X * * * X G is the normal product of k terms equal to  G .  

Shannon proposed the term capacity for the number 

max k m =  C(G). 
k 

It is immediate that  for all k 

Z(G) 5 kw< c ( G )  5 km< B(G). 

The number c ( G )  is difficult to  calculate (Lovasz proved in 1979 that  c(C,) = fi). 

or more simply H ,  be the dual of H(G) .  Then 
Let H ( G )  be the hypergraph formed by the maximal cliques of G I  and let E ( G ) ,  

n ( G )  = m ( H )  
w ( G )  = A(H) 
Z(G) = v(H) 

B(G) = T(H) 
The minimum value of a q-covering of G by cliques is 

@,(GI = qa 
Also 

E(Gk) = v[E(Gk) ]  = v(Fk) 
e ( G k )  = 7 ( F ( G k ) ]  = 7(gk) 

Clearly, + c(G) .  The corollary to  Theorem 15 shows that we also have 

k v @ q  + 7 *(if). 
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Exercises on Chapter 3 

Exercise 1 ($1) 

Show that  - k(H)  4 T *(H). 
k 

Hint: use the theorem of Fekete that states that  if a series (uk) is subadditive, i.e. 
Uk uk 

u k + h  5 t i k + u h ,  then - + i n  f - 
k k '  

Exercise 2 (51) 

Show similarly that - 
k 

Exercise 3 (31) 

Show that  if = T ( H )  for some integer k, then every integer p 5 k satisfies 
k 

r p ( H )  = r ( H ) .  
P 

Exercise 4 (51) 

7 k s ( H )  - 7 *(HI for every Show that if - = 7*(H) for an integer k, then - - T k ( H )  

k ks 
integer s. 

Exercise 5 (53) 

Let X be a finite set of points on a line, and let H be an interval hypergraph on 
X. Show that H is regularisable if and only if there do not exist two distinct points 
z,y EX such that  H ( z )  C H(y)  and H ( z )  # H(y). 

Exercise 6 (53) 

Let H be an r-uniform hypergraph such that the distinct I ,  = fl E form a 

partition of X ,  and every edge meeting I,  contains I, .  Show that  if H-H(z )  is quasi- 
regularisable for each z, then H is regularisable. 

Em(,) 
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(Berge [1978]; Pulleyblank [1977] in the case of a graph). 

Exercise 7 ($3) 

Let H be an r-uniform hypergraph without vertices of degree 1, and such that 
each edge meets at least r other edges of H .  Show that the graph L ( H )  is regularis- 
able. 

(Berge [1978]). 

Exercise 8 ($3) 

Let G be a connected nonbipartite regularisable graph. Show that every graph 
which admits G as a partial graph is also regularisable. 

Hint: use condition (3) of Theorem 10. 

Exercise Q (36) 

Let H be an r-uniform hypergraph of order n ,  with m edges, regularisable, linear, 
and containing no projective plane of order r as a partial subhypergraph. Show that 

In this case we have a better bound than that of Seymour (Theorem 8, Chapter 2). 

Exercise 10 

Aharoni, Erd& and Linial [1987] have proved that every hypergraph H satisfies 

Check that this interesting inequality holds for some of the hypergraphs described in 
the examples of Chapter 2, $4 which do not satisfy the Kdnig property. 
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Colourings 

1. Chromatic Number 

Let H = (E,,E,, . . . ,En) be a hypergraph and let k be an integer 2 2 .  A 

k-colouring (of the vertices) is a partition (Sl,Sz, ..., S k )  of the set of vertices into k 
classes such that every edge which is not a loop meets at least two classes of the parti- 
tion; that is to  say 

E E H ,  E I > l + E d S i  ( i = 1 , 2  ,..., k). 
A vertex in Si will be said t o  be a “vertex of colour i”, and Si (“the colour set 

i”) may possibly be empty; the only “monochromatic” edges are therefore the loops. 
For a hypergraph H its chromatic number x ( H )  is the smallest integer k for which H 
admits a k-colouring. 

Example: If H is the hypergraph whose vertices are the different waste products in a 
chemical production factory, and in which the edges are the dangerous combinations of 
these waste products, the chromatic number of H is the smallest number of waste 
disposal sites that the factory needs in order to  avoid any hazardous situation. 

We note that if the hypergraph H is a graph, the chromatic number of H coin- 
cides exactly with the usual chromatic number. 

For a hypergraph H on X ,  a set S C X is said to be stable if it does not contain 
I > 1. The stability number 4 H )  of H is the maximum cardinal- any edge E with 

ity of a stable set of H .  

Example: The projective plane on seven points is a hypergraph P7 with a(P7) = 4, as 
can be verified immediately from Figure 2 of Chapter 2. We see also that x(P7)  = 3. 

Proposition 1. Every hypergraph H of order n satisf ies x (H)a(H)  2 n.  

Proof. Let us consider a k-colouring (Sl,SZ, ..., S k )  of H in k = x (H)  colours; we have 
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k 

i-1 
n = C IS; I<  W H )  = x(H)a(H). 

This gives the stated inequality. 

Proposition 2. Every hypergraph H of order n satisfies x(H) + 4 H )  5 n S - l .  

Proof. Let S be a maximum stable set of H .  We can colour all the vertices of S with 
a first colour, and use n-o(H) other colours to colour, each with a different colour, 
the vertices of X-S. From this 

X(H) 5 (.-4H)) + 1. 

This gives the stated inequality. 

We call a &star of a vertex x a family HB(x) C H(x) such that 

(ii) E,E' E H@(s) + E n E' = {z}. 

We call the /%degree of a vertex x the largest number of edges of a @-star of x .  
We denote by d&x) the @-degree of x,  by A@(H) = max&(x) the maximum @degree, 

and by S@(H) the minimum @degree. H/A denotes as usual the family of edges of H 
contained in A; then we can obtain upper bounds for the chromatic number with the 
following assert ion: 

Z E X  

Theorem 1. Every hypergraph H on X satis fies 

x(H) 5Amcax,s@(,/A) + 1- 

Proof. Let p = m d @ ( H / A ) .  We shall seek to colour the vertices of H successively 
in increasing order of their indices using only p+l  colours. Let us index the vertices in 
the order z,,z,-~ ,..., by the following rule: 

fi) z, is a vertex of minimum Pdegree in H ;  
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(ii) for i < n ,  z, is a vertex whose @-degree in H / X  - {xi+l,xi+l, ..., x,} is 5 p .  

Suppose that we have coloured 21,x2,...,xi-1 with the colours 1,2, ...,p+ 1 without 
any edge of H being completely coloured and monochromatic. The star H ( q )  does not 
contain p + l  edges containing only coloured vertices (except for x i ) ,  monochromatic, 
and bearing respectively the colours 1,2, ... and p + l ;  for such a set of edges would con- 
stitute a @-star with p + l  edges, which contradicts the rule for choosing xi. Thus 
there exists a colour j <p+l which we can attach to xi without any edge becoming 
completely coloured and monochromatic. Thus, step by step, we colour all the vertices 
with p + l  colours. 

Corollary 1 (Lov&z [ I Q S S ] ) .  For every hypergraph H o f  maximum @-degree A!, we 

have x ( H )  5 A p ( H )  + 1. Moreover, for every rank r ,  this bound i s  the best possible, 

since x(K;) = A@(,;) + 1. 

Indeed, let q = A @ ( H )  + 1. The set of vertices x with d&z) 2 q being empty, 
Theorem 1 gives: x ( H )  5 q .  Moreover, we have 

(r-l)Ap(KL)+l 1 n >  x(K;) = [- * > - - = Aa(K;) + -. 
r-11 - r -1 r -1 r -1 

n 

Thus we have x ( K ; )  = Ap(KL) + 1. 

Corollary 2. For every hypergraph H o f  order n 

For Proposition 1 shows that 

Corollary 3. For every hypergraph H of  order n without loops 

For the complement of a stable set being a transversal, we have 

n A p ( H )  . 
Ap(H)+l 

T ( H )  = n--a(H) 5 

From this the stated inequality follows. 
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These corollaries enable us to  solve easily a large number of combinatorial prob- 
lems. 

Application 1. Given a simple graph G on X of maximum degree h ,  what is the 
smallest number of colours necessary to colour the vertices such that no cycle is mono- 
chromatic? (Motzkin [1968]). 

Let us consider a hypergraph H on X whose edges are the elementary cycles of G.  
The answer is then, from Corollary 1, 

Applicat ion 2. Given a simple graph G on X of maximum degree h ,  what is the 
smallest number of colours necessary to  colour the vertices such that  every subgraph 
Gi induced by a colour i has maximum degree < t ?  (Gerencser [1965]). 

This number r t ( G )  generalizes the usual chromatic number (the case t = 1); if H 
is the hypergraph on X whose edges are the subgraphs of maximum degree t ,  then 
Corollary 1 gives: 

Applicat ion 3. Given a simple graph G on X ,  what is the smallest number of colours 
necessary to colour the vertices such that no elementary path of length k is monc- 
chromatic? (Chartrand, Geller, Hedetniemi [1968]). This number rk(G)  generalizes 
the usual chromatic number (the case k = 1); it is also the chromatic number of a 
hypergraph H defined in an obvious manner, giving immediately an upper bound. 

Application 4. Given a simple graph G on X what is the smallest number of colours 
necessary to colour the vertices of G such that no clique of size k is monochromatic? 
(Sachs, Schaiible [1967]). 

- 
This number Tk(G) generalizes the usual chromatic number (the case k = 2); it is 

also the chromatic number of a hypergraph H defined in an obvious manner, which 
leads immediately to  an upper bound. 

Applicat ion 6.  Symmetric Ramsey Numbers. 

We consider the complete graph K,, and propose to  associate with each of its 
edges one of the coloun 1,2, ...,q in such a way that  no clique of p elements of K,  has 
all its edges of the same colour. The smallest integer n for which this association is 
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impossible is called the (sgmmetric) Rameey Number and is denoted by R(p,p,  ...,p), or 
R;. In other words, if n < R;, there exists an association of colours 1,2, ...,q with the 
edges of K ,  such that  no K p  has all its edges of the same colour. 

We can apply Theorem 1 to this problem if we define a hypergraph on the set of 
edges of K,, denoted K,/K,, whose edges are all the sets of edges of K ,  which induce 
a K,. Indeed n <$ - 1 is equivalent t o  saying that  the hypergraph Kn/Kp is 
q-colourable. 

Let us consider for example the case p = 3. Then n < Rg is equivalent to saying 
that K,, can be decomposed into q graphs without triangles. We know that  K5 can be 
decomposed into two graphs without triangles, in fact two pentagons. We know also 
that  K,, can be decomposed into three graphs without triangles; one manner of doing 
this is due to Greenwood and Gleason [1955], the other to Kalbfleisch and Stanton 
[1968]. Finally, we know also that  K84 can be decomposed into four graphs without 
triangles (cf. Graham [1965], Chung [1973]). Thus 

On the other hand, 

Indeed, let K be a complete graph of order Rg - 1 which is decomposed into q graphs 
without triangles GItG2,..,tGqr Iet a be a vertex of K ,  and let A, be the set of vertices 
of K adjacent to a in Gi. As the subgraph KA does not contain any edge of Gi (since 
Gi is without triangles), it is decomposible into q-1 graphs without triangles, whence 
thus 

h. I 5 Rg-1 - 1. 

We deduce from this that 

Rg-1 = l+dk(a) = 1 + 5 15 1 + (Rj-’-l)q. 
i-1 

This recurrence formula gives immediately (2). 

Together (1) and (2) give: 
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Ri = 6; R: = 17; 65 5 Ri 5 66. 

Theorem 2 (Lepp Gardner [1973]). Let H be a linear hypergraph un’thout loops. 

Then x ( H )  5 A ( H ) ,  except for the two following cases: 

(i) A ( H )  = 2, and a connected component of H i s  a graph consisting of a n  odd 

cycle; 

A ( H )  > 2 and a connected component of H i s  the complete graph of order 

A ( H )  + 1.  
(ii) 

In these two cases we have x ( H )  = A ( H )  + 1. 

If H is linear, we have A p ( H )  = A ( H ) ,  and Theorem 1 gives: x ( H )  5 A ( H )  + 1. 

It follows from a theorem of Lepp Gardner 119771 that this inequality is strict 
when H is linear and does not satisfy (i) or (ii). 

This result is an extension of Brooks’s Theorem (see Graphs, Theorem 6, Chapter 15). 

2. Particular Kinds of Colourings 

Besides the concept of colouring defined in the preceding paragraph - often called 
“weak” colouring - there exist other concepts which generalize to  hypergraphs that of 
the colouring of a graph. 

Strong colourings. For a hypergraph H on X a strong k-colouring (of the vertices) 
is a k-partition (S1,S2, ..., S k )  of X such that no colour appears twice in the same edge; 
that  is to  say such that for every edge E 

(i = 1,2 ,..., k). BnSi 15 1 

The strong chromatic number of a hypergraph H ,  denoted by y ( H ) ,  is the smallest 
integer k for which H admits a strong k-colouring. We note that every strong colour- 
ing is certainly a colouring, and consequently $ H )  2 x (H) .  However, r ( H )  is nothing 
more than the chromatic number of the graph [HI2 (2-section of H ) ;  for this reason we 
shall not study the strong chromatic number for its own sake. 

Equitable colourings. For a hypergraph H on X ,  an equitable k-colouring (of the 
vertices) is a k-partition (Sl,S2, ... , S k )  of X such that in every edge E all the colours 
appear the same number of times (or to  within 1, if k does not divide B I); that is to 
say: 
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We note that an equitable k-colouring is certainly a k-colouring. Furthermore every 
strong k-colouring is an equitable k-colouring. The equitable colourings of a hyper- 
graph will be studied more particularly for unimodular hypergraphs ($2, Chapter 5). 

Good colourings. For a hypergraph H on X a good k-colouring is a k-partition 
(Sl,S2, ..., Sk) of X such that every edge E contains the largest possible number of dif- 
ferent colours (taking account of the value of k), namely 

min{ IE Lk}. 

We note that a good colouring is certainly a colouring. Moreover, for k = 2, a good 
k-colouring is simply a bicolouring; for k 5 min B 1, it  is a partition of X into k 
transversal sets; for k 2 max 1, it  is a strong colouring. Finally, for every k, an 
equitable k-colouring is a good colouring. 

Good colourings will be studied particularly for balanced hypergraphs ( 5  3, 

Chapter 5) .  

I-regular colourings. For a hypergraph H on X ,  let us associate with every edge E, 
two integers a, and b j  with 0 5 a j  < b,, and let I = {[aj,bj]/j = 1,2, ..., m}. An 
I-regular k-colouring of H is a k-partition (S1,S2, ..., Sk) of X such that  for every edge 

E.i 

a, 2 WjnSi  15 b, ( i  = 1,2, ..., k) 

We note that an I-regular colouring is also a coIouring. Moreover we note: 

(1) 

(2) 

Every colouring is an I-regular colouring with a, = 0, b j  = max{l, Bj 1-1). 

Every strong colouring is an I-regular colouring with a, = 0, b j  = 1. 

(3) Every equitable colouring is an I-regular colouring with a, = 

b j  =[?I*. 
I-regular colourings were introduced by de Werra [1979] who studied the sequences 
s1 2 s2 2 - - 2 8k for which there exists an I-regular k-colouring (S1,S2, ..., S k )  with 
a1 = IS, I, 82 = IS2 1, etc. Some interesting theorems on certain I-regular k-colourings 
of the edges of a simple graph were obtained by Hilton and Jones [1978]. 
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By way of an exercise one can verify that if r ( H )  = 2, all these definitions give 
exactly the usual colouring of a graph. We can verify also that  if H is an interval 
hypergraph whose vertices are the points x1,x2,...,xn (in this order) on a line, we obtain 
an equitable k-colouring of H by using successively the colours 1,2 ,..., Ic, 1,2 ,..., k, 1,2,... 

to  colour the points from left to  right; thus we see that an interval hypergraph has a 
(weak) chromatic number equal to  2 and a strong chromatic number equal to the rank 

r(H). 

3. Uniform Colourings 

For a hypergraph H of order n ,  a k-colouring (S1,S2, ..., S h )  is said to be uniform 

if the number of vertices of the same colour is always the same (to within one), that is 
to  say if we have 

[3 5 Is; 15 [3* (i = 1,2 ,...) k). 

The problem of the existence of a uniform k-colouring arises in numerous schedul- 
ing problems. 

Example 1. Organizing a colloquium. The organizers of a scientific colloquium have 
at  hand q half-days t o  organize n sessions zllzZ, ..., x,, each lasting a half-day. Certain 
people have to be present a t  all the sessions of a set El C {zl,z2, ..., 2,); others a t  all 
those of a set E2 C {xl,z2 ,..., x,}, thus defining a hypergraph H = (E,,E, ,..., Em) on 
{x1,x2, ..., 5,). Can one organize the n sessions respecting these constraints with only p 
conference rooms? It is obviously necessary that pq 2 n ,  that is 

This condition is necessary and sufficient if the hypergraph H admits a uniform 
strong q-colouring (S1,S2, ..., Sq). Indeed in this case the set of sessions taking place 
during the half-day i may be defined by a set S; which satisfies: 
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All the constraints are therefore satisfied. 

For the existence of a uniform strong k-colouring we have a well-known theorem 
of Hajnal and Szemere'di (cf. Graphs, Chapter 13, §Z), as follows: a graph [HI2 of max- 
imum degree h admits a uniform colouring for every k 2 h + l .  Therefore H admits a 
uniform strong k-colouring for every k 2 h + l .  

(For a simpler proof, see Szemeredi [1975]). 

Example 2. Organizing an air show. In the course of an air show an aeroplane takes 
off every ten minutes and two planes may not be displayed in flight simultaneously. 
There are m possible buyers who want to be present a t  these exhibitions at  different 
times, and it is known in advance at  what interval of time E,  the buyer j will be 
present. This defines a hypergraph H = (El ,E2,  ..., Em) over the set of flight times. 
Moreover each of the k exhibitors wishes to show his craft in flight to all the buyers 
and to  get the same total exhibition time. It is obviously necessary that k 2 min bj I. 
This condition is also sufficient if the hypergraph H admits a uniform good k-colouring 
(Sl,S2, ..., Sk). Indeed the set of times allocated t o  the i t h  exhibitor being defined by 
the set Si, all the constraints will be satisfied, for we have 

I 

We note that the hypergraph H is here an interval hypergraph, and that for every k 
an interval hypergraph admits a good uniform k-colouring: it is enough to  allot succes- 
sively to  the vertices the colours 1,2, ..., k, 1,2, ... going from left t o  right along the time 
axis. 

Example 3. Organizing a ping-pong tournament. A set of n players zl,z 2r...,zn take 
part in a tournament where all the matches planned between the players are defined 
by the m edges of a graph G on {zl,z2,...,xn}. The duration of a match must not 
exceed one hour; the tournament has to  be finished at  the end of p hours, and there 
are available q ping-pong tables. In order for these constraints to  be realized, it is 
necessary that the maximum degree of G does not exceed p and that  p q  2 m ,  that  is 
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Conditions (1) and ( 2 )  are necessary and sufficient if the edges of G have a uniform 
p-colouring (a p-colouring of the edges of a graph G being by definition a strong 
p-colouring of the vertices of the dual hypergraph G*). 

Clearly, if (E1,E2,  ..., Ep) is a uniform p-colouring of the edges of G ,  the matching 
Ei defines the matches to  be played during the i t h  hour, since 

We note that  McDiarmid [1972] showed that the edges of a graph G admit a uni- 
form k-colouring for every k 2 A(G)+1. 

Theorem 3. Let H 6e a hypergraph which ha8 a good Ic-colouring. Suppose that for 
every good k-colouring (Sj/i €I) and every pair of classes (S,,S2) with 
IS, I 2 ISl I + 2, the sudhypergraph Hs, sQ admits a bicolouring (StSh) with 

Then H admits a good k-colouring which is uniform. 

Proof. Let d = max( IS, I-lSj 1) be the “deficiency” of a good colouring (S1,S2, ..&) 

of H. We shall proceed step by step to  transform this k-colouring so that  it becomes 
uniform. If d 5 1, the colouring is uniform. If d 2.2,  consider two classes, for exam- 
ple S, and s,, with 

1 , J  

IS, I = min  IS^ I 
IS, I = max  IS^ I. 

As IS, I 2. IS, I + 2 there exists a bicolouring (Si ,Si) of Hs, s, satisfying the inequali- 
ties (1). It is easy to verify that  (S:,Si,S,,S,, . . , , S k )  is again a good k-colouring of 
H .  Moreover, by virtue of (l), we have 
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We have therefore decreased the number of pairs (S,,S,) with IS, I - IS, 12 d.  

By repeating this transformation we decrease the deficiency down to d 5 1; the good 
colouring finally obtained is thus uniform. This is what was to be proved. 

Corollary 1 (McDiarmid [1972]). Let G be a multigraph m'th chromatic index q(G). 

For k > q(G)  the edges of G admit a uni form strong k-colouring. 

Indeed every strong k-colouring of the edges with k 2 q(G) 2 A(G) is a good 
k-colouring. Furthermore the edges having one of the colours i or j make up either 
even cycles or open paths; if the colour i appears more often than colour j there exists 
an open path having at each end an edge of colour i ;  by interchanging the colours on 
this path we obtain a colouring satisfying ( 1 )  which enables us to  apply Theorem 3. 

Corollary 2 (de Werra [l979]). Let G be a multigraph which has a good k-colouring 

of the edges. Then the edges of G a d m i t  a un i form good k-colouring. 

For if not, the edges of G admit a good k-colouring (E1,E2,  ..., Ek) with, for exam- 
ple, @, I > D1 I + 2. The partial graph G',2 generated by the edges of colour 1 or 2 

admits a (weak) bicolouring of the edges; thus G'I2 has no connected component which 
is an odd cycle without chords. We show that from this we can find a bicolouring of 
the edges of GlJ2 which is uniform. We may suppose G1j2 to  be connected. 

If all the vertices are of even degree, G112 admits an Eulerian cycle, in which we 
can colour the edges alternately with the two colours. If the Eulerian cyclc is odd we 
take as starting point a vertex of GIJ2 having degree greater than two (which is always 
possible since G1,2 is not an odd cycle without chords). Thus the edges of G'j2 admit a 
uniform bicolouring. 
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If there exist vertices of odd degree, G has 2p vertices of odd degree and there 
exists a partition of the edges into p paths joining the odd vertices in twos. An alter- 
nating colouring in two colours of the edges of each of these paths gives a uniform 
good 2-colouring. Thus we obtain a new colouring satisfying (I), and we can therefore 
apply Theorem 3. 

Note that Corollary 2 is more general than Corollary 1, and that the values of k 
which guarantee a good k-colouring of G have been obtained by Fournier [1973]. (See 
also de Werra [1977]). 

Given a hypergraph H ,  we call a "positional game on H" the situation where two 
players, say A and B ,  play in turn at  colouring a vertex of H ,  with the colour red for 
A and the colour blue for B.  A vertex already coloured cannot be recoloured; the 
winner is the one who first colours an edge of H completely with his colour. If neither 
of the players obtains a monochromatic edge then the game is a draw. 

Example 1. Tic-Tac-Toe in p dimensions. This is played on the set of cells of a 
hypercube of p dimensions of sides equal to r ,  considered as a hypergraph on r p  ver- 
tices (the cells of the hypercube) in which the edges are all the sets of r cells that are 
in line. This game has been studied by Hales and Jewett [1963], who showed that  if r 
is odd and 2 3p-1 or r is even and 2 2p+'-2, then player B can force a draw. 

One can also play by trying to colour three points in a line with the same colour 
on any configuration at  all, for example the projective plane with seven points. 

Example 2. Ramsey games. Two players A and B play alternately colouring respec- 
tively in red and blue an edge of the complete graph K, on vertices; the first player 
to colour with his colour all the edges of a k-clique has won, and his opponent has lost. 

The hypergraph H ,  which must be considered has (i) vertices and is (;)-uniform. A 

celebrated theory of Ramsey states that there exists an integer R ( k , k )  such that  for 
every n 2 R(/c,k), the hypergraph H, has no bicolouring (so that, in consequence, the 
first player has a winning strategy); if n ( k )  denotes the smallest order for which the 
first player wins, we have n ( k )  5 R ( k , k ) .  

Fundamental Proposition. In a positional game on a hypergraph H which admits 
no uniform bicolouring, the first  player A has a strategy which assures him a win. 

Proof. If H does not have a uniform bicolouring, there necessarily exists a 
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monochromatic edge when all the vertices have been coloured. Thus it is not possible 
to have a drawn game. This implies, by the theorem of Zermelc-von Neumann, that 
either player A or player B has a winning strategy. 

We argue by contradiction, and suppose that  it is the second player B who has a 
winning strategy Q. Thus, with the following sequence of moves: 

XI,  Y1 = a(z,), 2 2 1  92 = 4z1,22), x31 Y3 = 4z1,52,z3),etc. 

the first monochromatic edge will be blue, B’s colour. However the first player A can 
play according to  the following rule: zo being an arbitrary vertex, A’s first choice will 
be z1 = a(zo); A’s second choice will be 5, = “(zo,yl); etc. (If at any step, gi = zo, 

that is to  say player B chooses the arbitrary vertex zo, the player A will play in the 
same manner with zi+l = o(zO,yl,y2, ...,y,!), where y! is a new arbitrary vertex not 
already coloured). In this manner A is assured of obtaining a win, and the first m o n e  
chromatic edge will be red: a contradiction. 

Theorem 4. Let H be a hypergraph such that 

Then H admits a uniform bicolouring. Furthermore in  the positional game o n  H the 

second player B has a strategy ensuring a draw. 

Proof. For a start, consider a hypergraph H satisfying ( I ) ,  and let player A ,  who is 
trying to  obtain a win, choose a vertex 5,. After this choice, player B must consider 
the hypergraph H I  = HX+J to choose a vertex y,. After this choice, player A must 
consider the partial hypergraph H: = Hl-Hl(yl) to choose a vertex z,, etc. This 
defines a sequence of hypergraphs H ,  H,, H : ,  H,, HL, .... It is then a matter of show- 
ing that B will never leave a hypergraph Hi-] with a loop, or, equivalently, that  A will 
never obtain a family of sets Hi having as “edge” the empty set. For simplicity let us 
set 

w(H) = c 2-B’. 
EEH 

Then the hypergraph H I  = HX+J satisfies 



128 Hypergraphs 

Let y1 be the reply of player B; then the new hypergraph Hi  = Hl-Hl(y1) to  be 
considered satisfies 

If B chooses a vertex y1 which maximizes v ( H , ( y ) )  then, whatever the choice 2 2  of his 
opponent, 

After the choice x 2  of A ,  the new hypergraph H ,  = [H:]x-{z21 satisfies 

v(H2) = 4H:) + 4H:(x2)1 5 vl(H:) + 4Hl(X2)1 

= 4Hll - V[Hl(Yl)l + 4H,(X2)1 5 4 H l )  < 1 

by virtue of (2), (3) and (4). 

If B plays in this manner on every occasion, we always have v ( H i )  5 v ( H , )  < 1. The 
family Hi cannot have the empty set as an edge, since that would imply 

1 
f f ( H i )  2 - = 1. 

20 

Thus B can force a draw, and consequently, from the fundamental proposition, H 
admits a uniform bicolouring. 

Corollary (Erdk ,  Selfridge 119733). Let H = (Ei/i € I )  be a hypergraph without 
loops, of anti-rank 8 = min bi 1, and such that the number o f  edges m and the max- 

imum degree A sat is  fy m + A < 28. Then H admits a uniform bicolouring. Furth- 
ermore, in a pO8itiOnal game on H ,  the second player B ha8 a strategy for forcing a 
draw. 

I 
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Indeed, in this case we have 

c 2-EEI + max C 2 - p l S  m.2-' + A P  < 1. 
EEH ' E€H(z )  

Theorem 5. Let H be a hypergraph without loops, of order n such that 

Then H admits a uni form bicolouring. 

Proof. Let p = [n/%?], and let Tp be the family of transversals of H having cardinality 
p .  Consider the hypergraph 

K,P - T~ = {F/FCX,  Pl=p ,~n~=@ for some E W } .  

We have 

m ( G )  - m(Tp) = m(Kg-Tp) I C ( n- E I) < (y) 

m(Tp) > (;I - r; l )  = (p-l) .  

EEH 

therefore 

n -1 

From the theorem of ErdEs, Chao-KO, Rado (Theorem 5, Chapter l ) ,  this implies 
that  Tp is not an intersecting family, and therefore contains two disjoint sets A and B. 
If n is even, (A,B) is a bicolouring of H which is uniform. If n is odd, we obtain such 
a bicolouring by adjoining to  A the unique vertex of X-(A  U B). 

Generalization (Hansen, Lore'a [1978]). Let H be a hypergraph of order n 2 k, and 

let p = [ - I ,  q = n-pk. I f  
n 
k 

then H admits a uni form k-colouring. 



130 Hypergraphs 

4. Extremal problems related to the chromatic number 

Numerous works (mostly Hungarian) have as their object the study of the smallest 
number of edges (or the largest number of edges) which an r-uniform hypergraph of 
order n can have if some given property holds; these are often referred to collectively 
as “extremal problems”. In most papers these results are obtained by “probabilistic 
methods” (cf. Erdgs, Spencer [1974]); here we shall obtain the principal results as sim- 
ple corollaries of theorems in chapter 3. 

First let us consider the largest number of edges in an r-uniform hypergraph of 
order 5 n which is k-colourable, that  we denote by 

Mk(n,r)  = max m ( H ) .  
x H < k  
n\H\zn 

Let us consider also the smallest number of edges in an r-uniform hypergraph of 
order 5 n which is not k-colourable, that we denote by 

mk(n,r)  = min m ( H )  
xH>k 
n f H l l n  

Denote by M t ( n , r )  the largest value of m for which there exists an r-uniform hyper- 
graph H with n ( H )  5 n ,  m ( H )  = m ,  and such that by adding a set of n-n(H)  iso- 
lated points we can find a uniform k-colouring; denote by m t ( n , r )  the smallest number 
of edges in an r-uniform hypergraph of order 5 n which has no uniform k-colouring (if 
we complete its set of vertices by adding isolated vertices up to  a total of n) .  We then 
have 

5 m k ( n , r )  5 Mk(n,r)  I (3 )  
1 I mrcOfw) I Mko(n,r) I 

mE(n,r) 5 mk(n,r )  

@ ( n , r )  2 Mk(nTr). 

It is easy to  calculate Mk(n,r)  and Mi(n , r ) ,  which are given by the following 
result: 

Theorem 6 (Sterboul [1974]). Let HL,k be an r-uniform hypergraph of order n on X 

defined by  a uniform k-partition (Yl,Yz, ...,Yk) o f  X and by  
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H z , k  = (E /ECX;  @ I  = r ,  E ~ Y I ,  dY2, . - ,E dYk) 

Then we have 

Mk(n,r) = Mko(n,r) = m(Hi,k) 

Moreover, every r-uniform k-colourable hypergraph of order n with Mk(n,r) edges is 
isomorphic to Hi,k. 

Proof. Clearly every r-uniform hypergraph of order n having a uniform k-colouring 
contains Hi,k as a partial hypergraph. Furthermore, if H is an r-uniform hypergraph 
of order n with x ( H )  5 Ic, consider a k-colouring (S,,S2,...,Sk) of H ;  let Isi I = ni. We 
have 

k 

i-1 
It is easy to see that the minimum of C (T) for n! + n2 + . . * + nk = n is 

obtained if and only if we have 

Indeed, we verify that  n, 2 n2 + 2 implies 

(;) + ( y )  > ("1;') + (y). 
This algebraic lemma shows that 

m(H) 5 m(HL,k)- 

This shows also that  equality holds only if the k-colouring (S1,S2, ..., Sb) is uniform. 
The result follows. 

It is more difficult to calculate mk(n,r). We have mz(n,2) = 3 for n 2 3 (since 
the triangle K 3  is not bicolourable); m2(5,3) 5 10 (since K: is not bicolourable); 
m2(n,3) = 7 for n 2 7 (since P7 is not bicolourable). In the case of graphs we easily 

find that mk(n,2) = ( k l ' )  for n 2 k + l ,  and the only extremal graph is K k + l  (cf. 

Graphs, Theorem 4, Chapter 15). 

Theorem 7 (Erd& [1963]). For r 2 2, k 2 2, n 2 kr, we have 
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mk(n , r )  2 F-'. 

Proof. 

1. Let X be a set of cardinality n, and let T = (S1,S2, ..., Sk) be an ordered 
k-partition of X ,  that is to say, a sequence of k disjoint subsets whose union is X ,  
(some of which could be empty). Consider the hypergraph Ho = (E,/T) whose vertices 
are the r-tuples of X ,  an edge E ,  being the set of r-tuples completely contained in a 
single class of the partition T.  

Every set of edges of an r-uniform hypergraph on X with no k-colouring defines a 
transversal of Ho, and vice versa; hence 

mk(n,r) = 7 P o )  

We have m(Ho)  = k", for we can identify an ordered k-partition with a sequence of n 

integers taken from {1,2, ..., k}. Moreover, we have A(Ho)  = k"-' X k. 

From Theorem 1, chapter 3, we have then 

Q.E.D. 

Remark. By some more or less complicated algebraic manipulations, we can improve 
the lower bound in Theorem 7, using the inequality 7(H0)  2 7 *(ITo). 

For k = 2 the best lower bound for mk(n , r )  has been obtained by Beck [1977], 

119781: for every e > 0 and every n 2 n(c) we have m2(n,r) 2 Zrr3 . The inequality 
m2(n,r )  5 2'r2, due to  Erd& [1964] and Schmidt [1964], has also been improved by 
Seymour [1974], giving, for example, m2(n,4) 5 23, m2(n,5) 5 51. 

-_ l f  

Generalisation (Hansen, Lorka (19781). Let H be a hypergraph of order n such that 

Then x ( H )  5 k. 
(The proof is analogous to that of Theorem 5 ) .  

Corollary 1 (Johnson 119781). For r 2 2, k 2 2, n 2 kr we have 
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rk' 
mk(nvr) 2 r + k ( k - l ) .  

Corollary 2 (Schmidt [1964], Herzog, Schkheim [1972]). For k 2 2, n 2 2 r ,  we have 

For k = 2 we have upper bounds due to  Erdiis 
ErdQ and Spencer [1974]. Some bounds with the 

[1964], Chvital [1971], Beck [1977], 

maximum degree (in place of the 
number of edges) are due to Erdds and Lov&z [1975]. 

We propose now to find some bounds for m i ( n , r ) .  

Theorem 8. Let r 2 2 ,  k 2 2 ,  n 2 k r .  I n  a u n i f o r m  k-parti t ion o f  X with 

I = n ,  let q, be the number o f  classes o f  s ize [ - I ,  and let qz be the  number o f  size 
n 
k 

["I*. We have 
k 

Proof. Define (as in the proof of Theorem 7) a hypergraph Ho = (E,) whose vertices 
are all the r-tuples of X ;  for every uniform k-partition A, E ,  denotes the set of 
r-tuples contained in a single class of the partition. Clearly Ho is regular, and it is 
also uniform of rank 

Thus, using Theorem 1 of Chapter 3, we obtain 

Remark. The value of mi(n,r) is precisely known when r = 2. We give first some 
examples of graphs of order n having no uniform k-colouring. 

If n 5 k, every graph of order n has a uniform k-colouring. 
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If n > k ,  consider the graph G,(n ,k)  formed by the union of a clique Kk+l (with 
k + l  vertices) and a stable set S,,-k-* (with n-k-1 vertices). This graph is certainly 
of order n ,  and having no k-colouring, it has no uniform k-colouring. 

If k < n  52k, consider the graph G,(n,k) formed by the union of a clique 
K2k-n+l and a stable set S2n--2k-I, together with all the edges joining one to the 
other. This graph certainly has n vertices, and it will be left as an exercise to  the 
reader to verify that  it has no uniform k-colouring. 

If n 1 2 k ,  consider the graph G3(n,k) formed from the union of a set A of cardi- 

nality 1, a set B of cardinality n-[-]+l, a set C of cardinality [-1-2, and all the 

edges joining the singleton of A to the elements of B .  This graph is certainly of order 
n ,  and the task of verifying that it has no uniform k-colouring is left to the reader, by 
way of an exercise. 

n n 
k k 

Thus, for every n > k ,  the minimum number of edges in a graph of order n with 
no uniform k-colouring satisfies 

(1) mt(n,2) 5 min m[Gi(n ,k) ] .  
1 

Indeed, Berge and Sterboul [1977] showed that  equality holds in (1). Further, they 
determined the structure of all graphs of order n with no uniform k-colouring having 
mf(n,2)  edges. 

The same extremal problems can be formulated for the stability number. 

Proposition. Let n,p,r be integers such that n rp L r  1 2 .  The man’mum 
number of edges in  an r-uniform hypergraph o f  order n having a stable set of cardi- 
nality p is 

Indeed, the only extrernal hypergraph is an r-uniform hypergraph Ho on X with 
I = n, defined by considering a set S C X with IS I = p ,  and setting: 

Ho = ( E / E C X ,  I - ,  En(X--S) # 0). 
Clearly, we have 
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as was to be proved. 

For n 2 p 1 r 2 2, the Turan number T(n,p ,r )  is the smallest number of edges 
in an r-uniform hypergraph of order n such that every set of vertices of cardinality p 

contains at least one edge. That is to say, 

T(n ,p , r )  = min m(H) .  
~ H ) < P  

Example 1 (Turan 119411). Consider a set X with wl= n ,  and a uniform (p-1)- 

partition (Sl,S2,...,Sp-l) of X .  The graph Gn,p-l obtained by joining two elements 
(vertices) of X if and only if they belong to the same Si satisfies Q(G,,~-~)  < p .  

Turan showed that  it is the only graph with this property having the minimum number 
of edges. Thus 

T(n,p,2)  = m(G",p-l). 

(cf. Graphe, Theorem 5,  Chapter 13). 

Example 2. Consider the %uniform hypergraph on X = {1,2, ..., Q} whose edges are: 
123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357 (the'"affine plane of rank 3"). 

It can be shown that  this is the only extremal 3-uniform hypergraph with cr < 5. Thus 
T(9,5,3) = 12. 

Few values of T(n ,p , r )  are known, but it is known that  when n -00 the func- 

tion T(n,p,r)(;)-' tends to a limit t ( p , r )  (Katona, Nemetz, Simonovits [1964]). For 

p > r 2 3 no values of t ( p , r )  are known, but it is known that  t ( p , r )  2 (:I:)-' (de 

Caen [lQ83]). The best upper bound for t ( r+l , r )  is due to Frank1 and RGdl (19851. 

Theorem 9. For n 2 p 2 r 2 2 we have 
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Proof. Let X be a set with bl = n. 

Let H o  be the hypergraph whose vertices are the r-tuples of X ,  and for 5' C X 
with IS I = p,  the edge Es denotes the set of r-tuples of X contained in S. Then 
T(n,p ,r )  = 7(Ho).  Furthermore 

n(H0) = r(Ho) = (;I7 m(Ho) = (;I7 4 H O )  = (;I;) 
From Theorem 1 of Chapter 3, we have 

from which (1) follows. 

Theorem 12 of Chapter 3 gives 

from which (2) follows. 

Remark. The inequality (1) was originally found (by different methods) by Katona, 
Nemetz, Simonovits (19641. By generalizing a theorem of Moon and Moser, de Caen 
[1983] has been able to  improve (1) to 

(3) 

(For a more complete account of Turan numbers the reader should refer to  Brouwer, 
Vmrhoeve (19781). 

Note that (2) improves a bound due to Schiinheim [1964]. 

CorolIary. Let H be a n  r-uniform hypergraph of order n with m edges; then 
4 H )  2 nm-'/'. 

Indeed, if for an integer p we have m 5 (np-ly, then m < (:)(:)-', and from (l), 

m < T(n,p,r). In other words p 5 nm-'Ir implies 4 H )  2 p,  whence 
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5.  Good edge-colourings of a complete h y p e r g r a p h  

Let k be an integer 2 2.  A weak k-colouring of the edgeo of a hypergraph H is 
the colouring defined by a weak k-colouring of the dual hypergraph H*. It is thus a 
partition H = H1+H2+ ...+ Hh (edge-disjoint sum) such that for every vertex x with 
d H ( z )  > 1, the star H ( s )  has at least two edges of different coloun. A good 
k-colouring of the edges of H is a weak k-colouring of the edges of H such that  if 
d H ( z )  2 k, the star H ( z )  contains a t  least one edge of each of the colours, and if 
dH(z) 5 k, the edges of the star H ( z )  all have different colours. A strong k-colouring 
of the edges of H is a partition H = H1+H2+ ...+ Hk such that the edges of the star 
H ( z )  all have different colours. The chromatic indes of H is the smallest value of k 
for which a strong k-colouring of the edges exists; it is thus the strong chromatic 
number y{H*). 

In this section we shall determine for what values of k the r-partite complete 
hypergraph and the r-complete hypergraph have a good k-colouring of the edges. 

Theorem 10 (Meyer [1975]). For every k 2 2 ,  the edges of the complete r-partite 
hypergraph admit a good k-colouring. 

(*) Proof. Let H = Ki,,n, ,,., n,, with 1 5 nl 5 n2 5 * * * 5 n,, and let 
X' = {0,1, ..., ni-1) denote the i-th class. 

We have seen (Theorem 9, Chapter 1) that for p = n ni = A ( H ) ,  we obtain a 

strong p-colouring of the edges by allocating to  the edge iF = z1z2 * * * z' the (r-1)- 
tuple (%,as, , . . ,%), where 

i Z 1  

"i = [si+zl]ni. 

Thus there exists a good k-colouring for every k 2 p ;  for if k. > p it suffices t o  com- 
plete the p-colouring above with k-p empty classes. 

We can also verify that for nq 5 s 5 nq+] and for p = 8 J-J n j ,  we obtain a 
i+q 

i + q + t  

good p-colouring by allocating to  the edge 5 the (r-1)-tuple (%,ag, . . . ,q), where 
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q = Izi-1 +zilni-, if 2 5 i 5 q 

= [zq+zq+lIa if i = q+l 

= [zi-l+zilni if q+l < i  s r .  

P 

1-k 

For k 5 nni = mindH("), we obtain a good k-colouring ( S l r S P ,  ..., Sk-l,,U S i )  from 
i + r  

the p-colouring (Sl,S2, ..., Sp) defined by the formula above with q+l = r and 
s = n,-l. For all the other values of k we find a (al,%, , . . ,c+) by analogous formu- 
lae (we refer the reader to  Mayer 1197.51). 

We note also (without proof): 

Generalization (Baranyai [1978]). For every k 2 2 the edges of the complete 

r-partite hypergraph admit an equitable, k-colouring which i s  uniform. 

The existence of good k-colourings of the edges of the hypergraph KA has been 
proved by Baranyai by induction on the order n. In order that  the inductive method 
can be used, it is necessary to aim for a stronger statement than we are going to prove. 
First we say that  a hypergraph H on X is almost-regular if we have 

I4f(")---dH(Y) I s 1 (",a, EX). 

Lemma 1. Let H be a hypergraph on X .  If, for a vertex a E X ,  the subhypergraph 

H' induced by X - { a }  i s  almost-regular, and i f  

then H is almost-regular. 

a 
(*) Set a = C B I, so [--I 5 dH(a) 5 [:I*. For 5 # a we can show that  

EEH 

If we note that 
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we deduce that  
a a *  I,] 5 d"") I I,] (. + a ) .  

This shows that H is almost-regular. 

Lemma 2. Let E:, for i = 1,2 ,..., a, j = 1,2 ,..., t ,  be real numbers 2 0.  There exiet 

integers e i  2 o such that 

(*) Proof. Consider a transport network R whose vertices consist of a source a ,  a 
sink z ,  and two sets S and T. The arcs of R ,  each with an upper and lower capacity, 
are of three kinds. 

I) arcs ( a $ ) ,  i E S, able to bear a flow $ with 

2) arcs ( i , j ) ,  i E S, j ET, able to bear a flow $with 

[.;I I $ (i ,i) 5 141 * 

3) arcs ( j , z ) ,  j ET, able to bear a flow $with 
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The necessary and sufficient conditions for the existence of a flow in a network with 
integer capacities are the same for a flow with real values and for a flow with integer 
values ( c f .  Graphs, Chapter 5,  $2). Since the network R admits a real-valued flow ?J 
with ? J ( i , j )  = ei ,  it will admit an integer-valued flow $. The integers $ ( i , j )  = e i  
satisfy the conditions (i), (ii) and (iii). 

Baranyai’e Lemma. Let n ,  ri and mi, for a’ € I, j a, be integers satisfying 

Then there esists a set X with 

satisfying 

I = n and families H i  = (Ej(X)) o f  subsets of  X 

Hi  = C H i  i s  the complete hypergraph K:; 
j € J  

(2) 

Hi  = C H j  i s  almost-regular, or, equivalently, 
i € I  

(3) 

(*) Proof. We shall suppose that  the assertion is verified for every integer < n ,  and 
prove it to  be true for n. Consider, for n ,  the following tableau of integers satisfying 
(I), (11) and (111). 
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ri . .  . .  . .  . .  
r, 

1 2 ..... i ..... t 

mi ................. mj ............ *' . . . . 
: ..................... : ............... : 

We can eliminate from this matrix every row i, with 
rio = 0 (since c m f o  = 0 from (111), and H'O = 0). Similarly we can eliminate every 

row i, with ri, = n (since H" = ( X ) ,  from (111), and its suppression will make no 
change in the conclusion). 

j 

Supposing this to have been done, consider, with n-I, the new tableau: 

1 2  ........ j ........ t ................................................ . 
. 

e;. ................... ..ej ..................... e: 

. . . ....................... "......................* ................................................ 

. . 
. .. i i  ml - el ............. mi - e;.. ............. m: - e: 

. . ................................................ 
where the el  are integers satisfying properties (i), (ii) and (iii) 

. I  
n 

of lemma 2 with E> = -rim;. Then the coefficients in the new tableau satisfy 
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In order to obtain (IP) ,  observe that  

The first term being an integer we deduce, by using (i) of Lemma 2, that  

We also have, from (iii) and (111), 

For the same reason we have the inverse inequality, thus 

Finally 

By virtue of the induction hypothesis, there exists a set x with PI= n-1, and 
families 3. = (q.(.(x)) and 3. = (q(.(x)) of subsets of satisfying 
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. .  i 
(1") m(Hj)  = mj - e l  

ci~: + C$ is almost-regular. 
i 

( 4 )  
I 

Consider an additional point a. Set X = x u { u }  and 

E ~ ( x )  = E:(x) u { a }  for 1 5 x 5 ej 
=i 

= E ~ ( X )  for ej+l< X 5 mi. 

It is clear that  the hypergraphs Hi  = (Ei(X)/l<Xsm$) satisfy 

Furthermore 

Thus, for x + a ,  

From Lemma 1, we see then that Hj = C H j  is amost-regular, which completes the 

proof. 

Theorem 11 (Baranyai [1975]). Let n ,r  be integers, n 2. 2 2 ,  and let 

ml,mZ,. . . ,mt be integers with ml+mz+ - .  . +mt = (:). Then KL is the edge- 

disjoint sum of t hypergraphs H,, each satisfying 

( 1 )  m(Hj)  = mi 
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31 n (z EX). 

This is the statement of Baranyai's lemma for 11 I = 1. 

Corollary 1 (Baranyai). KL i s  the edge-disjoint 8um of  partial h-regular hyper- 

graphs Hi  i f  and only i f  r divides hn and - divides (:). In this case, the Hi make 

up a uniform colouring of the edges of K i .  

hn 

Proof. If there exists a decomposition of KL as the sum of h-regular hypergraphs H j ,  
we have r m ( H j )  = hn (by counting, in two different ways, the edges of the vertex- 

edge incidence graph). Thus r divides hn ,  and - = m ( H j )  divides m(Ki )  = (:). hn  

hn Conversely, if these conditions are satisfied, apply Theorem 11 with mj = - 
n r  
r hn 

and t = ( )-. There exists a decomposition of KG into t hypergraphs H ,  such that 

Thus the hypergraphs Hi are h-regular. 

Corollary 2. The complete graph K,, i s  the sum o f  h-regular graphs i f  and only i f  

hn  i s  euen, and - divides (t). hn  
2 

Corollary 3 (Baranyai). The hypergraph KL has the coloured edge property i f  and 

only i f  r divides n.  In this case, there exists a n  optimal colouring of the edges which 
is uniform. 

Proof. We note that 

Corollary 1 with h = 1. 

divides (:), the quotient being (:It). We therefore apply 

Corollary 4 (Baranyai). The chromatic index of K i  i s  



Colourings 145 

Proof. 
q = q ( K k )  matchings. We have 

Let KA = H,+H2+ ...+ Hq be a decomposition of the edges of K i  into 

Thus 

On the other hand, if we denote by t the second term of this inequality, we can apply 
Theorem 11 with 

n 
m l = m 2 =  . - .  = mt-l = [--I 

Thus there exists a decomposition KA = H ,  + H 2  + * - + I f t  such that, for every 

x E X ,  

This is then a strong colouring of the edges of K i  in t colouls, whence q(KL) 5 t ,  
which completes the proof. 

Corollary 5. Let K i  = H,+H2+ ...+ H, be a decomposition o f  the edges of KL into 

p hypergraphs on X (" cove rings'^. If p(KL) denotes the smallest integer p f o r  

which such a decomposition e d s t s ,  then 

The proof is the same as that above. 

Corollary 6. There exiata a good k-colouring o f  the edges of KA if and only if either 

k I [ ( : ) I f ] - ' ]  or k 2 [ ( ~ ) I ~ l - ' ] * .  
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Proof. Using Corollaries 4 and 5 we can write 

r 

If k < q(KL) there is no strong k-colouring, and if k 2 p(KL) there exists no decompo- 
sition into k coverings. Hence there are no good k-colourings. 

On the other hand, if k 2 q(KI;) there exists an obvious good k-colouring, 
obtained from a colouring in q(KA) colours by adding empty classes. If k s p ( K L ) ,  
there exists a decomposition into k coverings, obtained from a decomposition into 
p(KL) coverings by redistributing the p(KA)-k  last classes. 

6. An application to an extremal problem 

The above results enable us t o  give a partial answer to the following problem: 
what is the largest number of edges in an r-uniform hypergraph of order 5 n which 
does not have k+l pairwise disjoint edges. This number will be denoted by 

Mk(n,r) = max m ( ~ ) .  
v(H)lk  

For the case of graphs this problem has already been solved by Erdijs and Gallai [1959] 
(cf. Graphs, Theorem 2, Chapter 7). 

Theorem 12. Let n,r,k be integers with n >_ r 2 2, n 2 kr. If we let 

we have: 

Proof. Let H be an r-uniform hypergraph on X ,  Kl = n ,  having no matching with 
k+l  edges, and with the largest number of edges possible. As in Corollary 4 of 
Theorem 11, consider the decomposition of the r-complete hypergraph KE on X as the 
sum of q matchings H ,  with 
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m ( H j )  = !:I 

m(H,) = - (Q--I)l,l. 

(j = 1,2, ...,q- 1 )  

n 

The hypergraph H admits a t  most k edges in H j  for j S q - 1 ,  and at  most 

min{k, (:)-(q-l)[--]} edges in Hq.  Thus m ( H )  = ML(n,r) is bounded by the expres- n 

sion given above in the statement of the theorem, as was to be proved. 

n 
2 

Remark. If k = 1 and r < -, we have M { ( n , r )  = (:I;) from the theorem of Erd&, 

Chao-Ko and Rado, and the only extremal hypergraph is the star K;(s,). 

If n 5 kr+(r-1), we have ML(n,r) = (Y); the only extremal hypergraph is KL. 

If n 2 kr+r, consider a set X with I = n ,  a set  Y C X  with = k ,  and let 

= ( E / E c X ,  l~ I=r, E ~ Y # @ ) .  

The hypergraph &L,k cannot have k+l disjoint edges (for each of these edges would 
have to  meet a distinct point of Y) .  ErdEjs [1965] proved that for n > c,k, where c, is 
a constant depending only on r ,  &L,k is an extremal hypergraph; that  is to  say 

ML(n,r) = m ( & ; , k )  = (3) - (n,k). 

Furthermore, Erdds conjectured that for every n >kr+r, one of the hypergraphs 
K;,+,-l or &L,k is extremal, and consequently 

kr +r -1 
ML(n,r) = max{( 1 9  - (";"I. 

When n is sufficiently large, is &;,k the only extremal hypergraph? BollobAs, Day- 
kin and ErdEjs [lQSO] showed that every r-uniform hypergraph H satisfying 

n ( H )  > 2r3k 

m ( H )  m ( & ; , k )  - ( r-l 
n -k -r 

4 H )  5 k 
is contained in an &;,k.  
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7. Kneser’s problem 

The study of the chromatic index of a hypergraph is comparable to the dual prob- 
lem: What is the smallest number of intersecting families whose union is the set of 
edges of the hypergraph H? This new coefficient, denoted T ~ ( H ) ,  and sometimes called 
the Kneser number, has properties similar to those of the transversal number T(N). 
We have T ~ ( H )  < T ( H ) ,  for one can always cover the set of edges of H with T(H) 
stars. If H satisfies the Helly property, we clearly have T ~ ( H )  = T ( H ) .  

The study of T ~ ( H )  is inseparable from that of &(H) (the maximum cardinality of 
an intersecting family) and p k ( f f )  (the minimum number of intersecting families which, 
collectively, cover each edge of H at least k times). The coefficient 

is sometimes called the fractional Kneser number. 

Theorem 13. For every hypergraph H ,  

Proof. To the hypergraph H = (E1,E2, ..., Em) on X let us make correspond a hyper- 
graph 2 = (EI,E2, . , . ,Em) on the set of intersecting families of H ,  where 6. is the 
set of intersecting families which contain E;. We then have E; n Ej = 0 if and only 
if 6 n Ej = 0. Moreover, 

- -  

v(P) = v ( H )  

Acm = M H )  

T(E) = TO(H)  

T f ( H )  = T J H )  

T k ( H )  = p k ( H )  

Applying Theorem 1 of Chapter 3 to the hypergraph H ,  we obtain the stated inequali- 
ties. 

Example 1. Let P, be the projective plane on 7 points. We have 
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4 P 7 )  = 7 

7 0 ( p 7 )  = 

We have also 7;(P7) = 1 ,  since Theorem 13 gives 

1 = v(P7) <_ 70*(P7) 5 7@7) = 1 .  

n 
2 

Example 2. Let KL be the r-complete hypergraph with r 5 -. From the theorem 

of ErdGs, C h e K o  and Rado, 

T - n-1 

n We have also 7;((K;) = -, since Theorem 13 gives 

4 F n )  - ( r - l ) *  

We note that  p,(KL) 5 n ,  being given that the n stars of KL collectively cover every 
edge exactly r times. 

The problem of determining r0((K;) which was put by Kneser in 1955, was not 
solved until 23 years later, by Lovisz, using algebraic topological methods. We shall 
give here a simpler proof due to  Baranyai 119781. 

Proposition. Let H be an r-uniform hypergraph of order n 2 2 r .  Then 

T ~ ( H )  5 n-2r+2. 

Consider a set of vertices Y C X  with PI= 2r-1. The family H / Y  of edges of 
H contained in Y is an intersecting family. This, together with the stars of the form 
H ( x )  with x EX-Y, cover all the edges of H .  Hence 
~ ~ ( f f )  5 1 + (n-2r+1) = n-2r+2. 

n 

2 
Theorem 14 (Lovslsz [1978]). Let n , r  be integers wi th 2 5 r 5 -. We have 

T ~ ( K ; )  = n-2r+2. 

Proof. From the preceding proposition, it is enough to prove that 
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T ~ ( K ~ )  2 n-2r+2. 

Let d = n-2r. We argue by contradiction and suppose that we can decompose K i  
into d+l = n-2r+l intersecting families H1,H2,  ...&+I. From a theorem of Gale 
[1956], for every k 2 1  we can place d+2k points on the sphere 
Sd = (x,xERd+’,llxll=l} in space of d+l  dimensions, in such a way that every open 
hemisphere contains a t  least k of these points. Hence we can place the n = d+2r ver- 
tices of K i  on Sd in such a way that every hemisphere contains at least r vertices (and 
hence at least one edge of Ki) .  

Denote by Pi the set of points x of the sphere Sd such that  the (open) hemisphere 
centred on x contains an edge of the family Hi .  Since for every point of Sd ,  the hemi- 
sphere centred on this point contains an E EKA (hence an E belonging to an Hi)  we 
have Sd = PI U P2 U * * * U Pd+l. 

We now use Borsuk‘s “antipodal points theorem” [1933] which says that  if a 
sphere Sd CRd+’ is the union of d + l  open sets, then one of these sets contains two 
antipodal points. Let set Pi, contain two antipodal points x and y. The hemisphere of 
Sd centred on x contains an edge E belonging to Hio, and the hemisphere centred on y 
contains an edge F belonging to Hi,. Consequently, E n F = 0. This contradicts the 
fact that Hi, is an intersecting family. 

Exercises on Chapter 4 

Exercise 1 ( $ 1 )  

Determine the chromatic number and the stability number of KA and of 

KA1,” a,.., n, - 
Exercise 2 ($1) 

Let H be a hypergraph on X .  Show that  if a(H/A) 2 for every A CX, 
2 

then X can be covered by 4 H )  edges or singleton vertices. (Lehel [1982]). 

Exercise 3 ($1) 

Let H be a hypergraph, and let ml,m2, ..., mk be positive integers. Show that H is 
the union of k hypergraphs Hi with no edges in common and with x ( H i )  5 mi if and 
only if x ( H )  5 m1m2 * * - mk. (Miller, Miiller [lQSl]). 
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Exercise 4 ($1) 

Show that if a hypergraph H of rank r 2 3  satisfies DnE’l s r - 2  

(E,E‘ E H ;  E # E’), then 4 H )  = a satisfies n-a 5 (r:l). 

Exercise 6 ($1) 

On a chess board of n Xn squares we define the “Queen’s move hypergraph” H$ 
as the hypergraph whose vertices are the squares, and for which an edge E, is the set 
of squares which a queen placed on square x dominates (including z itself). We define 
similarly the “King’s move hypergraph” Hf, etc. 

Show that x ( H f )  = x ( H f )  = x ( H f )  = x(Hf) = 2. (R = rook; B = bishop). 

Exercise 6 ($1) 

Consider the 3-uniform hypergraph whose vertices are the integers 1,2, ..., n and 
whose edges are the triples {z,y,z} with x+y = z. Show that the stability number of 

this hypergraph is [”]+1. (SedlaEek [1970]). 
2 

Exercise 7 ($1) 

Consider the infinite hypergraph whose vertices are the positive integers, and 
whose edges are the families of integers forming an arithmetic progression. Show that 
this hypergraph satisfies the Helly property, and that  its chromatic number cannot be 
2. 

Exercise 8 ($2) 

If we associate one of the colours 1,2, ..., k with each vertex of a hypergraph H ,  we 
regard an edge as “strongly coloured” if all its elements have different colours. The 
cochromatic number of H ,  denoted r ( H ) ,  is the smallest integer k such that  for every 
k-partition (S1,S2, ..., Sh) (with no empty classes) there exists a strongly coloured edge. 

Show that T(KL) = r. 

If H is r-uniform of order n, show that 

T ( H )  _< n-r+l. 

calculate T(KL12ns.. ,n, 1. 
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If G is a graph with p connected components, then y ( G )  = p + l .  Let G be a 
graph of order n ,  and H a hypergraph on the edges of G in which the edges are the 
cycles of G. Show that r ( H )  = n. 

Exercise 9 ($2) 

Show that between the cochromatic number r ( H )  and the stability number 4 H )  
the following relation holds: 

r ( H )  5 4 H )  + 1. 

Show further that  for n 2 p >_ r 2 2 there exists an r-uniform hypergraph of 
order n with 4 H )  = p-1, r ( H )  = p .  (Sterboul [1975]). 

Exercise 10 ($2) 

If G is a graph, show that  the “product” (cf. Chapter 3, 56)  G X I<, satisfies 

?(G XK,) = n ( G )  + Q(G)(n-I) + 1. 

(Sterboul [1975]). 

Exercise 11 ($3) 

Show that the vertices of a tree of maximum degree A can be uniformly 
A 
2 

k-coloured for every k 2 [-] + 1. 

A 
2 

Show further that there is a tree with no uniform k-colouring if k = [-I. 

Exercise 12 ($4) 

Show that 

kr-k+l 

(Herzog, Schgnheim (19721). 

Exercise 13 ($4) 

n 
k 

Show that if p = - is an integer 2 r ,  then 
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Exercise 14 ($4) 

Show that for n 2 kr 

m t ( n , r )  5 T(n-l,p-l,r-l) 

where p = [n/k]. 

For this, consider an extremal (r-1)-uniform hypergraph H ,  of order n-1 with no 
stable set of cardinality p-1. Consider the r-uniform hypergraph H ,  of order n 
obtained by adding t o  every edge the same additional vertex zo, and show that H ,  has 
no uniform k-colouring. (Berge, Sterboul 11977)). 

Exercise 15 (54) 

Let H be an r-uniform hypergraph of order n and stability number a. Show that 
the maximum number of edges containing a set T C X  with IT1 = r-1 is an integer z 

satisfying 

a + (r-Jz 1 n. 

Deduce from this that  the number m of edges in such a hypergraph satisfies 

a 
a + (r-1)r4r:J1 1 n 

(de Caen [1983]). 

Hint: Use the inequality (3) that follows Theorem 9. 

Exercise 16 ($4) 

Let H be an r-uniform hypergraph of order n = kr  which has no uniform 
k-colouring and which has the minimum number of vertices for this condition. Show 
that H is a star of KL. (Berge, Sterboul 119771). 

Exercise 17 (55) 

Show that there exists an equitable k-colouring of the edges of KL if and only if 
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Exercise 18 ($7) 

Given integers n,k, t  with n > k  > t  > O  and n+t > 2 k ,  consider the graph 
G(n,L, t )  on the set of L-tuples taken from a set of n elements, where two L-tuples A 
and B are joined if and only if b f l B  I < t .  Then T ~ ( K ; )  is the chromatic number of 
G ( n , r , l ) .  Frankl has conjectured that the chromatic number of G ( n , L , t )  is T(n,L,t) 
for n sufficiently large, and has proved it for t = 2 .  (Frankl [1985]). 

Exercise 19 ($7) Show that 

T ~ ( H )  5 max rn(H/X-&) = I 
l 

and that equality is possible only if the connected component of the complement of the 
graph L ( H )  having maximum degree is either a clique or an odd cycle without chords. 

(Use Brooks’s Theorem, Graphs, Chapter 15). 

Exercise 20 ($7) 

Show directly that T ~ ( K , )  = n-2r+2 for n 2 3. 
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Hypergraphs Generalising Bipartite Graphs 

1. Hypergraphs without odd cycles 

Let H be a hypergraph on X ,  and let Ic 2 2 be an integer. A cycle of length k is 
a sequence (z1,E1,x2,E2,z3, ...,zk,Ek,zl) with: 

(1) 

(2) 

E1,E2, ..., Ek distinct edges of H ;  

z1,z2, ..., zk distinct vertices of H ;  

(3) Zi,Zi+l E E ,  (i = 1,2,...,&1); 

(4) zk,x1 EEk. 

Observe that  the sequence (z,,El,zl) is not considered to  be a cycle. A cycle of 
length k odd (respectively even) is called an odd cycle (respectively even). 

Graphs without odd cycles possess such remarkable properties as: 

- the Helly property, 

- the Kdnig property, 

- the dual Kdnig property, 

- the coloured edge property, 

- the twecolourability of the vertices. 

Is it still true for hypergraphs? 

Example: Consider a 0-1 matrix A with p rows and q columns. Let H be the hyper- 
graph whose vertices are the entries of the matrix having value 1, and whose edges are 
those 1’s lying in a single row or a single column. Clearly H is the dual of a bipartite 
graph G (whose vertices are the rows and columns of the matrix A ) .  Thus H contains 
no odd cycles, and i t  is easy to  show the existence of a 2-colouring of the vertices of H .  

For a stronger statement, call a B-cycle a cycle (zl,E1,~2,E2,...,Ek,z1) with the 
following properties: 

(1) k is odd; 
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q columns 

A =  
0 1 + 0 1 - 0  0 1 ' 0  

1- 0 0 1+ 1+ 0 1+ 0 
1+ 0 0 1+ 1- 1- I +  0 

Figure 1. Example of a beolouring of H with +, -. 

(2) H r  = (E1,EZ, ..., Ek) has maximum degree A(Hr) = 2; 

(3) BinEi+, I = I (i = 1,2, ..., k-1); 

(4) BknE, I>  1. 

Example. The projective plane P, and the complete hypergraph K!&-lr which are 
not 2-colourable, contain B-cycles of length 3. 

Theorem 1 (Fournier, Las Vergnas [1972], [1984]). Every non bcolourable hypergraph 

contains a B-cycle. 

Proof. Let H be a non 2-colourable hypergraph; by removing the maximum number 
of edges without altering this property, we may suppose that x ( H )  > 2 and 
x(H-E)  = 2 for each E E H .  Suppose that  H contains no B-cycle. Let Eo E H :  since 
H-E, is 2-colourable, let ( A , B )  be a 2-colouring of H-E,. Since x ( H )  > 2, the edge 
Eo is monochromatic, and we may assume E ,  C A .  

Now define one by one the bipartitions (Al,Bl), (A2,B2), ... in such a way that  the 
families Hl,H2, ... formed by the monochromatic edges in the different partitions are 
pairwise disjoint. Since H has only finitely many edges this will imply that for some 
integer k the family Hk is empty; that is to say, that ( A k , B k )  is a 2-colouring of H :  

this will contradict x ( H )  > 2 and will complete the proof. 

Consider a vertex z EE,, denote by To = { z }  the singleton z ,  and set 
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- A - T o  r1 B ,  = - B U To. 

We have thus defined a new partition (Al,Bl),  and the family H I  of mono- 
chromatic edges in this partition satisfies 

(IT,) H ,  is disjoint from {Eo}, 

(IT:) every edge of H ,  is contained in B1 and meets To, 

(V) there exists a set TI E T r H ,  contained in B n B ,  and disjoint from Eo 

(TrH denotes the transversal hypergraph of H ,  cf. Ch. 2 $1). 

More generally, suppose that we have defined a bipartition (Ai-,,Bi-,) and the 
associated family Hi-1 of monochromatic edges. Let Ti-, E Tr Hi-, be contained in 
A n Ai-] (if i is odd) or in B n (if i is even). For i 2 1 odd, set 

A, = Ai-1 - q-1 ,  { Bi = Bi-1 U Ti-,. 

For i 2 2 even, set 

Ai = A;-1 U q-1 ,  

Bi = Bi-1 - q-1. { 
We shall now show by induction on i that the family Hi of monochromatic edges 

with respect to  the bipartition (Ai ,Bi) satisfies the following three properties: 

(Hi 1 Hi is disjoint from the families Ho = {Eo}, H1,H2,...,Hi-,; 

(IT:) every edge of Hi is contained in A, (for i even) or in B, (for i odd), and 
meets q-l; 

(W there exists a set Ti ETrHi contained in A n Ai (for i even) or B n.Bi 
(for i odd), and which meets none of the sets Eo - To, To, T,, T, ,..., Ti-,. 

Let k > 1 be an integer; assume first that k is odd. Suppose that we have shown 
IT,, II:, IT: for each i 5 k-1. 
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1) Proof that nk holds. 

From ny,ni, . . . ,n[-l the sets Eo-To,To ,..., Tk-l are pairwise disjoint (and each 
set has changed colour completely in a single step in the procedure). Hence Ti CBk 

for i even 5 k-1, or C Ak for i odd 5 k-1. For i 5 k-1 every edge of Hi meets 
Ti (since Ti E T r H i )  and (from n:) and cannot be monochromatic with (Ak,Bk) 

since To C Bk and E-To C Ak. Thus the family ffk of monochromatic edges has no 
edge in common with {Eo}, H1,H2 ,..., Hk-l. 

2) Proof that IIi holds. 

Every edge of Hk is Zcoloured in (Ak--l,Bk-l) from IT,, and is monochromatic 
with (Ak,Bk); thus it must meet Tk-l, which is the set of vertices which change colour 
in the k-th step, and is contained in Bk. 

3) Proof that n% holds. 

Since k is odd, the edges of Hk are contained in Bk (from Hi): thus there exists a 
Tk ETrHk contained in Bk. Further no edge of Hk is contained in 
To U T2 U * * * U Tk-1 since such an edge would be monochromatic with (A,B), 

which contradicts nk. Thus we may assume Tk is contained in 

T'0,T2,T4,...,2'k-1 are contained in A; thus they do not meet Tk. By the definition of the 
transformation, the sets Eo-To,Tl,T3,...,Tk-2 are contained in A,, and so they do not 
meet Tk. 

Bk - (TouT2u ' . . UTk-1) = Bk n B. From ny,ni, . . . ,n[-l the sets 

4) If we now suppose k is even, nothing changes in the above argument except for one 
point: the edges of Hk are contained in Ak and Tk C A  n Ak. Consequently Tk does 
not meet To,T2,...,Tk-2 (which are contained in Bk) or Tl,T3,...,Tk--1 (which are con- 
tained in B), but it remains to  show that Tk does not meet Eo-To. 

More precisely, we shall show that every edge of Hk is disjoint from E0-7'0. Oth- 
erwise, there exists an Ek Effk which meets Eo-T,: let 20 EEk n (Eo-To). From n: 
there exists a vertex Sk ETk-l n Ek, and by the minimality of the transversal Tk-1, 

there exists an edge Ek-l EHk-, such that Ek-l II Tk-1 = {q}; since Ek CAk and 

Ek-1, etc., we obtain a sequence term by term 
Ek-1 CBk u Tk-1 we have also Ek-l n Ek = {Sk} .  Repeating this procedure with 
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Then the sequence (zO,EO,xl,E1,zZ, ..., xk,Ek,xO) defines a cycle and satisfies 
Bin Ej-l I = 1 for each i 2 1;  further its length k + l  is odd. 

So, by virtue of the hypothesis, there exists a vertex y of degree > 2 in the hyper- 
graph H’ = (EO,El, ..., Ek) ;  suppose for example: 

Y E E ~  n E, n E, 

O < p < q < r < k  

r-p minimum. 

We shall show first that 9 # xp+l,xp+z,...,xr- Indeed, if for example r is even, 
then E, C A, from n:, so the vertex y is different from Z ~ , X ~ , . . . , X , - ~  (which are in B,, 
from (1) and ny,n,”, . . . ,II:-l). If y = xg for s even, p + l  5 s < r ,  then the cycle 
( z n , ~ ~ , x ~ + ~ , . . . , x r , E ~ , ~ n )  is an odd cycle of maximum degree 2 (by the minimality of 
r-p), so it is a B-cycle, contradicting the hypothesis. If y = z,, then r = q+l from 
(1) and the minimality of r-p. Hence q is odd. Moreover, p is odd (since if p were 
even, Tp C%, and does not contain x, which is in Bp).  Hence the cycle 
(zr,Ep,zp+l,Ep+l, ..., x9,E9,zr) is odd of maximum degree 2; so it is a B-cycle, which 
contradicts the hypothesis. 

Observe that the indices p ,q have different parities: otherwise the cycle 
(y,Ep,zp+l,Ep+l, ..., xq,E,,y) is odd of maximum degree 2, so it is a B-cycle, contradict- 
ing the hypothesis. Similarly, the indices q and r have different parities. Suppose for 
example p even, q odd, r even. Then Ep C%, E, CB,, E, CA,. Since 
E,, n B CB, we have Ep n E9 C A .  For the same reason, E, n E, C B ,  which 
implies that  Ep n E, n E, = 0 and the contradiction follows. 

Corollary 1. In a non 2-colourable hypergraph of rank < 3, there exists a B-cyc le  

such that every pair of two non-consecutive edges are disjoint. 

Let H be a hypergraph with x ( H )  2 3, r ( H )  5 3. We may suppose that we have 
removed from H as many edges as possible without it becoming 2-colourable. Now, 
from Theorem 1, there exists a B-cycle (zl,El,zz, ..., Ek,xl) which we may suppose of 
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minimum length k. If El r l  Ej # (3 for an integer j ,  3 j 5 k-1, then there exists a 
vertex y E E ,  n Ej. Since the degree of the B-cycle is 2, the vertex y is distinct from 
x1,x2, ..., xk; and since H has rank 5 3, we have El = {y,xl,x2} and Ej = { ~ , x j , x j + ~ } .  

One of the two cycles (y,EI,x2 ,... ,Ej,y) and ( ~ ~ , E ~ , y , E j , x j + ~  ,... ,Ek,xl) is odd. Since 
El n Ej = {y}, this cycle is a B-cycle, which contradicts the minimality of k. 

Corollary 2. In  a non 2-colourable hypergraph, there is  a n  odd cycle of maximum 

degree 2 such that every pair of two non-consecutive edges are disjoint. 

(Same proof, replacing each occurrence of “B-cycle” by “odd cycle of maximum 
degree 2”). 

Following these results, we might expect that hypergraphs without odd cycles of 
maximum degree 2 would have those properties apparent in bipartite graphs; however, 
they may satisfy the Helly property as in Figure 2, or not, as in Figure 3. 

v = 2  r = 3  v = l ,  1 1 2  

Hypergraph without odd cycles 
OJ maximum degree 2 

(un‘th the Helly property) 

Hypergraph vithout odd cycles 
of maximum degree 2 

[un’thout the Helly property) 

Figure 2. Figure 3. 
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From these results, we obtain the following characterization of the hypergraphs which 
contain no odd cycle: 

Theorem 2. A hypergraph H = (El ,Ez ,  ..., Em) has no odd cycles i f  and only if every 

hypergraph H’ = (Ei,Ek, ..., E L )  with E,! C E, for  each i is bcolourable. 

Proof. If H contains no odd cycles, Theorem 1 shows that x ( H )  5 2. The hyper- 
graph H’ is also without odd cycles, so x(H’) 5 2. 

If H contains an odd cycle (51,E1,22,E2,...,Ek,51), then there exists a hypergraph 
H‘ of the form indicated which has edges [21,zz],[21,23], ...,[Zk,zljt whence x(H’) > 3. 

Contradiction. 

The class of hypergraphs without odd cycles has been studied from the point of 
view of matrices by Commoner [1973]; Yannakakis [I9851 has given a polynomial algo- 
rithm to test whether a given hypergraph is in this class. 

Theorem 3. A hypergraph H = (El,E2, ..., E m )  is cycle-free i f  and only i f  for every 

non-empty subset J of {1,2, ..., m}, we have 

Proof. 

1. If H contains a cycle (al,El,a2,E2 ,..., Ek,al) we obtain, setting K = {1,2 ,..., Ic} 

Thus condition (1) fails. 

2. If H contains no cycles, the partial hypergraph H‘ = ( E j / j E J )  also contains no 
cycles. Set U Ej = {z;/i€I} and form the bipartite graph G on I U J ,  where 

i € I  and j E J are adjacent if and only if z; E E j .  

Since G contains no cycles, we have m ( G )  < n ( G )  (cf. Graphs, Ch. 2); thus 

J E J  
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whence (1) holds. 

Remark. If H is &uniform, a necessary and sufficient condition for H to have no 
cycles is that for every non-empty subset J of {1,2, ..., m}, 

l$JEj I > (k-1) I J  I. 
We may generalise this result in the following way: 

Generalisation (Las Vergnas, [1970]). Let H = (El,E2,.,.,Em) be a hvpergraph and 

let k 2 2 be an integer; a necessary and sufficient condition for the existence o f  a 

k-uniform hypergraph HI without cycles, H’ = (E{,Ei ,  ..., EL)  w’th Ei C E i  for every 

i ,  i s  that 

I .U Ej I > (k-1) IJ I ( J  + 0) 
I E J  

Between the class of hypergraphs without cycles and the class of hypergraphs 
without B-cycles, there are many classes, each having interesting characteristics and 
concrete combinatorial applications. In this chapter we shall study the classes of 
hypergraphs shown in Figure 4. 

2. Unimodular Hypergraphs 

A matrix A = ((a:)) is said to  be totally unimodular if every square submatrix of 
A has determinant equal to  0, + 1 or - 1. A hypergraph is said to  be unimodular if 
its incidence matrix is totally unimodular. 

It is immediate from this definition that the dual, the subhypergraphs and the 

partial hypergraphs of a unimodular hypergraph are unimodular. 

A combinatorial property of unimodular hypergraphs is revealed in the concept of 
an “equitable colouring”. 

Theorem 4. A hypergraph H on X i s  unimodular i f  and only i f  for  every S C X 
the subhgpergraph H s  has an equitable 2-colouring: that is to say a bipartition (S,,S,) 

of S such that each edge E o f  H s  satisfies 
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\ -  

totally Arboreal 
balanced - (Fig.  1.1) - LVithout cycles --L 

2 3  (Fig. 12) 

Proof. If an n X m matrix A = ( (a;))  is totally unimodular, it is clear that  a; = 0,+1 

or -1 (since the value of each entry is a determinant of order 1 from -4); further 
Ghouila-Houri [1962] showed that A is totally unimodular if and only if every non- 
empty set Z c {1,2, ..., n }  may be partitioned into two disjoint sets I ,  and I ,  in such a 

W i t h o u t  cycles 

iiiaxiniuiii 
degree 2 
(Fig. 3) 

2 3 or 

ing 
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way that  

If A is the incidence matrix of a hypergraph we obtain the required 2-colouring with 
s, = {q/i at}, s, = {q/i €I*}. 

Example 1. Bipartite multigraph. 

Let G be a bipartite multigraph; clearly every subgraph of G is a bipartite multi- 
graph, and hence is 2-colourable. Thus G is a unimodular hypergraph. 

Example 2. Interval hypergraph. 

Let H be defined by a set of points on a line and a family of intervals. Clearly for 
A C X the subhypergraph HA is an interval hypergraph, for which we obtain an equit- 
able 2-colouring by successively colouring the points from left to  right red and blue 
alternately. Thus H is unimodular. 

Example 3. Hypergraph of paths in an oriented tree. 

Let T be a tree on a set X with a (unique) orientation on each edge. Let H be a 
hypergraph on X such that each edge is an oriented path of T. Clearly a 2-colouring 
of T defines an equitable 2-colouring of H (cf. Figure 5).  Every subhypergraph of H 
also has an equitable 2-colouring: if we remove a vertex a from H ,  consider the tree T' 
of Figure 6 for which every 2-colouring induces an equitable 2-colouring of Hx-c,,. 

Example 4. Hypergraph on the arcs of a tree. 

Let To be a tree on a set X ,  with a unique orientation on each edge, which defines 
a set U of arcs. Let Ho be a hypergraph on U such that each edge is a set of arcs 
forming a path of To. Clearly we may colour the arcs of To in 2 colours, + and -, in 
such a way that every pair of consecutive arcs contain both colours (cf. Figure 7); this 
defines an equitable 2-colouring of Ho. Every subhypergraph also has an equitable 
2-colouring: if we remove an arc u of U ,  consider the tree T', of Figure 8 for which a 
2-colouring induces an equitable 2-colouring of Hu+l. 

Theorem 6. Every hypergraph without odd cycles i s  unimodular. 

Proof. Since no subhypergraph of a hypergraph without odd cycles contains an odd 
cycle, it suffices to  show that a hypergraph H without odd cycles may be equitably 
2-coloured. 
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Figure 5 Figure 6 

Figure 7 Figure 8 

For i 5 m ,  put ri = bi I and define a map yi:{1,2, ..., ri} + X  so that 

Ei = {Yi(l),Yi(2),...,Yi(ri)} 

Consider the set 3i of the following pairs: 

Yi (l)yi(L), 

~i (3)~; (4) 
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2 / i ( 2 [ ~ i / z l - l ) y i ( 2 [ p . i / 2 1 ) .  

The union of the 3 i ’ s  is a graph G and we may suppose that  the yi’s (and hence the 
3 i ’ s )  have been chosen so that the minimum length of an odd cycle of G is as small as 
possible. If G has odd cycles, consider an odd cycle of G of minimum length, say 
p = [al ,a2,  . . . ,al]. The cycle p is elementary. We shall show that p does not con- 
tain two edges from the same set 3i. 

Indeed, if for example [~a,,a,+~] E 3 i  and [ ~ ~ , a ~ + ~ ]  EFi, by replacing these two 
edges in 3i by the edges [ a , , ~ ~ + ~ ]  and [at,a,+l], the graph G’ so obtained has an odd 
cycle which is shorter than p, (as one of the two sequences [al,a2 ,..., ~ , , a ~ + ~  ,..., a,] and 
[as+l,as+2,...,at,as+l] is odd) which contradicts the definition of G .  Further, if the 
cycle p has its edges in different classes 3i then it defines an odd cycle of H ,  which 
contradicts our hypothesis that  H has no odd cycles. Thus such a cycle p cannot 
exist. 

Since the graph G has no odd cycles, there exists a 2-colouring (S,,S,) of its ver- 
tices: this constitutes also an equitable 2-colouring for H .  

Theorem 6 (de Werra [1971]). 
k-colouring for every k 2 2. 

A unimodular hypergraph H has a n  equitable 

Proof. For k = 2 the statement follows from Theorem 4. For k > 2 consider a parti- 
tion (S1,S2, ..., S k )  of the vertices of H into k classes. For i,j k and for E E H put 

e i j ( ~ )  = IsinE I - lsjnE I 
e(E) = max eij(E). 

t ! I  

Clearly E(E) 2 0. If e(E) 5 1 for every E E H ,  the partition is an equitable 
k-colouring of the hypergraph H ,  and vice versa. Suppose therefore that  there is an 
edge E, with e(EO) 2 2 and let p , q  be indices for which epq(EO) = e(EO). Then 

Is,nEoI 5 IsinEoI 5 Is,nE,I (i # p,q) 

The subhypergraph of H induced by the set Sp U Sq admits an equitable 2-colouring 
(S;,S;). Put  S,! = Si for i # p , q .  The new partition (Si,Sk, ..., Si )  defines new coeffi- 
cients € I j ,  such that  every E E H  satisfies e&(E) 5 1. Furthermore 

E: j (E)  3: ~i j 

for i and j # p , q .  Further, for i # p , q  we cannot have e&,(E) = e(E,) unless 
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€ip(E) = €(,TO) or E ~ * ( E )  = €(,TO). 

In summary, the number of triples ( r , s ,E)  with E,,(E) = €(,TO) has decreased by at  
least one. By repeating this transformation we finally obtain a partition with E'(E) 5 1 
for each E E H ;  this partition is an equitable k-colouring of H .  

Corollary 1. Let H be a unimodular hypergraph and let k = min B 1; there exists a 

partition (Tl,T2, ..., Tk) of  the set X of vertices of H into k transversal sets such that, 

for every E E H ,  

E E H  

Indeed, H admits and equitable k-colouring (T1,T2, ..., Tk), and consequently (1) holds. 
Further, as k = min w I, each I;: is a transversal. 

Corollary 2. Let H be a unimodular hypergraph and let k 2.1; then there exists a 
decomposition H = H,+H2+ * * * +Hk into k classes 8uch that for every vertex x of 

H ,  

- d H ( X )  5 d H i ( X )  5 e d H ( X )  (i = 1,2 ,..., k). 1: 1 [l I 
Indeed, apply Theorem 6 to the dual hypergraph H*,  which is also unimodular. 

Corollary 3. Every unimodular hypergraph satis f ies the coloured edge property. 

Indeed, set k = A ( H )  in Corollary 2. 

Our interest in totally unimodular matrices arises principally from the following 
result: 

Theorem 7 (Hoffman, Kruskal [1956]). Let A be an n X m matrix: the following 

conditions are equivalent: 

(i) A i s  totally unimodular; 

(ii) for every c EiE" the polyhedron of c-matching8 
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Q(c) = { Y / Y E R ~ ,  Y 2 0 ,  AY 5 c> 

has only integer valued extreme points, 

for every b,c E P, for  every p,q E Zm, the set (iii) 

Q(b,c,p,q) = {Y/Y a", b I AY I c; P 5 Y 5 q> 

i s  empty or contains a n  integer valued point. 

Proof. 

( i )  implies (ii). Indeed, the extreme points of the polyhedron Q(c) are given by 
the intersections of planes of fhe form <a',y> = ci. Cramer's rule says that every 
solution y of such a system has for each coordinate yi the quotient of two deter- 
minants; the first is integer valued (as a; is an integer), the second has value 0 or f l  
(since A is unimodular). Thus the point y has all its coordinates integer valued. 

(ii) implies (i). Let B be a regular square submatrix of order n of the matrix 

Let y EZ?' be such that y + B-'ui 2 0, where ui is the i t h  unit vector of Zn. The 
vector z = y + B-'ui satisfies Ba = By + ui E P .  Consequently z defines the non- 
zero components of an extreme point of Q(c) where c = By + u'; thus, from (ii), 
a E P .  

Therefore B-'ui = a-y E P  for i = 1,2, ..., n and thus the matrix B-' has 
integer coefficients. Hence det B and det B-' are integers which satisfy 
(det B)(det  B-') = det In = 1. Thus det B = &l. This proves that A is totally unimo- 
dular. (The idea for this much simpler proof is due to  Viennot and Dantzig, [1968]). 

(i i)  i8 equivalent to &i). The total unimodularity of A is equivalent to  the total 
unimodularity of the matrix 
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To show that this result implies all the characterisations of unimodular matrices 
by forbidden structures such as those of Ghouila-Houri [1962] quoted above, or those of 
Camion [1965], etc., the reader is referred to  the excellent expose' by Padberg [1988]. 

Consider a hypergraph H ,  and its incidence matrix A = ( ( u f ) )  (with n rows, m 

columns, with no zero rows or zero columns). Let c = (cl,c zr...,e,) E P ,  A 
c-matching is a vector y with integer coordinates of the polyhedron 

Q(c) = {y/YORm, Y 2 0, AY 5 c) 

For c = 1, a point of Q(c) with integer coordinates is necessarily Ck1 valued, and a 
1-matching is nothing but a matching. If we associate with each edge E j  an integer 

d ,  20 called the weight of the edge E j ,  and if C d j y ,  is the total weight of the 

c-matching y,  we may ask for the mazimvm weight of a c-matching, which we denote 

m 

j -  1 

by 

N -  max <d,y> = max{<d,y>/y EQ (c) n P }  
ar€Q(c)  

In particular, if c = 1, d = 1 we have N-max<d,y> = v(H) .  

For a vector d EBiF we may define a d-transversal to  be a vector t = (I&,..&) 
with integer coordinates of the polyhedron 

P(d) = {t/t a", t 2 0,  A*t  3 d}. 

Defining the cost of a vertex zi of the hypergraph to be an integer ci  2 0, we may ask 

for the minimum cost C citi of a transversal t, which we denote by 
n 

i-1 
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N-min<c,t> = min{<c,t>/t EP(d)nW} 
t EP(4 

In particular, N-min<l,t> = 7(H). 
A Y L l  

We may now state, as an application of Theorem 7: 

Corollary 1. Let H be a unimodular hypergraph with n vertices and m edges; f o r  

c E N '  and d E B " ,  we have 

N-max<d,y> = N-min<c,t> 
J/EQ(~)  t m4 

Proof. If H is unimodular, the maximum of <d,y> for y E Q (c) is attained at a point 
yo having integer coordinates; the minimum of <c,t> for t EP(d) is attained at a 
point to having integer coordinates. The duality theorem of linear programming shows 
that  

<d,yo> = <c,to>. 

This implies the equality stated in Corollary 1. 

Corollary 2. A unimodular hypergraph H of rank r can be strongly coloured un'th r 

colours. 

Proof. Let A = ((ui)) be the incidence matrix of H ,  where the rows represent the ver- 
tices and the columns represent the edges. An n-dimensional vector z with coordinates 
0 or 1 is the characteristic vector of a set S C X ,  and ISnEj  I is equal to the scalar 
product <z,aj>. 

There exists a set S which meets each edge E ,  at  most once, and exactly once 
each edge with Bj I = r ,  if and only if there exists an integer solution to the following 
system of inequalities: 

o < z < r  

0 5 Cz,aj> 5 1 if E j  E H  

15 a , a j > 5 1  i f E j E H ,  and @ j I = r .  

1 1  1 
r r  

The vector z = (-,-, . . . ,-) satisfies all these inequalities, so there exists a solution 

in integers (and hence in O,l) ,  which is the characteristic vector of a set S of vertices 
defining the first colour. Repeating the procedure with the unimodular hypergraph 
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Hx-s, or rank r-1, define the second colour S', etc. When we arrive at  a hypergraph 
of rank 1 we have defined a strong colouring (S,S', ...) of H with r colours. 

Remark. A polynomial time algorithm to test whether a matrix is totally unimodular 
results from the work of Seymour [1980], and from the extensions of Bixby, Truemper, 
Tamir, etc. Indeed, the problem of testing if a matrix A is totally unimodular is 
equivalent to  that  of testing if its associated matroid M ( A )  is regular. (For an exposi- 
tion of the algorithm, cf. Bixby [1982]). For good algorithms to  find maximum match- 
ings in certain classes of unimodular hypergraphs, cf. Conforti, Cornugjols [1987]. 

3. Balanced Hypergraphs 

A hypergraph is said to  be balanced if every odd cycle has an edge containing 
three vertices of the cycle. A hypergraph is said to  be totally balanced if every cycle of 
length 2 3 has an edge containing three vertices of the cycle. 

In other words, H is balanced if and only if its incidence matrix contains no 
square submatrix of the form: 

Bk = 

1 0  0 0 * * *  0 1  
1 1 0  0 . * .  . o  
0 1 1 0  * - .  . o  

0 

1 0  

o . . .  0 1 1  

where k 2 3 is odd. Similarly H is totally balanced if and only if A contains no sub- 
matrix Bk with k 3 3. 

A totally balanced hypergraph is thus balanced; it is easy to  see (by considering 
all the cycles) that the hypergraphs in Figures 9 and 10 are balanced. 

Proposition 1. Every  partial subhypergraph o f  a totally balanced hypergraph (resp. 

balanced) is totally balanced (resp. balanced). 

Indeed, if H has A as its incidence matrix, a partial subhypergraph has a subma- 
trix A' of A as its incidence matrix; then if A' 3 Bk we must have A 3 Bk.  

Proposition 2. The dual of a totally balanced (resp. balanced) hypergraph is totally 
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Figure 9. Balanced hypergraph (strongly unimodular). 

Figure 10. Balanced hypergraph (not unimodular). 

balanced (resp. balanced). 

Indeed, if H hm A 85 its incidence matrix, the dual H* has for its incidence 
matrix the transpose A* of A.  Then if A* I) Bk we must have A 3 f&)* = Bk. 

Example 1. Unimodular hypergraphs. 
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We shall show that  every unimodular hypergraph is balanced. Let H be a unime 
dular hypergraph which is not balanced: the incidence matrix A contains a submatrix 
of the form Bk with k > 3  odd. However the matrix Bk is not totally unimodular 
(since the hypergraph which it represents is an odd cycle Ck, which cannot be equit- 
ably 2-coloured and thus cannot be unimodular from Theorem 3). Thus H cannot be 
unimodular: a contradiction. 

Observe that the converse is not true: the hypergraph of Figure 10 is clearly bal- 
anced, but it cannot be 2-coloured equitably (because of edge El) and thus is not uni- 
modular. 

I t  was precisely in order to generalise some theorems for totally unimodular 
matrices that the concept of a balanced hypergraph was introduced (Berge [1969], 
119721). 

Example 2. Strongly unimodular hypergraphs (Crama, Hammer, Ibaraki [1985]). 

Another balanced hypergraph, due to  Crama, Hammer and Ibaraki [1985] is the 
strongly  u n i m o d u l a r  hypergraph: this is a balanced hypergraph which further admits 
n o  odd cycles hawing one  edge conta in ing  exact ly  three  vert ices  of t h e  cycle a n d  all t h e  

other  conta in ing  exact ly  t w o  vert ices  o/ t h e  cycle. (For example, the hypergraph of 
Figure 8, which contains odd cycles of length 5 and 7, is strongly unimodular). In 
other words, H is strongly unimodular if and only if its incidence matrix contains no 
square submatrix of the form Bk with k 2 3  odd, nor of the form B;, where B; is 
obtained from Bk by replacing a 0 by a 1. Consequently we see as before that if H is 
strongly unimodular then its dual and its partial subhypergraphs are strongly unimodu- 
lar. 

The same authors have shown further that in a strongly unimodular hypergraph 
H there exists a non-empty set S C X meeting each edge of H which is not a loop in 0 
or 2 vertices. In Figure 9 we find for example the set S = {a,b,c,d}. We may show 
that H is unimodular as follows: consider such a set S,; then in Hx-s, (which is also 
strongly unimodular) consider such a set S,; then in HX-s,-s2 such a set S, etc. Each 
subhypergraph Hs, being a bipartite multigraph we can colour it equitably with two 
colours, red and blue. When all the vertices of H have been coloured, the blue set and 
the red set constitute an equitable 2-colouring of H .  Thus from Theorem 3, H is uni- 
modular. 
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Example 3. Hypergraph of neighbourhoods. 

Let To be a tree on X = {xl,xz, ..., xnh denote by p[xi,x,] the (unique) path whose 
extremities are xi and xi, and denote by d(xi,xj) the distance between xi and xi, that 
is to  say the length of p[xi,xi]. For p > O  we define the neighbourhood centred at 
a E X  of radius p to be the set 

T = {x/xEx, d(z,a) I P }  

A family H = (Tl,T2, ..., Tm) of neighbourhoods is a hypergraph; we shall show that it is 
totally balanced. 

Indeed, otherwise there exists an odd cycle, say 

= (Xi,Ti,X~,Tz,...rXk,TkrXk+l = XI),  

such that the set 

T = {x/x=, d(x,ai) 5 P i )  

does not contain x, for j # i,i+l. 

Since T fl Ti+l # 0, we have 

d(ai,ai+l) 5 P i  + Pi+l ,  

d(ai7.i) I P i ,  

d(ai,xi+l) 5 P i *  

It is easy to see that in the tree To, at least three of the paths ~ [ a i , a i + ~ ]  have a 
non-empty intersection. Let y €To be such that it appears in, say, p[a l ,u2 ] ,  p[ap,ap+,], 

~ l l a , , a ~ + ~ l .  Suppose further that  d(y,zl) 2 d ( u , x P )  L d(y,zq). 

As y Ep[ul,al], we have either y Ep[al,xl] or y Ep[xl,az]. 

Suppose, for example, that  y Ep[al,xl]. Then 

0 I p1 - d(a,,xl) = p1 - d(al,y) - d(y,xl) 

I P 1  - d(a1,y) - d(YJp) 

- < P I  - 4a1,xp). 

Hence xp E T1. For the same reason, xq E Tl. Thus Tl contains at least three vertices 
of the cycle 6: contradiction. 
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Example 4 (Tamir [1985]). 

Consider a tree T on X = {z1,z2, ..., 2,) and let S C X with IS I = k. We may 
generalise the example 3 by considering for every vertex z E X  the sequence 
0 = dg 5 df 5 d,Z 5 - * . _< d$ of distances from z t o  the different elements of S. 

Consider the minimal subtree Ti of T containing z and the elements s E S  with 
d ( z , s )  5 df; for every integer p with df-, 5 p 5 df denote by E ( z , i , p )  the set of ver- 
tices y of the minimal subtree Ti which satisfy d ( z , y )  5 p .  Tamir [1985] showed that 
the hypergraph (E(z , i ,p ) / z , i ,p )  is totally balanced. 

If S = X we obtain thus the hypergraph of neighbourhoods (Example 3). If 
S = {zl} we obtain the hypergraph of paths of an arborescence rooted at  zl. 

Example 6. Composition of two totally balanced hypergraphs (Lubiw 119851). 

Given two hypergraphs H = (E1,E2 ,..., Em) and H' = (F,,F2 ,..., F,,) on a set X ,  
the composition hypergraph HH, is a hypergraph whose vertices f i  represent respec- 
tively the edges Fi E H' and whose edges are the sets Ej = { f i / F i  nE,#@}. In order 
that H g  be a hypergraph on H' we suppose further that each Fi meets a t  least one E, 

and each Ej meets a t  least one Fi. 

Figure 11 Figure 12 

For  example, consider the arborescence T of Figure 11 with H = (EI,E&3+d) 

and H' = (F1,F2,F3,F4). Then H is the hypergraph represented in Figure 12. 

Lubiw [1985] showed that if H and H' are both totally balanced then their compo- 
sition hypergraph HHI is also totally balanced. 

(Note that as in Figure 12, HH, need not be unimodular, even if H and H' are uni- 
modular). 
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This theorem generalises a result of Frank [1977] who showed that if H and H‘ 
are two hypergraphs of paths of an arboresence then HHI  is totally balanced; it also 
generalises a result of Tamir [1983] who showed that if H and H’ are two hypergraphs 
of neighbourhoods, then HH, is totally balanced. 

Theorem 7. A hypergraph i s  balanced i f  and only i f  i t s  induced subhypergraphs are 

2-colourable. 

Proof. 

1. To show that  the condition is necessary it is enough to  show that a balanced 
hypergraph is 2-colourable. 

Indeed, otherwise, there exists a balanced hypergraph H of minimum order with 
x ( H )  2.3. For each vertex zo, the subhypergraph induced by X-{zo} has a 2-colour- 
ing (So$;), since H is minimal. As H is not 2-colourable, this implies that xo appears 
in two edges of H of cardinality 2, say [zo ,y]  and [zo,y’], with y E So, y‘ E S;. Thus 
the graph G formed by the edges of H of cardinality 2 satisfies d G ( z )  2 2 for every 
x E X .  Since G is a balanced hypergraph, it is a bipartite graph. Let G l  be a con- 
nected component of G (which is of order at least 3 from the above) and let z1 be a 
vertex of G l  which is not an articulation point (there must exist a t  least two of these 
since Gl  is of order 2 3). The subhypergraph of H induced by X-{zl} has a 2-colour- 
ing, say (Sl,Si). Then z1 can be coloured in such a way that  no edge of G l  is mono- 
chromatic. Thus every edge of H contains two colours if i t  has more than two ele- 
ments, and contains also two colours if it has two elements: this contradicts x ( H )  # 2. 

Observe that  the existence of a 2-colouring of H also follows from the difficult 
theorem of Fournier-Las Vergnas (Theorem 1). 

2. We shall show that if for every A C X the subhypergraph HA is 2-colourable, 
then H is balanced. Indeed, otherwise there exists an odd cycle 
(al,El,a2,E2, ...,a2k+1,E2k+l,al) where no edge contains three of the ai’s. The set 
A = {al,a2,...,a2k+l} induces a subhypergraph HA which contains the edges of the 
graph C2k+1,  and consequently HA is not 2-colourable, a contradiction. 

Corollary. A hypergraph o f  rank  5 3 is unimodular i f  and only i f  it i s  balanced. 

Proof. If r ( H )  5 3 and if H is balanced, then there exists a 2-colouring of H ,  and 
this 2-colouring is necessarily equitable. The same is true for every subhypergraph of 
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H .  Then, from Theorem 3, H is unimodular. 

Theorem 8.  A balanced hypergraph H has a good k-colouring for every k 2 2. 

Proof. Let H be a balanced hypergraph on X .  For k = 2, the statement is proved by 
Theorem 7. For k > 2, consider a k-partition (S1,S2, ..., Sk) of X ;  for each E E H ,  

denote by k(E) the number of classes of this partition which meet E .  If every edge 
E E H  satisfies k(E) = min{ l,k}, the partition is a good k-colouring of H .  Suppose 
that there exists an edge Eo with k(E,) < min{DoI,k}. Since k(Eo) < bol there 
exists an index p such that ISpnEoI 2 2. Since k(Eo) < k there exists an index q 

such that  IS, tl Eo I = 0. 

The subhypergraph of H induced by Sp IJ Sq is balanced (Proposition 1): thus it 
admits a 2-colouring (gp,gq). Set = S, for i # p , q .  Then (g,,g,, . . . ,Sk) is also a 
k-partition of X ,  and the number i ( E )  of classes of this partition which meet an edge 
E satisfies 

- 

&E) 2 k(E) 
F(E,) = k(E0) + 1. 

( E  E H )  

This transformation of the k-partition allows us to reduce min{ 
E E H ,  and repeating as often as necessary, we obtain a good k-colouring of H .  

I,k} - k(E) for each 

Corollary 1. A balanced hypergraph has the coloured edge property. 

Indeed, the dual hypergraph H* of a balanced hypergraph H is of rank 
r (H*)  = A = A ( H ) .  Setting k = A in Theorem 8 we obtain a strong colouring of the 
edges of H in A coloun. Thus q ( H )  = A ( H ) .  

Applied to  bipartite multigraphs (cf. Graphs, Chapter 12, Theorem 2), this state- 
ment gives K6nig’s theorem on edge colouring. 

Corollary 2. A balanced hypergraph H contains k = min 
E € H  

transversal sets. 

I pairwise disjoint 

It is sufficient t o  apply Theorem 8 with k = min 
EEH 

I. 
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Applied to the dual of a bipartite graph, this gives Gupta’s theorem [1978]. 

Corollary 3 (Las Vergnas). Let H = (EI,E2, ..., Em) be a hypergraph; denote by k, the 

least integer greater than or equal to 

1 
J IJI j cJ  

min - I U Ej I 

this minimum being taken over the non-empty subsets J of {1,2, ..., m}. Then H has a 

good k-colouring for every k 5 k,. 
Indeed, by definition of k,, for every J # 0, 

j € J  
IJ I(ko-1) < I u Ej I 

Let k < ko; the condition in the generalisation of Theorem 3 is satisfied for k. 
Hence there exists a k-uniform hypergraph H‘ = (Ei,Ek, ..., E k )  without cycles such 
that E,! C Ei for every i. As H’ is also strongly balanced, Theorem 8 shows that there 
exists a good k-colouring of HI, which is also a good k-colouring of H .  Q.E.D. 

Theorem 9 (Berge, Las Vergnas [1970]). A hypergraph is balanced i f  and only i f  

every partial subhypergraph has the KCnig property. 

Proof. 

1. If v (HA)  = ?(HA) for every H’ C H and A C X ,  then H is balanced, since 
otherwise there exists an HA isomorphic to  an odd cycle C2k+l; as V ( C , ~ + ~ )  = k and 
T ( C , ~ + ~ )  = k+l ,  a contradiction follows. 

2. If H is balanced, H i  is also balanced. Thus it suffices to  show that a balanced 
hypergraph satisfies v ( H )  = ?(H) .  

Set ? ( H )  = t .  Consider a partial hypergraph H’ with r(H‘) = t ,  and such that 
HI is minimal with this property. We shall show that HI consists of pairwise disjoint 
edges, which implies 

v ( H )  2 v(H1) = T(HI)  = T ( H )  2 v ( H ) ;  

consequently v ( H )  = ? ( H ) ,  and the proof will be complete. 

Suppose (to prove by contradiction) that two edges E{,E!, of H’ satisfy 
There exists a transversal Tl  of H’ - E{ with 

(TI I = t-1, and there exists a transversal T,  of H’ - E!, with IT21 = t - 1 .  Let 
Q = T l n T 2 ,  R ; = T - Q  , S = Rl U R, U {z,}. The subhypergraph H i  is 

fl E!, # 0; let zoEEl n E2. 
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balanced and thus has a 2-colouring (S,,S2). One of the colour classes, say S1, satisfies 
IS, 15 b, I, since IS I = 2 b, [+I. Observe that Ei meets S in a t  least two points 
(one of them being q,), so Ei  meets S,, and thus meets S, U Q. Similarly E i  meets 
S ,  U Q (cf. Figure 13). 

Figure 13 

For i # 1,2, either the edge E,! of H’ meets Q or it meets R1 U R, in a t  least two 
points, in which case E,! meets S,. Thus Sl u Q is a transversal of H’, which implies 
that 

T ( H )  L ISiUS I L IRiI + IS I = t -1  

A contradiction follows. 

(This new proof is due to  Lovbz). 

Corollary 1. Every balanced hypergraph has the Hellg property and is conformal. 

Proof. Let H be a balanced hypergraph and let H‘ c H be an intersecting family. 
Since H is balanced, Theorem 9 shows that T(H’) = v(H’) = 1, and so there exists a 
vertex common to all the edges of H’. Thus H has the Helly property. Since the dual 
of a balanced hypergraph is balanced, we deduce that  H is conformal. 

Corollary 2. A hypergraph H with m edges and n vertices i s  balanced i f  and only i f  
for every c E{l,+co)” and each d EN“‘, we have 
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N-max<d,y> = N-min<c,t>. 
Y EQ(c) t f P ( 4  

Proof. 1. Let H = (E1,E2,  ..., E m )  be a hypergraph for which this equality holds; con- 
sider a partial subhypergraph HA, and let 

ci = 1 if zi € A ;  

ci = +m if zi 6 A ;  

d j  = 1 if Ej EH’; 

d j  = 0 if E j  6 H’. 

For c = (cl,c2 ,..., c , )  and d = (d1,d2 ,..., dm),  we have: 

v(HA) = N-mas<d,y> = N-min<c,t> = T ( H ~ ) .  
Y€Q(C) t E P ( 4  

Thus, from Theorem 9, H is balanced. 

2. Let H be a balanced hypergraph; it suffices to  show that  for d E P ,  we have: 

N-maz<d,y> = N-min<l , t> 
arEQ(1) t E P ( 4  

If we associate with each edge Ej of H an integer dj 2 0 called its “weight” then 
it is enough to  show that the maximum weight of a matching is equal to  the minimum 
value of a d-transversal. For a n  integer > 0, an edge E = {z1,z2, ..., zv}  will be dupli- 

cated X times if we replace each zi € E by a set Xi = {z!,z:, ..., z?} of X additional ver- 
tices, and the edge E by X new edges E’ = {z:,zi ,..., z:}, E2 = {z!,zi ,..., z,?} etc. We 
say that the edge E is duplicated 0 times if we remove the edge E from H .  

In each case, the hypergraph so obtained is balanced. For d = (d1,d2, ..., d m ) ,  
denote by Hldl the hypergraph obtained from H by duplicating the edge El  d ,  times, 
the edge E2 d2 times, etc. 

It is easily seen that 

N-max<d,y> = v ( d d ] )  
Y EQP) 

N-min<l , t> = 7(HIdI) 
f E P ( 4  

Since HId] is a balanced hypergraph, these two coefficients are equal, which 
achieves the proof. 

Theorem 10 (Fulkerson, Hoffman, Oppenheim [1974]). Let H be a 6alanced hyper- 

graph with m edges and n vertices. For each c Ew, we have 
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N-max<l,y> = N-min<c,t> 
uEQ(c) t E 4 1 )  

(*) Proof. We shall assume some knowledge of the theory of linear programming. 

1. We shall show that the program: 

(1) 

has an integer solution. 

minimize <c,t> for t E P ( 1 )  

From Corollary 2 of Theorem Q, the maximum of <d,y> for those y in the 
polyhedron Q = {y/y€Rm, y 2 0 ,  A y  5 l} is attained at  a point yo with integer coor- 
dinates, indeed 0,l coordinates since Ay, 5 1. 

Since this is true for all d EN"',  it is easy to  see that all the extreme points of Q 

have coordinates 0,l  (cf. for example Lemma 1 of 36). The hyperplane 
{ y / y a m ,  A y  = l} being a supporting hyperplane of the convex polyhedron Q ,  all the 
extreme points of the polyhedron = {y/y€Rm, y 2 0,  A y  = l} have 0,l coordi- 
nates. Let z be an extreme point of the polyhedron {y/y€Rm, y 2 0,  Ay 3 1); this is 
also an extreme point of the polyhedron obtained by eliminating the inequalities of 
Ay 2 1 which are strict. Thus z has integer coordinates. Applying this result to  the 
dual H* of H ,  which is also balanced, we see that the extreme points of the 
polyhedron 

have integer coordinates, whence the result. 

2. We shall show that the program: 

maximise <l,y> for y E Q ( c )  (2) 

has a solution with integer coordinates. (This result, combined with the result of part 
1 above immediately implies the equality in the statement of Theorem 10.) We shall 
argue by a double induction, on C c ;  = and on m ;  the result is clear if A = 1 or if 
m = 1. 

Let z = (zl,z2, ... ,zm) be a solution to  the program (2) with fractional coordinates. 
If z j  = 0, it suffices to apply the induction hypothesis with m-1 to  the submatrix of A 
obtained by eliminating the j t h  column to show that  the program (2) has a solution 
with integer coordinates. Thus we may suppose that  z j  > 0 for every j .  

By virtue of part 1 and the duality theorem, we know that  <l , z>  = k is an 
integer. Suppose that  the i t h  row vector a i  of the matrix satisfies <z,ai> < c i .  If 
<z,a'> 5 ci - 1 we may apply the induction hypothesis with 1-1 to show the 
existence of an integer solution F of the programme (2) with <l,Z> = <l , z>  = k. 
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Hence we may suppose that <z,ai> = ci - 1 + E with 0 < E < 1. Clearly there exists 
a vector Z EP(c,,cz, ..., ci-1, ..., cn) with Z 5 z, <l,Z> = k - E .  By the induction 
hypothesis with A-1, there exists a vector 7 with integer coordinates such that  

- - 
z 2 0, A; 4 (el ,..., ~i-1,  ... ,c,) 5 C, <1,;> 2 k - 6. 

Hence <1,?> = k and the demonstration is done. 

Thus we may suppose <a,ai> = ci for every i, and z j  > 0 for every j. By virtue 
of the principle of complementary slackness, each optimal solution X of the dual pro- 
gram: 

(3) minimise <c,x> for x EP(1)  

satisfies A*? = 1, SZ 2 0, <c,SZ> = k. Hence Z and X are optimal solutions respec- 
tively of the dual programs: 

(4) 

( 5 )  

Furthermore, <l , z>  = <c,sZ>. 

minimise <&y> for y E &(c); 

maximise <c,x> for x E { x / x W ,  x 2 0, A*x 5 l} . 

As we have seen in part 1, there exists a vector Z with integer coordinates such 
that Z 20, AZ Lc, <1,Z> = k. Suppose 
therefore that G,a'> > ci for an i 5 n. Since zj  > 0 for every j, there exists an e 
with 0 < E < 1 such that z j  > (l-e)Fj for every j. Set 

If AZ = c the demonstration is done. 

1 
w = -[z-(l-e)Z] 

E 

Then z = (I-€): + EW, w 2 0,  <l,w> = k. As Az = c and AZ 2 c, we deduce 
that Aw 5 c .  Further, since there exists an i such that  <z,a'> > ci we have 
<w,ai> < ci. Thus w is a solution of (2) with <w,ai> < ci for some i .  Applying the 
induction hypothesis once more, to show the existence of a solution W of the program 
(2 )  with integer coordinates, we complete the proof. 

Remark. Let H be a balanced hypergraph. From Theorem 10 and Corollary 2 of 
Theorem 9, we see that many values of c and d satisfy 

N-max<d,y> = N-min<c,t> 
yEQ(c) t E P ( * )  

Nonetheless, this equality is not satisfied for all c and d for a balanced hypergraph (as 
it is for unimodular hypergraphs). 
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Consider for example t,he balanced hypergraph of Figure 12, with c = (3,2,2,2) and 

d = (2,1,1,1). The vector t = L, is a fractional d-transversal since 
2 ’ 2 ’ 2 ’ 2  

C ti 2 dj  (j = 1,2,3,4). 
fi EEj 

The vector y = (- - - is a fractional c-matching since 
2 ’ 2 ’ 2 ’ 2 )  

C y j  5 ci (i = 1,2,3,4). 
i/f i E E, 

9 
2 

We have <d,y> = <c,t> = - and the minimax equality does not hold, since 

9 
N-max<d,y> < - < N-min<l,t>. 

u€Q(c) 2 t E P ( d )  

Application. Location problems. 

Given a tree T on a set X = {~1 ,x2 , . . . ,x , } ,  we may interpret the vertex xi as a 
possible centre capable of distributing consumer goods tb all vertices x such that 
d ( x , x i )  spi, where pi is a given integer LO. Further, each vertex xi has an annual 
cost ci of maintenance of a distribution centre. The problem consists of choosing a set 
of distribution centres, capable of serving all the clients, for which the total cost is as 
small as possible. If H is the hypergraph whose edges are the I;. = { x / d ( x i , x )  5 p i }  

then we require a minimum cost cover of H ,  that is to  say for the dual H* a minimum 
cost transversal. From Theorem 10, we have 

N-max<l,y> = N-min<c,t>. 
v € Q ( c )  t E P ( 1 )  

Thus the minimum cost of a cover of H is equal to  the maximum cardinality of a fam- 
ily of vertices of H which has at most c j  representatives in the edge E j  for 
j = 1,2, ..., m ,  Polynomial time algorithms to  determine optimal locations are due to  
Tamir [1980], Kolen [1982], Farber [1984], Lubiw [l984]. 

To recognize whether a hypergraph is totally unimodular and t o  determine an 
optimal d-value c-matching it is useful to  consider a particular order relation on the 
set of d-dimensional vectors (Lubiw [l974]). This relation, which we shall call reverse 
lexicographic order and denote by ?, is defined by 

(rl,r:! ,... ) 2 (51,52,...) 

if the largest index k such that rk # sk satisfies i k  < 8k .  
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Lemma 1. I n  every 0,l ma t r i x  the rows and columns can be simultaneously 

arranged in reverse lexicographic order. 

Proof. Consider a 0,l-matrix A = ((a:)) with m columns, n rows. Consider the vec- 
tor dA = (d,,d, ,..., d,+,) where d k  = a:. 

i+j-k 

If for two indices j,,j, with j ,  < j ,  the column vectors corresponding to  a,, and 
aj, are in the wrong order, i.e. aj, < ajl, the matrix A’ obtained by permuting the 
columns j ,  and j ,  satisfies d A  “<d,,. Then, taking the permutation of rows and 
columns of the initial matrix A which maximises dA we obtain a new matrix satisfying 
the required conditions. 

N 

Lemma 2. If a matrix  A = ((a:)) has i t s  rows and columns arranged in reverse lex- 

icographic order, and i f  A contains a submatrix equal t o  

wi th  i ,  < i,, j, < j,, then in the hypergraph H the vertices xi,,x;, and the edges 

Ej,,E,, appear in a cycle of length 1 . 3  with n o  edge containing 3 vertices of the cycle. 

(It is easy to  show with an inductive construction that the given submatrix occurs 
with an unbalanced cycle). 

Theorem 1 (Hoffman, Sakarovitch, Kolen [1985], Lubiw [1985]). Let A = ((a:)) be the 

incidence ma t r i x  o f  a hypergraph H .  The following conditions are equivalent: 

(i) the ma t r i x  A with i t s  rows and columns arranged in reverse lexicographic 

order contains no such submatrix B; 

i t  i s  possible to  place the row3 and columns o f  A in a n  order such that A 

contains n o  submatrix B; 

the hypergraph H is totally balanced. 

(ii) 

(iii) 

Proof. 

( i )  implies (ii). Clear. 
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(ii) impliee (iii). Iiic!eed, if H is not totally balanced, there exists a cycle 

(xil ,Ej, ,xi*, . . . ,Ej~,xil)  

with k 2 3 where each edge contains exactly two vertices of the cycle. The submatrix 
of A generated by the rows i1, i2,  ... and the columns jl,j2, ... contains exactly two 1's in 
each row and in each column (whatever the order of their indices); the two columns 
which have a 1 in the top row, together with the top row and the row which has a 1 
under the first 1, gives the matrix B: this contradicts (ii). 

(iii) implies (i). From Lemma 2. 

Remark 1. Condition (i) provides an effective algorithm to determine whether a 
hypergraph H is totally balanced (Lubiw [1985], Hoffman, Sakarovitch, Kolen [1985]). 
This algorithm appears to  perform better than other polynomial algorithms which had 
previously been proposed (Fagin [1983], Farber [1983], Anstee and Farber [1984]). 
Observe that this recognition problem is of practical interest in the study of database 
schemes (Fagin [l983]). 

Remark 2. Hoffman, Sakarovitch and Kolen called a 0,l-matrix greedy if it satisfies 
condition (ii), and they showed that a maximum d-valued c-matching may be obtained 
by a greedy algorithm for every d EN"' and every c EW if and only if the matrix A 

is greedy. This is thus a characteristic property of totally balanced matrices. More- 
over, it indicates how to obtain a minimum c-valued d-transversal in polynomial time 
when d EN"', c E P .  

Remark 3. Farber [1982], [1985] independently obtained logically equivalent results 
by a different approach relating to  Graph Theory. Recall that a graph G is said t o  be 
triangulated if every cycle of length 2 4 has a chord (cf. Graphs, Chap. 16 $3). A sun 

of G is a subgraph induced by a set S = {al ,a2 ,..., ak,b1,b2, . . . , b k }  with k 2 3 which 
is the union of the complete graph on {al,a2 ,..., a k }  and the cycle (al ,bl ,a2,b2 ,..., b k , a l ) .  

Farber showed that for a graph G on X ,  the following conditions are equivalent: 

6 )  
(ii) each subgraph G' of G contains a vertex x such that the family 

G is triangulated and sun-free; 

({y U r&)/y E r G , ( x ) )  is totally ordered by inclusion; 

the vertices xi can be indexed in such a way that the adjacency matrix of 
G contains no submatrix B; 

(iii) 
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(iv) 

(v) 

the sets { x }  u rG(z) form a totally balanced hypergraph on X ;  

the maximal cliques of G form a totally balanced hypergraph on X .  

4. Arboreal Hypergraphs 

A hypergraph H is arboreal if: 

(i) 

(ii) 

H satisfies the Helly property; 

each cycle of length 2 3 contains three edges having a non-empty intersec- 
tion. 

A hypergraph H is co-arboreal if it is the dual of an arboreal hypergraph, that is 
to say if: 

( i f )  H is conformal; 

(ii’) every cycle of length 3 3 has three vertices contained in the same edge of 
H .  

Example. A totally balanced hypergraph is both arboreal and co-arboreal. Indeed, 
from Corollary 1 of Theorem 9, such a hypergraph H satisfies (i) and (i’). Further it is 
clear that  H satisfies (ii) and (ii’). In fact, a hypergraph is totally balanced if and only 
if all of its induced subhypergraphs are arboreal. 

Observe that  the hypergraph of Figure 14, whose edges are abd, bcd,  acd is arbo- 
real, but it is not totally balanced, since abc are the three vertices of a cycle, and no 
edge contains the three. 

Theorem 2. A simple hypergraph is the  f a m i l y  of m a x i m a l  cliques of a triangu- 

lated graph i f  and  only i f  i t  i s  co-arboreal. 

Proof. 1. Let H be a simple cc-arboreal hypergraph. As H is conformal from (i’), it 
is the hypergraph of maximal cliques of G = [HI2, the 2-section of H .  Further, G is 
triangulated as otherwise it would contain a cycle of length 2 4 without chords, which 
corresponds in H to  a cycle with no edge containing three vertices of the cycle: a con- 
tradiction with (ii‘). 

2. Let H be the hypergraph of maximal cliques of a triangulated graph G. Then 
H is conformal and satisfies (i‘). Further, a cycle p = [a,b,  ...I of G has three vertices 
contained in the same edge of H if its length is 3 (since H is conformal). If the length 
of p is 2 4, the partial subgraph G, - [a ,b] ,  which is connected, has a shorter path 
between a and b of the form [a ,x ,b]  (as G ,  is triangulated) which shows that the three 
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Figure 14. Arboreal hypergraph (not totally balanced). 

vertices a,b,x of p are contained in the same edge of H .  Thus (ii’) holds. Thus we 
have shown that H is cc-arboreal. 

Corollary. A hypergraph H is arboreal i f  and only i f  H satisfies the Helly property 

and the representative graph L ( H )  is triangulated. 

Indeed, we have seen (Proposition 1,  $8, Chap. 1 )  that if a hypergraph H satisfies 
the Helly property, a graph G is the representative of H if and only if H* is the hyper- 
graph of the maximal cliques of G (with, perhaps, other cliques of G ) .  From Theorem 
12, this graph G is triangulated if and only if H* is co-arboreal, i.e. H is arboreal. 

Lemma. Let H be an arboreal hypergraph without loops; there exists a vertex xo 

such that all the edges of H containing xo, have a common vertex yo # xo. 

Proof. Let (z1,E1,x2 ,..., X ~ , E ~ , ~ ~ + ~  ,..., Ep,xp+l) be a path of H with Ei n E j  = 0 if 
Ii-jI > 1, 2 1  $! EQ and xP+l 6 Ep-l. Suppose that  it is maximal in length and set 
so = x ~ + ~ .  By virtue of the maximality of this path, an edge Ex E H with xo E Ex, 

I # 1,  E x  # Ep satisfies E x  n Eq # 0 for some q 5 p-1. 

Assume that q is the largest possible index defined in this way. The edges 
Eq,Eq+l,...,Ep,Ex define a cycle, and as H is arboreal, we must have 

E x  n (EqnEq+,)  z 0. 
From the maximality, we have q = p-1, whence Ex fl Ep-l n Ep # 0. 
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As this is true for every edge Ex with xo € E x ,  I # 1, the family formed by 
Ep-l,Ep and all the EL is intersecting; then by the Helly property these edges have a 
common element yo. Further we have y o  # xo since xo $? EPdl. 

Q.E.D. 

Theorem 13 (Duchet [1978], Flament [l978], Slater [1978]). A hypergraph H on X is 
arboreal i f  and only if there exists a tree T on X such that the edges of H induce 

subtrees of T .  

Proof. 

1. Let H be a hypergraph of subtrees of T .  We know from Theorem 10, Chap. 1, 

that  H satisfies the Helly property. Further, a cycle (x1,E1,x&2, ..., zk) of H of length 
2 3  having no three edges with a non-empty intersection determines a sequence 
y[x1,x2],y[x2,x3],... of paths of T with xj p [ ~ ~ , x i + ~ ]  if j > i+l, which contradicts 
xk = xl. Consequently, the hypergraph H is indeed arboreal. 

2. Let H be an arboreal hypergraph on X .  We shall demonstate the existence of 
a tree T with the required properties by induction on I. 

Let xo,yo be vertices of H defined as in the lemma; the subhypergraph E induced 
by x = X - {zo} is also arboreal since it satisfies (i) and (ii); thus by the induction 
hypothesis there exists a tree 7 on x satisfying the desired property for R. Clearly 
the tree T = T + [xo,yo] satisfies the desired property. 

Q.E.D. 

(This new proof is due to Duchet). 

Application. If we represent species of animals a t  present in existence by the vertices 
of a hypergraph, with each edge being a set of species presenting a common hereditary 
characteristic, the theory of evolution says that  this hypergraph is arboreal. 

Observe that  for the arboreal hypergraph of Figure 14, the corresponding tree T is 
uniquely determined. In general, a hypergraph H may have many corresponding trees; 
for a complete description of these trees, cf. Duchet [1985]. 

To determine whether a given hypergraph is arboreal we shall use an extension of 
the concept of the “cyclomatic number of a graph” due to Acharya and Las Vergnas. 
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Given a hypergraph H = (E1,E2, ..., Em) on X ,  its representative graph L ( H )  will 
be “weighted” by associating with each edge u = [e ; , e j ]  the integer ~ ( u )  = Bi n E j  I 
which we call its “weight”. If F is a partial graph of L ( H )  without cycles (“forest” of 
L ( H ) ) ,  the weight of F is defined to  be w ( F )  = C ~ ( u ) .  

u EF 

Finally, we define the cyclomatic number of the hypergraph H to be the integer 

P ( W =  2 BjI- I X I - W H ~  
j -  1 

where WH is the maximum weight of a forest F C L(H) .  

For example, the reader may verify that the hypergraph H of Figure 15 contains a 
forest of maximum weight 5 (in fact, F is a tree since L ( H )  is connected); the 
cyclomatic number of H is then p ( H )  = 12 - 6 - 5 = 1. 

5 

Figure 15. A balanced hypergraph, not co-arboreal, and its representative 

weighted graph. 

The determination of the cyclomatic number p ( H )  is an easy problem, as it reduces to  
the classical problem of the determination of a maximum weight tree in a graph with 
(positive) weighted edges; the complexity of various algorithms (e.g. Kruskal, S o h ,  
Hell, etc.) has been studied. Recall, for example, Kruskal’s greedy algorithm: form a 
forest edge by edge, each time taking the edge of greatest weight which will not create 
a cycle with the edges already chosen. 

Remark. If H is a linear hypergraph of order n with m edges and p connected 
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components, then each edge of L ( H )  is of weight 1 and the maximum weight forest F 
has weight w ( F )  = n ( F )  - p(F)  = m-p. Then 

p ( H ) = C F j l - n  - m  + p .  

In particular, if H is a simple graph, we obtain 

p ( H ) = 2 m - n - m + p = m - n + p p .  

We thus recover the expression for the cyclomatic number of a simple graph. 

If H has only one edge E l ,  then 

AH)  = El I - IEl I = 0- 

AH)= Ell+ @ , I -  IEIUE,I- IEIn~, I=0 .  

If H has just two edges El and E,, then 

If H has more than two edges we have p ( H )  20, as we see immediately (by induction 
on the number of edges) with the following proposition: 

Proposition 1. Let H be a hypergraph with more than two edges. Then there em‘sts 

an edge E l  of H such that p ( H )  > p ( H - E l ) ;  further there exists a n  edge E ,  such 

that 

P ( H )  - P(H--E~)  L Ei I - IElnE, I - IEi- .U Ej I 2.0. 
3 + 1  

Proof. Let e l  be a vertex of degree 1 of the maximum weight forest F C L ( H ) .  Let 
e2 be the vertex adjacent to e l  in F.  The partial hypergraph H’ = H - E l  obtained 
by omitting the edge El corresponding to  el satisfies 

w H ~  2. w(~-[el,e, l)  = WH - IE,m I. 
Hence: 

AH) - P(”) = C Bj I - IU Ej  I - WH - ( ICEj I- El I) 
+ ( lUEj I-IEl-,U Ej  1) + w H ~  

J + 1  

2 IE1  I - El-.u Ej I + WHJ - W H  
3 + 1  

Q.E.D. 

Theorem 14 (Acharya, Las Vergnas [1982]). A hypergraph H satisfies p ( H )  = 0 i f  
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and only if H is co-arboreal (i.e. from the corollary to Theorem 1.2, if H is the hyper- 
graph o j cliques of a triangulated graph.) 

Proof. 

1. Let H be a co-arboreal hypergraph on X .  We shall show that  p ( H )  = 0 by 
m 

j- 1 
induction on C Bj I. 

- If c bj I = 1 the hypergraph has a single edge, which is indeed a loop, so 

p(H) = C Fj l -  bl- W H  = 1 - 1 - 0 = 0, 

- If C Bj I 2 2, consider two cases. 

Case 1: The hypergraph H has a vertex z1 of degree 1. The subhypergraph g of H 
induced by X - {zl} satisfies 

p ( E )  = (c Bj 1-1) - (n-1) - WH = p(H). 

The hypergraph is also co-arboreal by t h e  axioms (i') and (ii'). Since 
C El< C E I we have, by the induction hypothesis, p ( g )  = 0, hence p(H) = 0. 

EER EEH 

Case 2: The hypergraph H has two edges El and E ,  with El C E,. 

hypergraph H' = H-El satisfies WHI = WH - El I from Kruskal's algorithm, whence 
The partial 

P(H') = (C Ej I- B1 I) - n - ( W H -  El I) P(H)* 

As H' is co-arboreal from axioms (i') and (ii'), and as C k' I < C @ I we have 
E'EH' E € H  

p(H') = 0 

by the induction hypothesis, hence p ( H )  = 0. 

We are necessarily in case 1 or case 2, since H is the hypergraph of cliques of a 
triangulated graph (Theorem 12) and we know that  a triangulated graph has a vertex 
which appears in only one maximal clique (cf. Graphs, Chap. 16 53). The proof is thus 
complete. 

2. Let H be a hypergraph with p(H) = 0. We shall show by induction on the 
number of edges that  H is co-arboreal. 
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We may suppose that H has at  least two edges (otherwise the result is clear); 
from Proposition 1, there exist two edges El and Ez such that  

0 = P ( H )  2 P(H--E~)  + El I - E m ,  I - El- .U Ej I 
J + 1  

2 PW--E,) + Dl I - E l m  I - E,--E, I 
2 P(H--E1) 2 0. 

We thus have equality throughout, and in particular, 

By (1) and the induction hypothesis, H-E,  is the family of maximal cliques of a tri- 
angulated graph G' (plus, perhaps, other non-maximal cliques); the graph G obtained 
from G' by joining pairs of vertices contained in El is also triangulated, because of (2). 

Thus the hypergraph H is cc-arboreal. 

Q.E.D. 

Corollary 1. A hypergraph H i s  arboreal if and only if p(H*)  = 0. 

The recognition of arboreal hypergraphs is thus simple, as it reduces to the prob- 
lem of maximum weight trees. 

Corollary 2 (Lovdsz' Inequality). Let H = (El,E2, ..., Em) be a coarboreal hypergraph. 

Set 

s = m a x F i n E j I .  
i#j 

Then we have: 
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Indeed, as H is connected, the maximum weight forest F c L ( H )  is a tree, and satis- 
fies 

w ( F )  5 e(n(F)-l) = sm--s 

whence 

o = p ( H ) = C B j I - n  - w ( F ) > C B j I - n  - s m  + a .  

The inequality (1) is thus satisfied. 

Remark. Inequality (1) was demonstrated by Lov&z [1968] in the case where H has 
no cycles of length 2 3 and where s = 2; it was studied by Hansen and Las Vergnas 
[1974] in the case where H has no cycles of length 2 3 and where s > 2. As has been 
noted by Acharya 119831 inequality (1) is satisfied in lots of other cases; for example, 
for the hypergraph H of Figure 15 we have s = 2 and 

C( Bj 1-2) = 2 5 n-2 = 4. 

Thus inequality (1) is also satisfied. Zhang and Li 119831 have shown that  (1) 

holds also if H has no odd cycles and if every cycle has two vertices contained in at 
least two common edges. 

5.  Normal Hypergraphs 

We say that a hypergraph H is normal if every partial hypergraph H’ has the 
coloured edge property, that is to  say 

q(H’) = A(H‘) (H’ c H) .  

Example 1. A balanced hypergraph is normal. Indeed, we have seen that every par- 
tial hypergraph of a balanced hypergraph is also balanced, and that  every balanced 
hypergraph has the coloured edge property (Corollary 1 to  Theorem 8). 

Note that the converse is not true: for example, the hypergraph H of Figure 16 is 
normal, but it is not balanced. In fact, it was in order to  generalise results on balanced 
hypergraphs that LovLz [1972] introduced the concept of a normal hypergraph. 

Example 2 (Shearer [1982]). The hypergraph of a simply connected polyomino is nor- 
mal. 

Theorem 15 (Fournier, Las Vergnas [1972]). Every normal hypergraph is 2-colour- 

able. 
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q = 3  
A = 3  
v =  1 
r = l  

Figure 16. A normal  hypergraph (not balanced). 

Indeed, a normal hypergraph H cannot contain an odd cycle 
(zl,Elrx2,E2 ,..., EPk+lrzl) such that H’ = (El,,??, ,..., E2k+l) is of maximum degree 
A(H’) = 2, as this would imply q(H’) 2 3. From Theorem 1 we deduce that x ( H )  5 2. 

We shall now establish the fundamental result of this chapter, Lovhz’s Theorem. 

As a preliminary we shall prove the following lemma: 

Lemma. Let  H = (El, ..., Em) be a normal hypergraph o n  X .  I f  Em+, is a subset of 
X equal t o  El ,  the  hypergraph H‘ = H + Em+, is also normal .  

Proof. It suffices to  show that  q(H’) = A(H‘). 

Case 1: The set El contains a vertex x with &(z) = A(H). In this case, 
A(H’) = A(H) + 1, SO 

A(H’) _< q(H‘) 5 q ( H )  + 1 = A(H) + 1 = A(H’) 

We thus have equality throughout, and q(H’) = A(H’). 

Case 2: The set El  contains no vertex z with d H ( z )  = A(H) .  

Set A ( H )  = A, and consider an optimal colouring of the edges of H with A 
colours; let a be the colour given to the edge E l .  Let H ,  be the family of edges of H 
other than El which receive the colour a. A vertex x with d ~ ( z )  = A must necessarily 
appear in an edge of colour a other than E, ,  so A(H-H,) = A-1. Since H is normal 
we have 
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q(H-H,) = A(H-Ha) = A - 1. 

Thus there exists a colouring of the edges of H-H, with A-1 colours, and if we add a 
new colour to  colour the edges of H, + Em+, we obtain a A-colouring of H'. Hence 

q(H') 5 A = A(H') 5 q(H'). 

Thus q(H') = A(H'). 

Theorem 16 (Lovhz [1972]). Let H = (E1,E2,  ..., Em) be a hypergraph o f  order n and 

let A be i ts  incidence matrix with n rows, m columns. The following conditions are 

equivalent: 

(1) H i s  normal, i.e. every partial hypergraph H'C H has the coloured edge 

property; 

(2) every extreme point of the matching polytope 

Q = {y/yBRm,y 2 0,  A y  5 1 )  i s  a 0, l  vector; 

every extreme point o f  the matching polytope is.integer valued; 

N-max<d,y> = N-min<l,t> for every d EN"'; 

every partial hypergraph H' C H has the Kditig property. 

(3) 

Y E W )  t 
(4) 

( 5 )  

Proof. 

(1) implies (2). Let z be an extreme point of the polyhedron &. As z is the s o h -  
tion of a set of linear equalities with integer coefficients, each coordinate of the vector 
P is a rational number: thus there exist integers p l , p 2 ,  ...,p, and k 2 0  such that 

= (PI,P2,...,Pm). 

Let H' be the hypergraph obtained from H by repeating each edge Ei pi times. 
From the lemma, H' is normal. Further, for xi E X  we have 

dp(x i )  = C p ,  = <a',kz> = k<ai,z> 5 k. 
jlziEEj 

Thus q(H') = A(H') 5 k and we may consider a k-colouring of the edges of H' with 
colours 1,2 ,..., k .  Set 

y j ( a )  = 1 if a copy of Ej receives colour a 
= 0 otherwise. 

The vector y ( a )  = (yI(a),yp(a), . . . ,y,(a)) haa coordinates 0,1, and is contained in Q. 
Further 
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1 1 k  

k 
2 = -( P l , P , ,  ..., P m )  = ,c Y ( 4  

(I- 1 

As the vector z is an extreme point of the polyhedron Q and as y(&) E Q  we deduce: 
~ ( 1 )  = y ( 2 )  = = y(k). Then z = y(1) and consequently z is a 0,l vector, so (2) 
holds. 

. 

(2) implies (3). Clear. 

(3) impla'es (4). For d E P  consider the set 

a = {z/z EQ ,I €"" ,<d,z> = max<d,y>}. 
Y EQ 

As a # 0 from (3), and as a is contained in a facet of the polyhedron Q ,  there 
exists a row vector a" of the matrix such that 

<ai',z> = 1 (z €G) 
In other words, in H ,  every maximum d-value matching covers the vertex xi,. Set 

d; = dj-1 if E,  appears in an optimal matching and contains xi ,  

= d j  otherwise. 

It follows that  d' = ( d i , d l ,  ..., d;)  2 0 and that 
N-max<d',y> = N-max<d,y>. As before, there exists a vector d2 2 0 satisfying 
N-max<d2,y> = N-max<d',y> -1. 

Continuing in this way, we arrive at dk such that  

N-max<dk,y> = 0. 

Thus we have determined a sequence (xi , ,xig,  ..., xik)  which contains, say, the vertex x 1  

exactly t l  times, x 2  exactly t ,  times, etc. 

Observe that  the vector t = ( t l , t 2 ,  ..., t n )  is a d-transversal of H ;  further 
n 
Cti = k = N-max<d,y>. 
i -1  II EQ 

From the duality theorem in linear programming, t is a minimum value d-transversal, 
whence 

N-max<d,y> = Cti = N-max<l,t>. 
Y EQ t m d )  

Thus (4) holds. 
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(4) implies (5).  Let H’ C H be a partial hypergraph of H ;  set d j  = 1 if Ej E HI 

and d j  = 0 otherwise. The vector d = ( d l , d z ,  ..., d,) satisfies 

N-max<d,y> = v(H‘) 

N-min<l,t> = r(H‘). 

u C Q ( 1 )  

t -4 
Thus (4) implies v(H’) = r(H’), whence (5). 

( 5 )  implies (1). Let H = (E,,E,, . . . ,Em) be a hypergraph on X satisfying (5). 
Let = (E,,Ez, . . . ,Em) be a hypergraph on the set of matchings of H where Ej 
denotes the family of matchings of H which contain the edge Ej .  Clearly, 
Ej n zk = 0 if and only if E j  n Ek # 0. 

As H has the Helly property by virtue of (5 ) ,  we have 

v(Z) = A ( H )  

q ( m  = r ( H )  

Further 

As H satisfies the KEnig property, we deduce that q(E) = A(E); for the same reason, 
every partial hypergraph of has the coloured edge property. As we have already 
shown that (1) implies (5) we see that  v ( g )  = r(F), i.e. q ( H )  = A ( H ) ,  and (1) fol- 
lows. 

Corollary 1. A hypergraph H i s  normal i f  and only i f  H satisfies the Helly pro- 

perty and L ( H )  i s  a perfect graph. 

Indeed, if H is normal, it has the Helly property, since from (5) an intersecting 
family H‘ satisfies r(H‘) = v (H‘ )  = 1. Further, as q ( H )  = A ( H ) ,  we have 
y(H*)  = r(H*),  and the 2-section G = [H*], satisfies y(G) = w(G) .  This equality 
being satisfied (for the same reason) for every induced subgraph of G ,  the graph G is 
“perfect” (cf. Graphs, 53, Chap. 16). 

Conversely, if H has the Helly property and if G is its representative graph, the 
maximal edges of H* are the maximal cliques of G (Proposition 1, $8, Chap. 1). If G 

is perfect, then y ( G )  = w(G) ,  whence y(H*) = r(H*),  whence q ( H )  = A(H) .  
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This equality being satisfied for the same reason for every H' C H ,  the hyper- 
graph H is normal. 

Q.E.D. 

It should be noted that H need not be normal if we do not assume the Helly pro- 

perty (cf. for example the hypergraph H, of Figure $, Chap. 1). 

Corollary 2. Every co-arboreal hypergraph i s  normal. 

Indeed, let H be a co-arboreal hypergraph; it satisfies the Helly property, and 
L ( H )  is a triangulated graph from the corollary to Theorem 12. Since every triangu- 
lated graph is perfect (cf. Graphs 3,  Chap. 6 ) ,  Corollary 1 shows that H is normal. 

0. Mengerian Hypergraphs 

A hypergraph H is said to be Mengem'an if for every c EU" we have 

Observe that every balanced hypergraph is Mengerian (by Theorem 10). The converse 
is not true: for example a Mengerian hypergraph may have a chromatic number greater 
than 2, as does the hypergraph of Figure 17. 

4 
Figure 17. A non-bicolorable Mengerian hypergraph. 
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Proposition 1. Let H be a Mengerian hypergraph, and let A be a set of vertices eon- 

taining at least one edge; then the partial hypergraph H / A  = (Ei /EiCA) is 

Mengerian. 

Proof. Let ei 2 0 be an integer defined for every vertex xi of H/A.  Set 4 = ei if xi 

is a vertex of H / A  and Fi = 0 otherwise; if denote the polyhedra associated 
with the hypergraph H / A ,  we have: 

and 

N-Eax<l,y> = N-max<l,y> 
IEQ(c) I EQW 

(1) 

As H is Mengerian, the numbers (1) and (2) are equal, so the hypergraph H/A is 
Menge ri an. 

Q.E.D. 

Proposition 2 .  Let H be a Mengerian hypergraph, and let A be a set of vertices 

meeting all of the edges; then the induced subhypergraph 

HA = ( E i n A / i I m , E i f l A # @ )  is Mengerian. 

Proof. Let ci 2 0  be defined for every vertex xi € A .  Set Ei = ci if xi € A  and 
Fi = +motherwise. If and denote the polyhedra associated with the hypergraph 
HA we have 

N-min<c,t> = N-minG,t> 
tEP(1)  f E P ( 1 )  

As H is Mengerian the numbers (1) and (2) are equal. The hypergraph HA is thus 
Mengerian. 

Let H be a hypergraph, and let X 2 0 be an integer. We shall say that we expand 

the vertex x by X if we replace x by X new vertices x1,x2, ..., xi, and rrplace each edge 
E which contains x by new edges E' = (E-{x}) U {x'}, E2 = (E-{z}) U {x2} . * . . 
Expanding the vertex x by X = 0 will be taken to  mean deleting the vertex x and all 
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the edges of H containing x .  

Let c = (cl,c2, ... ,c , )  be a vector each of whose coordinates ci is an integer 2 0 .  

The expunsion of H by c is the hypergraph HC obtained from H by successively 
expanding vertex x1 by cl, x2  by c2, etc. 

Theorem 17. Let H be a hypergraph with m edges and n vertices. Let 

c = (c1,c2 ,..., c,) EN", and let k 2 1 be an integer. Then 

(3) T * ( H e )  = max <l,y> = min <c,t>. 
Y EQ(c) t E P ( 1 )  

Proof. It suffices to show (1) and (2) for the hypergraph HC obtained by expanding 
the vertex z1 by A = 0 (suppression) or by 1 = 2 (doubling), i.e. for c = (O,l,l, ..., 1) or 
for c = (2,1,1, ..., 1). 

Proof of (1) w i t h  c = (0,1,1, ..., 1). Consider a kc-matching F = (yl,Y;, . . . ,gm) of H 
of maximum value Egi. Since gj = 0 for each edge Ej containing xl, the vector 7 
determines a k-matching of Hc of value Egj, whence 

v k ( H C )  1 C y j  = max{<l ,y>/yW,AyIkc} .  
i>l 

Further, in HC a k-matching y = (yl,y2, ...,ym) of maximum value determines in H a 
kc-matching of value Cy, whence 

m a x { < l , y > / y W , A y I k c }  2 Zyj = vk(Hc) .  

Combining these inequalities we obtain (1). 

Proof of (1) w i t h  c = (2,1,1, ..., 1). Let (g1,g2, . . . ,&) be a maximum value kc- 
matching. In He there are two vertices xi  and x? corresponding to  a single vertex x 1  

of H, and the set of edges { E j / j E J }  of H containing x 1  corresponds in H e  to two sets 
{Ei / iEJ}  and {Ey/jEJ}; we have 
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Consider a vector 

where 

y; + vy = - Yj (.i EJ) 

C yy 5 k. 
j € J  

This vector being a k-matching of HC we have 
m 

j -  1 

uk(HC) >_ Cyi = C cj = max{<l,y>/u EN"',Ay<kc}. 

Thus (1) follows. 

Proof of (2) w i t h  c = (0,1,1 ,..., 1). 
minimum c-value 

Consider a k-transversal ( t l , t ,  ,..., t , )  of H of 
t i .  As the vector (t2,t3, ... ,tn) is a k-transversal of HC we have 

i # 1  

7 k ( H C )  5 C ti  = min{<c,t>/tEW",A*t~kl} 
i # l  

Conversely, if ( t2,t3,  ..., t , )  is a minimum k-transversal of H C ,  the vector (k,tz,t3, ..., t , )  is 
a k-transversal of H ,  whence 

min{<c,t>/tEW",A*tzkl} 5 C t i  = rk(HC) .  
iz1 

By combining these inequalities we obtain (2). 

Proof of (2) w i t h  c = (2,1,1, ..., 1). Consider an optimal k-transversal ( t1 , t2 ,  ..., t , )  of 
H with minimum c-value 2t1+t2+ - * * +t, .  Since the vector ( t l , t l , t 2 , t 3 ,  4,) is a 
k-transversal of HC we have 

T ~ ( H ' )  5 2tl+t2+ * - * +t, = min{<c,t>/tW,A*t>kl}. 

Conversely, if ( t l , t ; , t 2 ,  ..., tn)  is a minimum k-transversal of H C ,  we have t i  = t , .  Since 
the vector ( t l , t 2 ,  ..., t , )  is a k-transversal of H ,  we have 
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m i n { < c , t > / t ~ , A * t ~ k l }  5 2t,+t2+ - * * +t ,  = 7k(HC) .  

Combining these inequalities we obtain (2). 

1 1 
k k Proof of (3). Let k tend to infinity in -7k (HC)  or - vk (HC) .  We obtain 7 * ( H C ) .  

Hence (1) and (2) imply (3). 

Corollary. Let N be a family o f  hypergraphs with the KCnig property, which 

further satis f y :  

H E Y ,  c EN"(H)* HC E N .  

Then every hypergraph o f  N i s  Mengerian. 

Proof. Clear. 

Example 1 (Menger). Let G be a multigraph and let a,6 be two vertices of G.  
Denote by H the hypergraph on the set of edges of G ,  having as edges the simple 
paths joining a and 6 .  A transversal of H is then a simple cocycle w(S)  of G with 
a € S  and b EX - S. 

Menger's theorem implies that  H has the Kiinig property. Further, expanding a 
vertex of H by A 2 0 becomes replacing an edge of G by X parallel edges: thus H is a 
Mengerian hypergraph. 

Example 2 (Menger). Let G be a simple graph and let a,b be two non-adjacent ver- 
tices. Denote by H the hypergraph on the set of vertices of G different from a,b,  and 
having as edges the sets of intermediate vertices of simple paths joining a and 6 .  A 

minimal tranversal of H is then a minimal cut-set disconnecting a and b ,  and Menger's 
second theorem shows that H has the Kiinig property. Furthermore, expanding a ver- 
tex of z by X 2 0 corresponds to replacing the vertex x in G by an independent set of 
A elements, each joined to all the neighbours of x. Thus H is a Mengerian hypergraph. 

Example 3 (Edmonds). Let G be a multigraph on X ,  and let S be a subset of X hav- 
ing at least two elements. Denote by H the hypergraph on the set of edges of G hav- 
ing as edges the simple paths of the form p = [81,a1,U2,...,ak,s2] with s1 , s2  E S  and 
a l ,a  2r...,ak E X  - S. A theorem of Edmonds [1970] shows that  H has the Kiinig pro- 
perty. Since expanding a vertex of H corresponds to multiplying an edge of G ,  H is a 
Mengerian hypergraph. 
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E x a m p l e  4 (Edmonds [1973]). Let G = (X ,U)  be a directed graph, and let a be a 
vertex of G which is an ancestor of all the others (a "root" of G ) .  Denote by H the 
hypergraph on the set of arcs of G having as edges those arborescences rooted at  a 
which cover all the vertices of G .  

The transversals of H are the sets of arcs of the form w+(S) with a ES, S # X 
(i.e. which go from S to X - S). A theorem of Edmonds [1973] implies that H has the 
K6nig property. Expanding a vertex of H by X = 0 corresponds to  eliminating an arc 
of G ,  and expanding by X > 0 corresponds to  replacing it by X parallel arcs. Thus H 

is a Mengerian hypergraph. 

For the extension of this example by replacing rooted arborescences by forests of 
arborescences, cf. Frank (19791. 

E x a m p l e  5 .  Let G = (X ,V)  be a directed graph; denote by H the hypergraph on the 
set of arcs of G having as edges the cocircuits of G. A theorem of Lucchesi and 
Younger [1978] shows that  H has the Kiinig property. Expanding a vertex of H by 
X = 0 corresponds to contracting an arc of G ,  and expanding by X > 0 corresponds to  
replacing an arc by a path of length X. Thus H is a Mengerian hypergraph. 

For further examples, cf. Woodall [1978], Seymour [1977], Maurras [l976]. A 
method of proving that these hypergraphs have the K6nig property is, nonetheless, 
necessary; general ideas for such a method have been given by Lovhz 119761 and 
extended by Schrijver and Seymour 119791. 

Lemma 1 (Hoffman [1974]). Let A = ((a;)) be a matrix with n rows and m columns, 

with a )  EN. Let 6 be a n  integer 2 1. I f  the conuex polyhedron 

P = {x/x=",A*x>l}, i s  such that the number kmin<c,x> i s  an integer for every 

c EN", then the extreme points of P have coordinates multiples of -. 
Z E P  

1 
k 

Proof. Let y = (ylrga, ...,yn) be an extreme point of P ;  we shall show, for example, 

that y1 is a multiple of -. Set el = (l,O,O, ..., 0). We show that there exists a vector 

c EN" such that 

1 
k 
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<c,y> = min<c,x>, 
z €P 

(1) 

(2) <c+el,y> = min<c+el,x>. 
Z E P  

1 
k 

Then, the hypothesis will imply that y1 = <c+el,y>-<c,y> is a multiple of -, 

which achieves the proof. 

Set I = { i / y i = ~ }  

(C aj+l 

d = ( d l , d z  ,..., d,,), where 

di = [iai. 
and J = {j/<aj,y>=l} and consider the vector 

if i € I  

i f i  fZ I 

For every x E P we have 

<d,X> = C dixi  = C xi + C <aj,x> 2 I J  I 
i i E I  j € J  

As equality holds for x = y,  

<d,y> = min<d,x> 
2 €P 

Further, as the hyperplanes {x/q =0} for i E I and the hyperplanes {x/<aj,x>=l} 
with j E J completely define the extreme point y ,  we have also 

(3) <d,x> > <d,y> (x # y,  x E P) 

Suppose that for each integer A 2 1, the minimum of <Ad+el,x> for x E P is attained 
at an extreme point z(A) # y;  as P has only a finite number of extreme points, there is 
an extreme point X such that X = .(A) for infinitely many values of X, that is to  say 
for infinitely many X we have 

1 1 <d,E> + ~ 5 1  _< <d,y> + ~ r / l  

Thus X # y, X E P ,  and <d,j?> 5 <d,y>, contradicting (3). Hence for some X 2 1 
the minimum of <Xd+e,,x> is attained at y. Since the minimum of <Xd,x> is also 
attained at  y, the vector c = Ad must satisfy conditions (1) and (2), which completes 
the proof. 
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Lemma 2. Let H be a hypergraph of order n ,  and let k be an integer 2 1; the follow- 
ing conditions are equivalent: 

(1) kr * ( H e )  is an integer for every c EN", 

1 
k 

7 *(HC)  = - rk (HC)  for every c EN'' (2) 

Proof. It suffices t o  show that (1) implies (2). 

Let A be the incidence matrix of H .  The polyhedron 
P = {x/X€#?"'x>O,A*x>l} satisfies the conditions of lemma 1, so each of its extreme 

points has all coordinates a multiple of -. In particular, the minimum of <c,x> is 

attained at a point of the form xo = - where t o  = (t l , t l ,  ..., t n )  €EN". As A*xo 2 1 

the vector to is a k-transversal of H and further it has minimum c-value. Thus 

1 
k 

t 0  

k 

L{min<c,t>/t€W,A*t>kl} = T<c,to, 1 
k 

= min<c,x>. 
2 EP 

From Theorem 17, this implies (2). 

Lemma 3. Let H be a hypergraph of order n ,  and  let k be an integer 2 1. The fol- 
l o w k g  condition8 are equivalent: 

1 - v k ( H e )  = r * ( H e )  for every c EN"; 
k 

(3) 

(4) v k ( H c )  = T ~ ( H ' )  for every c EN" . 

It suffices to  show that  (3) implies (4). 

Indeed, (3) implies condition (1) of Lemma 2, and thus (2); further, (2) and (3) 
imply (4). 

Theorem 18 (Lovbz [1976]). A hypergraph H o f  order n is Mengerian i f  and only 

i f  /or an integer q 2 0 we have 
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1 

Q 
( 5 )  - v,(H') = v ( H c )  ( C  E P ) .  

Proof. Suppose that for each c EN"  we have (5), that is 

min{<l,y>/yEdi",Ay=qc} + q m i n { < l , y > / y W , A y 5 c }  

Let c = qc'; we may write 

min{<l,y>/yW,Ay<q2c'} = q m i n { < l , y > / y ~ , A y S q c ' }  

Hence, for every c E N "  

1 - v q ~ ( H C )  = v q ( H C )  = v ( H C )  
q2 Q 

From Theorem 1, Chapter 3, 

1 
7 *(HC) = lim -v, .(HC) = v(H') 

u-00 q a  

From Lemma 3 with Ic = 1, we obtain v ( H C )  = 7(HC). Thus H is Mengerian. 

Q.E.D. 

Let H be a hypergraph of order n.  We say that  the vertex z1 is multiplied by an 
integer X 2 0 if we replace s, by a set X ,  = {z:,zT, ..., z t  } of X new vertices and if we 
replace each edge E containing z1 by an edge E = (E-{zl}) U Xl; multiplication of 
z1 by X = 0 becomes replacement of H by the subhypergraph of H induced by 

Let c - (c1,c2,  ..., c,,) EN". The multiplication of H by c is the hypergraph 3') 
X - { X J -  

obtained by multiplying the vertex s1 by c l ,  z2 by c2, etc. 

Remark. I f  H is balanced then is also balanced. Indeed, for c = (O,l,l, ..., 1) the 
hypergraph *I, which is a subhypergraph of HI is necessarily balanced (Proposition 1, 
$3). For c = (2,1,1, ..., 1) the hypergraph 3') is obtained by replacing the vertex z1 by 
{zip:); if 2') cannot contains an odd cycle (alEl,a2E1, . . . , a l )  such that no Ei con- 
tains three ail  then z{ and s: are both vertices of the cycle, and the two edges next to 

in the cycle also contain zf, so at least one contains three vertices of the sequence: 
a contradiction. 

- 
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In contrast, i f  H i s  balanced, i t s  e x p a n s i o n  H e  need n o t  necessar i ly  be balanced. 

For example, consider the balanced hypergraph shown in Figure 12, and split the ver- 
tex f l  into two vertices f{ and 1;: then no edge of the resulting hypergraph contains 
three vertices for the following odd cycle: 

f ? ~  {f?, f4)r 1 4 ,  { f : , f2 , f3?f4) ,  f2, {f?,f2),  f?* 

We shall study some conditions for the transversal hypergraph to  be Mengerian. 
Let a ( H )  be the maximum number of colours for a colouring of the vertices of H such 
that each edge contains all the colours. Clearly 

a(H)  5 min Bj I = s(H). 
j 

We shall say that  H has the G u p t a  proper ty  if o($')) = ~(9')) for all c E P .  
For example, the dual of a bipartite graph has the Gupta property, by Gupta's 
Theorem [1978]. 

Lemma. L e t  H be a s i m p l e  hypergraph of order n a n d  let K = Tr H be i ts  t ransuer-  

sa l  hypergraph.  T h e n  K is M e n g e r i a n  if a n d  o n l y  if H h a s  the G u p t a  proper ty .  

Proof. We see immediately that if c EN" we have 

Further, for every hypergraph H ,  

(3) s(H) = T(TrH) .  

From ( l ) ,  (2) and (3) we obtain 

o(Sc",) = v ( T r S ) )  = v[(ZYHH)C] 

~(3'))  = ~(Tr17(')) = 7[(TrH)e] 

H has the Gupta property if and only if these two quantities are equal, i.e. if H is 
Mengerian. 

Theorem 19 (Berge [1984]). L e t  H be a s i m p l e  balanced hypergraph;  t h e n  T r H  is a 
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Mengerian hypergraph. 

Indeed, if H is balanced, the hypergraph $1 is also balanced; thus, from Corol- 
lary 2 to Theorem 8, we have o(gc)) = a@‘)). From the lemma, this implies that 
Tr H is Mengerian. 

Remark. The converse of Theorem 19 is not true; for example, if H is the dual 
hypergraph of K ,  (Figure l9),  then TrH is the Mengerian hypergraph of Figure 17, 

but it is clear that  H is not balanced. Nonetheless, if TrH’ is Mengerian for all 
H’ C H ,  then every H‘ C H has the Gupta property and H is necessarily balanced. 

7. Paranormal Hypergraphs 

We may generalise Mengerian hypergraphs. Observe first of all the equivalence of 
the following properties: 

(1)  every extreme point of the polyhedron P = { t / t € R ” , t ~ O , A ” t ~ l }  is a vec- 
tor with integer coordinates; 

min <c,t> is an integer for every c E N “ ;  
tW1) 

(2) 

N-min<c,t> = min <c,t> for every c E P .  
tW1) t-11 

(3) 

The equivalence of (1) and (2) follows from Lemma 1 (with k = 1); the equivalence 
of (2) and (3) follows from Lemma 2 (with k = 1). We shall say that a hypergraph W 
is paranormal if it satisfies (1) or, equivalently, (2) or (3). (These hypergraphs, which 
were first studied by Fulkerson, are also called “fulkersonian” by Schrijver, or “having 
the weak max-flow min-cut property” by Seymour). 

If a hypergraph H is Mengerian then it satisfies (3) and is thus paranormal; the 
converse is not true, as may be seen in Figure 19: the hypergraph (K,)”, dual of K,,  is 
paranormal but not Mengerian (since 7 # v). 

Seymour (19771 conjectured that if a simple paranormal hypergraph cannot be 
reduced to  (K4)* by means of the operations H/A and HA described in Propositions 1 

and 2, $6, then H is Mengerian. 

We shall now give some examples of paranormal hypergraphs. 

Example 1 (Seymour [1977]). Let G be a planar graph; let H ( G )  be the hypergraph 
whose vertices are the edges of G and whose edges are the elementary odd cycles of G.  
Then Seymour has shown that H ( G )  is paranormal. In contrast, for G = K5,  which is 
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Figure 18 

non-planar, H(K5) is not paranormal. 

1 

A paranormal non-Mengerian hypergraph. 

Figure 19 

Example 2 (Hu [lQf33]). Let G be a graph, s,s‘,t,t‘ four vertices of G ,  and let H ( G )  

be the hypergraph whose vertices are the edges of G and whose edges are the simple 
paths joining a and a’, or joining t and t‘. Hu has shown that H ( G )  is paranormal (a 
result known as the “two-commodity flow theorem”). The hypergraph H ( G )  need not 
be Mengerian as may be seen from the graph G of Figure 20 for which H ( G )  is none 
other than the non-Mengerian hypergraph of Figure 10. 

Figure 20 
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Theorem 20 (Lehman, Fulkerson). Let  H be a s i m p l e  hypergraph a n d  let K = TrH 
be i t s  t ransversa l  hypergraph.  T h e n  H is p a r a n o r m a l  i J a n d  o n l y  i J w e  h a v e  

(1) 7(HW)T(KC) 5 <c,w> (c,w EW). 

Recall that (1) is sometimes known as the width- length  inequality for the following rea- 
son: let G be a network flow with a source a and a sink z ;  if c; denotes the ‘‘length’’ 
of edge i and w; its “width”, the hypergraph H ,  whose vertices are the edges of G and 
whose edges are the paths between a and z ,  gives us the following interpretation: 

7 ( K C )  = m i n x  ci  is the length of a shortest path from a to z ,  
E€H;= 

7(HW) = min C wi is the width of a smallest cut between a and z. 
TETrH, E~ 

The proof of (1) given by Lehman [1975] is valid for all paranormal hypergraphs 
and Fulkerson extended it to  matrices with non-integer entries using the theory of 
pairs of “blocking” matrices(’). 

Corollary. Let H be a s i m p l e  p a r a n o r m a l  hypergraph;  t h e n  TrH i s  a lso  a paranor-  

m a l  hypergraph.  

Indeed, for K = Tr H inequality (1) may be rewritten as 

7(KW)7([TrK]‘) 5 <w,c> (w,c EW) 

Thus K is paranormal. 

Remark. If H is Mengerian, the preceding corollary shows that  TrH is paranormal; 
nonetheless TrH need not be Mengerian: for example the Mengerian hypergraph of 
Figure 17 has as its transversal hypergraph that  of Figure 19, which is not Mengerian. 
If H is balanced we also know that TrH is paranormal (from Theorem 18). In the case 
when H is normal, the hypergraph TrH need not be normal: for example, the normal 
(I) For the matrix proof, cf. Fulkerson Jl9811. If A is a matrix a; 2 0, 0; real (and not necessarily integer) and such 
that no column vector is a convex linear combination of the others, its “blocking” matrix 3 is  a matrix whose column 
vectors arc the extreme points of the polyhedron 

P - {f k eRD,t 2 0 , A  Y 21) 

It is easily seen that the matrices A and B play a symmetric role. When A is the incidence matrix of a hyper- 
graph H ,  the matrix B is the incidence matrix of “kH if and only if H is paranormal. 
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3 
2 

hypergraph H of Figure 16 satisfies 7 *(Tr H )  = -, so Tr H is not paranormal. 

An important family of paranormal hypergraphs appears in Graph Theory: these 
are the “S-joints” (introduced by Little [1973] to  generalise an idea of Kasteleyn), and 
the “S-cuts” (considered by Lovisz in 1977). 

Let G = ( X , E )  be a multigraph which we suppose for simplicity to  have no loops 

and to be connected; let S C X be a non-empty set of vertices. 

We call an S-joint of G a set of edges F C E forming a partial graph G’ = (X,F)  
whose set of vertices of odd degree coincide with S, with F being minimal for this pro- 
perty. 

Observe that an S-joint of G exists if and only if IS1 is even. Indeed, if IS1 is 
even, divide S into disjoint pairs {sl,s{}, {s2,8L}, etc., and consider for each i a chain 
pi joining si and 8;. The edges of G which belongs t o  an odd number of pi form an 
S-joint. 

Conversely, if there exists an S-joint F,  then the partial graph G’ = (X ,F)  satis- 
fies, modulo 2, 

IS I E C dG,(z) f C d,,(z) 2m(G’) 0 
z €S z a  

We shall study the hypergraph of S-joints of G which we denote by H a .  

Recall some classical notation from Graph Theory. Let G = ( X , E )  be a multi- 
graph on X, and let A C X .  The cocycle w ( A )  is the set of edges of G joining A to  
its complement X - A ;  a cocycle is elementary if it contains no other cocycles, or 
equivalently if GA and GX-A are connected. Further, w(A)  = w(X-A). If S C X ,  
an S-cut of G is an elementary cocycle w ( A )  for which lSnA I and IS f l (X-A)  I are 
both odd. 

Observe that an S-cut of G exists if and only if IS I is even. We shall study the 
hypergraph of S-cuts of G which we denote K’.  

Example 1. Let G = ( X , E )  be a connected multigraph of even order. An X-joint of 
G (being minimal) cannot contain a cycle of G; thus it is a forest of G .  Further, each 
vertex of this forest has odd degree. In particular, a perfect matching of G ,  if it exists, 
is an X-joint of G .  
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On the other hand, an X-cut is nothing but an elementary cocycle w ( A )  for which 
I is odd. 

Example 2. Let G = ( X , E )  be a transporation network with source a E X  and sink 
z E X ,  and a capacity associated with each edge. Set S = {a,z}.  An S-joint is a sim- 
ple path between a and z ,  and an S-cut is a “cut” between a and z .  

Example 3. Let G be a connected multigraph on X with a length associated with 
each edge, and let S be the set of vertices 5 with dG(z) odd. An S-joint is a minimal 
set of edges which must be doubled to  obtain an eulerian multigraph. 

An S-joint of minimum total length defines the edges to  be traversed twice in the 
“Chinese postman problem” (Guan Meigu) well known in Operations Research. An 
S-cut is an elementary cocyle w(A)  with b ns I odd, i.e. satisfying, modulo 2, 

l w ( A ) I =  C dG(z)+ C dG(x)= bAnSl=l 
zEAn(X-S) z 6 4 n S  

Proposition. Let G be a connected multigraph, and let S be a set of vertices with 

IS I even. Then the hypergraph H8 of S-cuts i s  the transversal hypergraph o j  the 

hypergraph K 8  of S-joints. 

Proof. 

1. First we shall show that  if E EH8 and F EK8,  then E n F # 0. 
Indeed, otherwise we have E n F = 0, E EH’ ,  F - w(A),  where l S n A  I and 

ISn(X-A)I  are odd. Since E is the union of edge-disjoint paths pi between pairs 
{s i ,~;}  forming a partition of S ,  and since none of the p, meet w(A),  this implies that 
l S n A  I and ISn ( X - A )  I are even: contradiction. 

2. Let Fo ETrH8. Since Fo meets all the E EH’,  the partial graph G-Fo does 
not allow S to be joined in pairs, and thus it has several connected components 
XI,X2, ..., Xk; further, at least one of the lSnXi  I is odd (otherwise we may join the 
vertices in pairs). Since G is connected, we have Fo 3 w ( S n X i ) ;  thus Fo contains an 
S-cut F. From the minimality of the transversal Fo, and from part 1, we have Fo = F. 

Thus every minimal transversal of HS is as S-cut, which achieves the proof. 

Lovttsz-Seymour Theorem. Let G be a connected multigraph, and tet S be a set of 
vertices cuith IS I even. Then H8 and K 8  are paranormal hypergraphs. 
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The fact that  K a  is paranormal was shown by Lov&z [1977], and that H8 is 
paranormal by Seymour [1977]. In fact these two theorems are clearly equivalent by 
virtue of Proposition 1. Further Lov&z 119771 has shown that  

V 2 k ( K 8 )  = kv,(KS).  

Remark. HS and K a  are not, in general, Mengerian. For example, if G is a cubic 
graph without bridges, of chromatic index 4 (such as Petersen’s graph), Seymour has 
shown that Hx cannot have the K6nig property and so certainly is not Mengerian. By 
contrast, Hx is Mengerian if it cannot be reduced to  (K4)* in the sense of Seymour’s 
conjecture (Seymour [ 19771). 

Exercises on Chapter 5 

Exercise 1 (51) 

If r ( H )  > 3, it is not true that  every B-cycle contains a B-cycle such that every 
pair of non-consecutive edges are disjoint. Show this for the B-cycle of length 7 

defined by the sequence of edges: 

(12, 2390, 34, 45, 5690, 678, 781). 

Exercise 2 (51) 

Sterboul [la731 has conjectured that if x ( H )  > 2 there exists a B-cycle such that 
every pair of non-consecutive edges is disjoint. Show that we cannot suppose that the 
B-cycle has the further property that two consecutive edges have exactly one vertex in 
common: for example take the hypergraph Ki,-, . 

Exercise 3 ($1) 

Show that example 2 is a special case of example 3 (§2), but that example 4 (52) 
cannot be considered a special case of example 3 (which relies on a theorem of Tutte 
on graphic matroids). 

Exercise 4 (52) 

Let P, be a graph on X which consists of an elementary path of n vertices. 

Let H, be the hypergraph on X whose edges are the maximal cliques of the com- 
plement F,,. Show that  for n 5 6, H, is unimodular (Chvatal). 
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Hint: reduce t o  example 4 by an appropriate choice of a tree. 

Exercise 5 ($2) Show that Ghouila-Houri’s Theorem may be applied t o  extend 
Theorem 5 in the following way: if a matrix A of 0’9, l’s, and -1’s has no square sub- 
matrix of order 2k+l  each of whose entries is greater than or equal to  the correspond- 
ing entry of (the incidence matrix of the cycle CPk+l)r then A is totally unimo- 
dular. 

(Another proof has been given by Commoner [1973], and Yannakakis [ISSO] has 
given an efficient algorithm to find a maximum matching in this case). 

Exercise 6 ($2) 

Let G be a bipartite graph. Let H be a hypergraph on the edge-set E of G 
whose edges are E and the complete stars of G .  Show that  H is unimodular. 

Exercise 7 ($3) 

Meyniel has conjectured that  for every hypergraph H ,  the  relation 

x(fJ.4) I k (A  c X) 
implies T ( H )  5 (k- l )u(H) .  This is always true for k = 2, from Theorem 9; further if 
H is a partial hypergraph of the complete multipartie hypergraph, this reduces to  the 
conjecture of Ryser. 

Exercise 8 ($3) 

Show that if A is a totally balanced incidence matrix, the matrix A*A (boolean 
matrix product of A with its transpose A*) is also a totally balanced matrix, as is the 
k-th boolean power Ak (Lubiw [1985]). 

Exercise 9 (53) 

Show that if H = (E1,Ez, ..., Em) is a totally balanced hypergraph on X ,  then 
H + ( X )  and H+(E, n E 2 )  are also totally balanced hypergraphs. 

Exercise 10 (33) 

Using the preceding exercise, show that a totally balanced hypergraph of order n 

without repeated edges has at most (;)+TI edges; further every maximal totally bal- 

anced hypergraph without repeated edges has exactly (;)+TI edges (Anstee 118851). 
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For a simpler proof, cf. Lehel [1965]. 

Exercise 11 (s4) 

weight E i n E j  I associated with each edge [e i ,e j ] .  

weight forest. Show that  

Let H be a hypergraph and let L ( H )  be the representative graph of H with 
Let F c L ( H )  be a maximum 

P(H) = 2 [p(Fx.)-lI 
i -1  

where Xi = { e j / z i  a, in H }  and where p ( & )  denotes the number of connected com- 
ponents of the subgraph of F induced by Xi (Lewin [ lQ83]) .  

Exercise 12 ( s 7 )  

Lovhz has shown: “If a digraph G has at  most k pairwise disjoint co-circuits, 
then each family (with repetition) of cc-circuits covering each arc a t  most twice is of 
cardinality 5 2k”. Show that this implies a generalisation of a theorem of Lucchesi 
and Younger: “If in a digraph G ,  we associate with each edge a’ an integer weight 
ci 2 0, then the minimum weight of a set of arcs which meet every cocircuit is equal to  
the maximum number of cocircuits forming a family using the arc i at most ci times 
for i = 1,2, ..., m”. 

Exercise 13 ($7 )  

As an analogue of Lemma 3, Theorem 17, Schrijver has conjectured that  the fol- 
lowing conditions are equivalent: 

1 
k 
-7k(H’) = 7 *(HI) (H’ c H )  6)  

(ii) V k ( H ‘ )  = T k ( H ‘ )  ( H ’ C H )  

The equivalence of (i) and (ii), proved by LovriSz [1977] for k = 1,2,3 is false for k = 60 
(Schrijver, Seymour [1979]). Show this for the hypergraph H on X = {1,2, ..., Q }  whose 
edges are 

El = X-{1,3,5} 
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E, = X-{1,4,6} 

E,  = X-{2,3,6} 

E ,  = X-{2,4,5} 

E, = X-{7} 

E6 = X-{8} 

E, = X-{9} 

Show that T ~ ( H ’ )  = 607(H’) and vso(H) # 607 *(H). 

Exercise 14 ($7) 

Show that the following conditions are equivalent: 

(i) 7 *(He)  is an integer (c E {o,I>”) 

Hint: If (i) is true and (ii) is false, consider a hypergraph of minimum order such that 
(ii) is false. 

Exercise 15 (57) 

Deduce from the preceding exercise that the following are equivalent: 

(i) V ( H C )  = 7 ( H C )  (c €{0,1)”) 

(ii) V ( H C )  = 7 *(HC) (c E {O,l>”). 
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Matchings and Colourings in Matroids 

The concept of a matroid, introduced by Whitney in 1935 in order to generalise 
linear independence allows us to  restate a large number of theorems in optimization 
theory. First of all, it has been observed by many authors that  the hypergraph of 
independent sets is such that  one may use Kruskal's greedy algorithm to determine a 
tree of maximum weight. The identification of regular matroids with unimodular 
hypergraphs is due to Tutte, Camion, and to  Seymour, who also showed that if C is 
the family of circuits of a matroid and if e is an element of the matroid then the 
hypergraph {C-e/C€C,eEC} is mengerian if and only if the matroid is linear and 
does not contain Fano's matroid as a minor('). 

We shall consider here the concepts of matching and colouring defined for hyper- 
graphs in the preceding chapters. 

Let E = {eI,e2, ..., em} be a finite set, and let 7 be a set of subsets of E.  We shall 
say that  3 constitutes a matroid on E if 

(1) 

(2) 

(3) 

{e,} E 7 (i = 1,2, ..., m )  

F €3, F' # 0, F ' C F  =$ F' € 3  

For each S c E ,  if F and F' are two members of 3 contained in S and 
maximal with this property, then I = I. 

The pair M = (E,3)  is called a simple matroid (on E ) ;  in particular it is a heredi- 
tary hypergraph, and we may consider for matroids the same concepts defined above 
for hypergraphs. In particular, the rank r ( S )  will be defined by 

r (S )  = max Pns I. 
FE3 

Axiom (3) states that  a member of the family 3 contained in S and maximal in S has 
cardinality r(S) .  

(1) (P. Seymour, J.C.T., B23, 1977, 189-222). For a detailed exposition and lor general terminology, we refer the reader 
to D. Welsh, Matroid T h c c q ,  Academic Press, New York 1976; R.E. Bixby, Matroids and Operations Research in H. 
Greenberg, F. Murphy, S.  Shaw, Adunnccd Techniques, North Holland, Amsterdam, 1982. 
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In matroid theory, the elements of E are the elements of the matroid M ,  and the 
members of 3 are the independent sets. They are also the edges of the hypergraph 3. 
Those sets which do not appear in 3 are the dependent sets. A minimal dependent set 
is called a circuit. 

Proposition 1. If M = ( E , a  i s  a matroid of rank r (E) ,  then the maximal  indepen- 
dent sets f o r m  a u n i f o r m  hypergraph of rank r ( E ) .  

Clear. 

Proposition 2. I j  M = (E,3)  is a matroid of rank r ,  and i f  A C E ,  the subhyper- 

graph 3~ = {FnA/FE3,,FnA#I;?) o f  M i s  a matroid of rank rA(S) = r(S). 

Clear. 

Proposition 3. I f  M = (E,3)  i s  a matroid, every k-section 

3 ( k )  = { F / 1 5  P I l k ,  F E 3 )  

f o rms  a matroid of rank r ( k ) (S )  = min{k,r(S)}. 

Clear. 

Example 1. The family P’(E) of non-empty subsets of a set E is a matroid of rank 
r(S) = IS 1, and its strong stability number is 5 = 1. 

The family P(k)(E) of subsets of E of cardinality 5 k and 2 1 is also a matroid, 
since it is the k-section of the preceding matroid. Its strong stability number is E = 1, 
its circuits are the subsets of E having k+l elements. 

Example 2. Take for E a finite set of vectors, and for 3 the family of linearly 
independent sets of vectors. Then (E,3)  is a matroid, and the rank r ( S )  of a set S of 
vectors is the dimension of the linear space spanned by S ;  E is the maximum number 
of vectors of E which are all colinear. 

Example 3. Let G be a multigraph; take for E the edge-set of G,  and for 3 the fam- 
ily of sets of edges which contain no cycles. (E,3) is then a matroid with rank r ( S )  
equal to  the cocyclomatic number of the partial graph generated by S. An indepen- 
dent set is a forest of G ,  and a circuit is an elementary cycle in G. 

Example 4. Let G be a multigraph without bridges. Take for E the set of edges of 
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G ,  and for 3 the family of sets of edges of G whose suppression does not increase the 
number of connected components. (E,3)  is then a matroid, having rank r(S) equal to  
the cyclomatic number of the partial graph generated by S. A base is a minimal 
cc-forest, a circuit is an elementary cocycle of G. 

Example 5 (Edmonds, Fulkerson 1965). Let G be a graph without isolated vertices 
and for every matching V denote by S(V) the set of vertices saturated by the matching 
V; take as members of 3 every set F of vertices contained in at least one S(V). 

It can be shown that  ( X , 3 )  is a matroid of rank 

r(S) = IS I - ~ ~ { P i ( G ~ ) - l r ~ ( ~ ) - ~  I}, 

where pi(H) denotes the number of components of odd order in a subgraph H of G .  

Example 6. For a family (Aj / jEQ)  of subsets of a set E, set 

A ( Q ) =  l J A j = E ;  
i€Q 

we call a partial transversal a subset T = { t l , t 2 ,  ..., t k }  of E such that  there exists an 
injection j(i):{1,2 ,..., k} + Q ,  with 

ti EAj(i) (i = 1,2, ..., k). 
The family of partial transversals defines a matroid on E of rank 

dS) = IQ I + $;( b(J)n S 1- k 1)- 
This matroid is called the transversal matroid of the family {Aj/jEQ}. 

Indeed, consider the bipartite graph (Q,E,T) formed by two sets Q = {1,2, ...,q} 

and E = { z1 ,x2 ,  ..., z,,} where 

r(i) = A ;  (i E Q ) .  

We know from Example 5 that the family of sets of saturated vertices in a match- 
ing defines a matroid: the family of partial transversals is the trace on E of this 
matroid: it is thus a matroid. Its rank is given by Kijnig’s Theorem: 

r(S) = min( I~ - J l+ I r ( J )ns I )  = q+min(b(J)nsI-IJI) .  
JCQ JCQ 

Example 7. If (Cl,C, ,..., Cp) is a partition of a set E into p classes, and if c1,c2 ,..., cp 

are integers with 1 5 ci 5 ICi 1, the family 
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3 = {F/FCE,F#(ZI, Pnci I<ci for each i }  

defines a matroid on E of rank 

Example 8. Let G be a simple graph, and let k be an integer 2 2 .  A k-star with 
centre x is a partial graph of G formed by a set of 5 k edges incident on x. Las Verg- 
nas has shown that  the sets S of vertices which may be covered by a family of pairwise 
vertex-disjoint k-stars form the independent sets of a matroid of rank 

r(S) = min{k lrG(T) I+ IS-TI}. 
TCS 

Example 9. Let f be a map from subsets of X to N such that  

f ( 0 )  = 0 

A C B  =) ! (A)  5 f(B) 
~ ( A U B )  + mnB)  5 ! (A)  + w). 

Edmonds, Rota, and Welsh showed that the sets S such that  IT1 5 f(T) for every 
T C S form the independent sets of a matroid of rank 

r ( S )  = min{f(T)+ I S - T ~ } .  
T>S 

We shall now prove two propositions which we will need for the following. 

Proposition 4. If M = (E,T)  i s  a matroid, then i ts  rank r ( A )  satisfies the follow- 
ing properties: 

(3) A C B  * r ( A )  I r ( B ) ,  
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(4) r ( A )  + r(B) 2 r ( A U B )  + r ( A n B ) .  

Properties (I), (2) and (3) are clear. We shall prove (4). Let F be an independent 
set contained in A n B with PI= r ( A n B ) .  

Let FA be an independent set contained in A with (FA I = r ( A )  and FA 3 F .  

Let Eo be an independent set containing FA, contained in A U B ,  with 
Bo I = r ( A  U B ) .  

Eo n ( A n B )  = F (since F is a maximal independent set in A n B). Then 
Clearly Eo n A = F A  (since FA is a maximal independent set in A )  and 

~ ( A U B )  = BoI + I(E,nA) u (E,nB)I 

= BonA I + BonB I - lEonAnB I 
5 PA I + r(B) - PI= r(A) + r ( B )  - r ( A n B ) .  

Thus (4) follows. 

(Properties (I), (2), (3), (4) are characteristics of the rank and may also be taken 
as the axioms of a matroid on E). 

Proposition 5. If, in a matroid M ,  we have F E 3 and F U { a }  €7, then the set 

F U { a }  contains ezactly one circuit. 

Let F be a minimum independent set which would be a counterexample. Since 
F U { a }  contains two distinct circuits C, and C,, we have a EC,, a EC,. By the 
minimality of C, and C, there exists a point a ,  E C, - C,, and a point a ,  E C, - C,. 

1. The set A. = F U { a }  - {a1,a2} is independent. Otherwise, consider the set 
F’ = F - {a},  which is independent as it is contained in F .  The set F’ U { a }  contains 
the circuit C, and a minimal dependent set of A,; thus it contains two distinct cir- 
cuits, and as 

the independent set A,. Since b, I < 

I < P I, this contradicts the minimality of F .  

2. The submatroid spanned by F U { a }  is a matroid of rank PI which contains 
I we have 

A0 U {ai}  E 3 

for i = 1,2. The contradiction follows, as Ci is a dependent set contained in 
AO u {ail-  

Lemma. If S is a maximal  strongly stable set in a matroid (E,F), then each s ES 

is adjacent to every a E E  - S. 
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Consider a maximal strongly stable set S. Then r ( S )  = 1. Let 

s = {81,82, ..., 81). 

Consider a point a E E  - S; since S U {a }  is not strongly stable there exists an 
s j  ES adjacent to a. If k # j the vertex 8 k  E S  is adjacent to { a , s j } ,  since the set 
A = {a,sj ,sk} is of rank 2, and an independent set containing 8 k  is contained in a max- 
imal independent set F satisfying PFnA I = 2. Thus a is adjacent t o  Sk, for every k. 

2 
Theorem 1. If M = ( E , 3 )  is a matroid with strong stability number qh4) 2 
then E(M) = p ( M ) .  

Indeed, consider a maximum strongly stable set 

s = { 8 1 , 8 2 , - - . , 8 p ) ;  

we may write 

E - s = {a1,a2,...,aq}, Q I P .  

From the lemma, there exists an edge Fij which contains ai and s j ,  and E can be 
covered by the p edges F101,F2,2 ,..., F,,,p,F,,jq+l ,..., Fq,p; thus 

P(M) 5 P - qw. 
Since the reverse inequality also holds, we have p ( M )  = q M ) .  

Theorem 2 A matroid M = ( E J )  i s  con formal i f  and only i f  there exists a parti- 
tion (Sl,S2, ..., S,,) of E such that 3 consists of the family o f  non-empty sets F un'th 

Pnsi 15 1 (i = 1,2 ,..., q). 

Let S, = { S 1 , a 2 ,  ..., sp} be a maximal strongly stable set in a conformal matroid of 
rank h = r (E) .  It is sufficient to show that the family 3 is of the desired form. 

1. Let Fl be a maximal independent set containing the point 8,. P u t  

A = E - S 1  

A~ = F,  n A. 

Then pl I = h ,  so b, I = h - 1. 

2.  We shall show that A,  is a maximal independent set in A.  Indeed, if this were 
not the case, there would exist an a € A  with 



Appendix 223 

A ,  U { a }  €3 .  

From the lemma, the vertices a and s1  are adjacent and are thus contained in a 
maximal independent set Fa,8l. As the matroid M is conformal, from Theorem 15, 

Chapter 1, there exists an Fo E 3 such that 

FO 3 [Fn(Alu{a ) ) l  u IAlU{a))nFa,a,I u (Fa,s,nF) 

= A1 u { a >  u { S l }  

Thus POI 2 h + 1 contradicting that h is the rank of M .  

3. From the above, we have r ( A )  = h - 1, so every maximal independent set F 
satisfies 

Pns, I = 1. 

In the submatroid induced by A ,  which is of rank h-1, consider a maximal 
strongly stable set S,; as above we see that 

Pns,I = 1. 

We determine thus a partition Sl,Sp, ..., Sh of E and every maximal independent 
set F of M satisfies p n S i  I = 1 for i = 1,2 ,..., h .  

4. Conversely, every set F which satisfies the above equalities has its points pair- 
wise adjacent, and since the matroid is conformal and of rank h it is a maximal 
independent set. 

The family 3 is thus of the desired form. 

Q.E.D. 

Let A = (Al,A,,  ..., Aq)  = (A,/qEQ) be a family of subsets of a set E.  A family 

of distinct representatives is a family (a ( i ) / i  EQ) of elements of E such that  

(2) a ( i )  € A i  ( i  = 1,2 ,..., q). 

The point a ( i )  is the representati.Je of the set 4.. Clearly a family of distinct 
representatives defines a transversal of cardinality q ;  the converse, however, is not 
true. 
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If we consider the bipartite graph (Q,E,r) with e E r ( i )  if e €4, a set of distinct 
representatives is the image of a matching of Q into E.  

If J C Q ,  put A ( J )  = ,U A,; a necessary and sufficient condition for the existence 
~ E J  

of a family of distinct representatives, from Kdnig's theorem, is that 

INJ) I2 I J  I ( J  c &I. 
The following theorems are generalisations of this result. 

Theorem 3 (Perfect, 1969). Let A4 = (E ,7 )  be a matroid of rank r (E),  let k be an 
integer 5 r ( E )  and let A = (A1,A2, ..., A*) = ( 4 / i € Q )  be a f a m i l y  or q subsets of E ;  
a necessary and suf f ic ient  condition fo r  the existence of a n  independent set 

F = { u ( i ) / i € K } ,  K C Q ,  I = k ,  with u ( i )  E A i  for  every i EK i s  that we have 

r ( A ( J ) )  2 I J  I + k - 4 ( J  C 9).  
1. If there exists such an independent set F ,  we have 

~ ( A ( J ) ) ?  Ir;.nA(J)I> IrcnJI= El+ IJI- WJJI 
2 h  + I J I - 4  

Thus we have the stated inequality. 

2. Conversely, suppose the inequality holds. Consider the family B = (Bi/iEQ) 

with 

Bi CA, (i E Q )  

6(8(5))2 I J I 4 - k  - 4  ( J C Q )  

The relation 8 < 8' meaning Bi CB,! for every i E Q  is an order relation. Con- 
sider a family B = (B1,B2, ..., Bp) which is minimal with respect to this order. We shall 
show that Bi I = 1 for every i .  

Indeed, if for example I > 1, there exist two points b',b" EB, with b' # b". 

P u t  

B{ = Bl - {b'} 

BY = B1 - {b"} 

B,! = B / = B ;  if i + 1. 

By the minimality of B there exist two subsets 1,J C Q with 
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r(B’(1)) < LI + k - Q 

r(B”(1)) < I J I  + k - q 

Thus 

~(B‘(z)) + r(B“(J)) 5 Ir I + IJ I + 2 ( k - ~ l -  2. 

Further, 

B’(Z) U B“(J)  = B(ZUJ) 

~ ’ ( z )  n W ( J )  = B(ZnJ-{l}).  

From proposition 4 we may write 

r(B‘(1)) + r(B”(J)) 2 r(B’(Z) u B”(J))  -t r(B’(Z) n B”(J)) 

2 r (B( IUJ) )  + r (B(InJ-{ l} ) )  

2 LUJI + LnJ-{l}l+ 2(k-q)  

2 IZ I + I J  I - 2(k-q) - 1. 
A contradiction follows. 

We have thus shown that B is of the form ({bi}/i EQ). Put  

B = { b i / i E & }  

From ( 1 )  we have 

r (B)  = r (B(Q) )  2 IQ I + k - q = k. 

Thus there exists a set K C Q  with kl = k, and an independent set 
F = {bi / i€K} C B with 

4 €4 (i E K ) .  

Q.E.D. 

As an immediate consequence, we have the well known theorem of Rado: 

Theorem 4 (Rado, 1942). If M = ( E , q  i s  a matroid, a family A = (Al, ..., Aq) o f  

subsets of E has an independent set of distinct representatives if and only i f  

r (A (J ) )  2 IJ I ( J  C Q) .  

Indeed, let k = q in the statement of Theorem 3. 

Corollary 1. Two families A = (A1,A2, ..., Ag) and B = (Bl ,B2,  ...,Bq) have a common 
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set of distinct representatives if and only if 

t w ) n w ) l 2  PI+ Kl-q ( J ~ K C Q ) .  

Indeed, consider the transversal matroid M of the family 8 (example 6), whose 
rank is 

= q + p$( IB(K)ns I- Irc I). 
There exists a transversal set of A which is independent in M if and only if, for every 
J c &, we have 

4%~)) = q + p$( b(J)nB(K) I - Irc 1) L IJ I 
giving us the desired condition. 

Corollary 2. If C = (C,,C2 ,..., C,) is a partition of E, and if cl,c2 ,..., cp are  integers 
with 0 5 ci 5 ICi I for each i, a family A = (A1,A2, ..., Aq) has a set T of distinct 
representatives with ITn Ci I 5 ci for every i if and only if 

5 min{ci ,b(J )nc i  I> L IJI  
i-1 

( J  c Q ) .  

Indeed, consider the matroid M formed by the sets F C E with (FflCi I 5 ci for 
each i (example 7), whose rank is 

r ( S )  = 5 min{ci, Isn ci 1). 
i-1 

There exists a set of distinct representatives of A which is independent in M if 
and only if, for every J C &, 

~ ( A ( J ) )  = 5 min{ci b(J)n ci 11 2 IJ I 
i-1 

Q.E.D. 

Recall the proposition (cf. Graphs, Corollary to Theorem 6, Chap. 7) which says: 
A necessary and sufficient condition for a set B C E to be contained in a set of dis- 
tinct representatives of a family A = (A1,A2, ..., Aq) is that 

min{ b(J)UB I,q--IB--A(J) I) L IJ I ( J  C &). 
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This may be extefidcd to matroids; first we shall prove a lemma: 

Lemma. Let M = (E,F) be a matroid of rank  r ,  let B €3, and let q 2 @ 1; the 
f a m i l y  

7 ~ , ~  = { F / F C E , F U B € 3 ,  P U B  I<q} 

def ines  a matroid on E and i ts  rank  is  

rB,q(S) = min{r(suB),q} - P-s I. 
Let S C E ,  and let So be a subset of S that belongs to  7 B , q :  every set F with 

clearly satisfies 

PI 5 min{r(SUB),q} - P-s I. 
It thus remains to  show that equality can hold. 

The set B u So, being independent in M ,  is contained in an independent set F' of 
B U S with 

PI = r (SUB) .  

Let F" be an independent set with 

B U SO C F" C F'; IF" I = min{r(SUB),q}. 

The set F = F" n S satisfies (1) and (2), and 

PI= min{r(SUB),q} - p-s I. 
Q.E.D. 

Theorem 6 (Las Vergnas, 1969). Let  M = ( E , n  be a matroid of rank  r ,  and  let 

B E 3, and q 2 I; a f a m i l y  A = (A,,A2, ..., As) of subseta of E h a s  a f a m i l y  of dis- 
t inc t  representatives which  is  a n  independent set containing B i f  and  only  i f  

min{r(A(J)UB),q} - b(J1-B I 2 k I ( J  C &I. 
Consider the rnatroid on E defined by the family 
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S 

E 

Figure 21 

3 ~ , *  = {F/FCE,FUBE3, P U B  ISq}. 
If there exists a set T of distinct representatives of A with T € 3 ,  T 33 ,  then 

IT1 = 9 ,  so 

E 3B,q- 

Conversely, if there exists a set T of distinct representatives of A with T € 3 ~ , ( ,  
then 

T U B € 3 ,  I T U B I I q ,  ITI=q, 

so 

T E 7 ;  T I E .  

Thus, from Rado’s theorem, there exists a set T satisfying the conditions of the 
statement if and only if the rank rB,q of the matroid (E,38,,) satisfies 

rB,q(A(J)) 2 I J  I ( J  c &) 

or 

min{r(A(J)UB),q} - b-A(J) I 2 k 1. 
Q.E.D. 

Let M = ( E , q  be a matroid on E = {el,e2, ..., em} and consider a map 4 of E 
onto E; define the image of M under 4 to be the hypergraph 
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- 
3- (W)/=a. - -  

As 4 is a map onto E, M = (E,a is clearly a hypergraph, which we shall now 
study. 

Theorem 6 (Nash-William, 1966). Z j  
M = (E ,3 )  under a map 4 of E onto E, then 2 is a matroid and i t s  rank is 

= (E,a is the image o j  a matroid 

F(E) = ginJr(4-'(X))+ p-X D 
ACE 

1. We shall show that: 

m s  F I - pinJr(b-'(A))+ P-X D. 
F ACE 

Clearly, max Fl is the greatest integer k such that the family 

(#-'(z1),4-'(%)~ - * * ~4-'(gm)) 

has a partial set of diitinct representatives that is an independent set in M and has 
cardinality k. From Theorem 3, thii is the greatest integer k such that 

minJr(d-'(X))+ V-Xb 2 k ,  
ZCE 

whence 

max Fl= ginJr(qP(X))+ p-X 1). 
ACE 

2. Now, it remains to show that the image of M under 4 is a matroid. 

Consider a map 4 of E = {el,e2 ,..., em} onto B - {C;,&, . , . ,Fm} satisfying 

He1) - z2 

Hei) = Ei if i # 1. 

We shall say that 4 is a map contracting the set {e1,e2); since every map is a com- 
position of contracting maps, it sUrrces to show that the image of the matroid M 
under the contracting map 4 is a matroid. Consider an independent set F, E 3 such 
that Fo is maximal in 3 we shall show that Fo is maximum for 3 thnt is, from Part 1, 
that there exists a set x C E with 

Fo I - r (4-yx)) + P-Z I. 
For simplicity, set Eo = E - {el,e2}. The set F0 being maximal in Twe may s u p  

pose that Fo is a maximum set of 3. 
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We may also suppose that Fo contains both e l  and e2, since otherwise Fo will be 
maximum, as we may write: 

- -  
p, I = Po I = r(E) = r(P(E)) + IE-E I. 

We shall distinguish three cases. 

Case 1: r(Eo) = r (E) .  

Since 

r(E0) 5 r(E-{e1}) 5 r ( E ) ,  

Po-{e,>l = r(E1-1 <.(E-{e1)). 

we also have r (E-{e l } )  = r (E) .  As Fo contains e l  and e2, we have 

Consequently there exists a maximum independent set FA which does not contain 
the point e l  and satisfies 

- 
3 F m =  Fo. 

Thus F, = G and may write: 
- -  F* I = Po I = PA I = r ( E )  = r(P(E))+ F - E  I. 

Case 2: r(E0) = r ( E )  - 1. Every maximum independent set thus contains e l  or e 2 .  

Further, we have 

ponEo I = Po I - 2 = Y ( E )  - 2 < v(E,). 

Thus there exists a point a EEo such that  (FonEo) u { u }  is an independent set 
of cardinality r(E,) = r(E)-1; let FA be a maximum independent set which contains 
this set. Since FA is maximum, it contains e l  or e2,  for example: 

Fb = (FonEo) u {a,el}. 

Clearly 3 Fo, so Fo = G and we may write: 

Po I = vo I = r ( E )  = r(f#J-I(E)) + p-jq. 

Case 3: r(Eo) = r(E)-2. Every maximum independent set thus contains both e ,  and 
e2. We have Fo 3 F, so 
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Po[ = poI-l = r(E1-1 

= r(Eo)+l + r(4- '(E0))+ p-Eo I- 
In each of these cases, the set Fo is maximum for 

Q.E.D. 

Let H1,H2, . . . ,Hp be hypergraphs on a set X of vertices; their j o in  is the hyper- 
graph 

H = H 1 V H 2 V  * . .  V H p  

defined by the family 

H = {E1UE2U * * .  UEP/E1EH1,E2EH2,. . . ,EPEHp}. 

H is clearly a hypergraph on X .  

Theorem 7. If (E,3') ,(E,P ,..., ( E , P )  are matro ids  of rank  r1 , r2 ,  . . . , rp  respec- 

t ively,  the ir  hypergraph-join i s  a matroid of rank  

F(E) = min(r ' (A )+  * * * +rP(A)+ B-A 1). 
A C E  

Make p identical copies E1,E2, ..., E p  of the set E ,  and consider the map 4 of 

U Ei into E which maps each e l  €E' to  the corresponding ek E E .  M = ( U E ' , V ~ )  

is clearly a matroid, and its rank is 

P 

i -1  

r ( X )  = r1(E')+r2(E2)+ ...+ rp(Ep) .  

From Theorem 6, the image of this matroid under the map 4 is also a matroid M, 

which is exactly the join .v 3;; the rank of the matroid-join M is thus 
P 

r-1 

F(E) = rnin(r(d-'(A))+ D-A 1) 
A C E  

Corollary 1 (Edmonds, 1968; Nash-Williams, 1968). For a matroid M = (E ,3)  the  

m i n i m u m  number  of independent se t s  required to  couer E is 
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By definition, p(M)  is the least integer k such that the join MV M V * - - V M 
of k matroids identical to M is of rank N I, or, from Theorem 7, the least integer k 
such that 

min(kr(A)+ b-A b = @ 1. 
ACE 

Thii is equivalent to: 

min(kr(A)- = 0, 
ACE 

-k.L (ACE,A#@). " r(A) 
We thus have 

Corollary 2. If M = (E,3') i s  a matroid, the mazimum number ko of mazimal 

independent pairwise disjoint sets i s  

Indeed, ko is the largest integer k such that the matroid-join of k matroids identi- 
e d  to M is of rank kr(E), or 

min(kr(A)+ B-A b = kr(E). 
ACE 

Thii is equivalent to 

min(kr(A)-kr(E)+ b-A D - 0, 
ACE 

or 
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giving us the stated formula. 

Corollary 3. Conso'der a matroid M = (E,3) and a sequence k1,k2, ..., kq wa'th 

r ( E ) > k , L k , L  - - a  >kq>O; 5 k i =  El. 
i-1 

Let kf be the number o f  ki '8 which are > j .  The set E can be partitioned into q 

independent sets Fl,F2, ...,Fq with pi I = ki for each i i f  and only i f  

C k,'Z B-AI ( A C E ) .  
j>r(A) 

Consider the ki-section M(ki), defined by the family 

3 ( k J  = { F p E 3 ,  1% 1. 
This is a matroid of rank r i (A)  = min{r(A),ki}, and the matroid-join 

M = V M(ki) 
i- 1 

is of rank B I. Thus 

This is equivalent to 

5 min{r(A),ki>t B-A I 1 B I = 5 ki = C k* ( A C E ) .  
i-1 i-1 j>O 

Hence 

r A )  # 

C k , * -  h k j s  B-AI ( A C E )  
j>O j-1 

giving us the stated condition. 

Corollary 4. The chromatic number of the hypergraph HM consisting o f  the circuits 

of  a matrodd M = (E,3)  of  rank r i s  equal to 
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Indeed, a set F c E is independent if and only if it contains no circuits. Thus a 
partition (AllAz, ..., Aq) is a colouring of the hypergraph H M  if and only if A1,A2,...,Aq 

are independent sets; thus x ( H M )  = p ( M )  and corollary 1 gives the stated formula. 

The preceding results allow us to obtain rapidly some results for graphs, originally 
proven by direct but much longer methods. 

Application 1 (Tutte, 1961). The set of edges of a simple connected graph 

G = ( X , E )  contains k pairwise disjoint spanning trees i f  and only i f ,  for  every par- 

t i t ion P of X ,  the number of edges mc(P) which join vertices in distinct classes of 

the partition satisf ies 

2 k( Ip 1-1). 
1. If there exist k spanning trees H I ,  ..., Hk in G ,  pairwise edge-disjoint, then for a 

partition P of the vertices, 

rnH;(P) 2 IP 1-1 (i=1,2, ..., k). 

mc(P) 2 c mlf,(P) 2 k( PI-1). 
Thus 

k 

i-1 

2. If the stated condition holds, consider the matroid M = ( E , q  on E defined by 
the family of forests FI,F2,...,Fg C E of the graph G ;  if r ( A )  denotes the rank of M 
and if A C E defines a partial graph of G having p connected components, forming a 
partition 

p = ( ~ ~ l ~ z l . . . l ~ p ~  

of X I  we have 

r(E)-r(A) = (n-l)-(n-p) = p-1 = IP 1-1. 

Thus, from the conditions in the statement, we have 

B-A I 2 mc(P) 2 k( IP 1-1) = k ( r ( E ) - r ( A ) ) .  

Hence, 
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Thus, from Corollary 2 to  Theorem 7, there exist k disjoint spanning trees in G. 

Application 2 (Nash-Williams, 1964). The edges o f  a simple graph G = ( X , E )  m a y  

be coloured with k colours i n  such a way that no cycle i s  monochromatic i f  and only 

i f  for every set A C X the number mc(A,A) of edges having both ends i n  A satisfies 

~ G ( A , A )  I k( (A I-1). 
In other words, the chromatic number of the hypergraph GC formed by the cycles 

of edges of G is equal t o  

1. If the edges of G are coloured thus with k colours 1,2,.,.,k, let mi(A,A) be the 
number of edges of colour i having both ends in A; since these edges form a forest, 
mi(A,A) 5 1-1. Thus 

mc(A,A) = m1(A,A)+ ...+ mk(A,A) I k( 1-1) 

as stated. 

2. Conversely, suppose that the condition of the Theorem is satisfied. Consider 
the matroid ( E , q  formed by the family of forests of the graph G ,  and let r be its 
rank. If the partial graph ( X , F )  of G generated by F C E has p connected com- 
ponents (Xl,Fl),(X2,F2), ...,( Xp,Fp) which are not isolated points, then 

kr(Fi)-Pi I>  k( ki l-l)-mc(xi,Xi) 2 0. 
Hence 

k r ( ~  P I = 5 (kr(Fi 1- Pi 11 2 0, 
i - 1  

or 

k >-ax[  JEL* ] 
FCE r (F)  
F+ 0 

Thus, from Corollary 4, it is possible to  colour the edges of G with k colours so 
that no cycle is monochromatic. 

Application 3. I f  G i s  a simple graph o f  maximum degree h ,  it  i s  possible to colour 

its edges with [-]*+1 coloura 80 that no cycle i s  monochromatic. 
h 
2 



236 Hypergraphs 

Indeed, let G = (X ,E)  and let A CX. Suppose LA I > 1 and a € A ,  and set 
= A-{a}. Then 

From Nash-Williams’ Theorem (Application 2), it follows that: 

X(GC) 5 [ 3 + 1 .  

Thus it is possible to colour the edges of G with [ - I f1 h colours 90 that no cycle of G 

is monochromatic. 
2 
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