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Preface

Mathematics is the queen of sciences and
arithmetic the queen of mathematics

Carl Friedrich Gauss

Number theory, known to Gauss as “arithmetic,” studies the properties of the
integers: . . . − 3,−2,−1, 0, 1, 2, 3 . . . . Although the integers are familiar, and
their properties might therefore seem simple, it is instead a very deep subject.

For example, here are some problems in number theory that remain unsolved.
(Recall that a prime number is an integer greater than 1 whose only positive
factors are 1 and the number itself.) Note that these problems are simple to
state — just because a topic is accessibile does not mean that it is easy.

1. (Goldbach’s Conjecture) Is every even integer n > 2 the sum of two primes?

2. (Twin Prime Conjecture) Are there are infinitely many twin primes?
(Twin primes differ by 2, like 11 and 13.)

3. Are there infinitely many primes of the form n2 + 1? Of the form 2n − 1?
(Ones of this form are Mersenne primes.) Of the form 22n

+ 1? (These
are Fermat primes.)

4. Are there infinitely many primes whose digits are all 1’s? (Numbers of
this form are repunits.)

5. Are there infinitely many perfect numbers? (An integer is perfect if it is
the sum of its proper divisors; 6 is perfect because 1 + 2 + 3 = 6.)

6. (3n + 1 Conjecture) Consider the function f defined by: f(n) = 3n + 1
if n is odd and f(n) = n/2 if n is even. Does the sequence of iterates
f(n), f(f(n)), f(f(f(n))), . . . always contain 1, no matter what starting
value n is used?

7. Is there a fast algorithm for factoring large integers?

So the subject is not simple. However it is accessible, and beautiful.
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iv PREFACE

A caution In some areas a person needs to learn by starting from first princi-
ples. The first course in Calculus is like that; students learn limits first to avoid
getting nutty ideas about nxn−1, But other areas are best mastered by diving
right in.

In this book you dive into mathematical arguments. Number Theory is right
for this in part because of its accessibility.

But always keep in mind the caution: do not underestimate the material.
You will find this subject hard, albiet rewarding.

Prerequisites We require only Calculus I. Even that requirement is not strict
(limits come up, as do the rules of logarithm manipultion), so the main purpose
of the prerequisite is that we expect that with it comes a certain amount of
mathematical maturity, including familiarity with basic set theory and some
function facts.

Other resources The Internet contains much interesting and current infor-
mation about number theory; see the Bibliography. The websites by Chris
Caldwell [2] and by Eric Weisstein [13] are especially good. To see what is going
on at the frontier of the subject, you may take a look at some recent issues of
the Journal of Number Theory which you will find in any university library.
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Chapter 1

Divisibility

In this book, all numbers are integers, unless specified otherwise. Thus in the
next definition, d, n, and k are integers.

1.1 Definition The number d divides the number n if there is a k such that
n = dk. (Alternate terms are: d is a divisor of n, or d is a factor of n, or n is
a multiple of d.) This relationship between d and n is symbolized d | n. The
symbol d - n means that d does not divide n.

Note that the symbol d | n is different from the fraction symbol d/n. It
is also different from n/d because d | n is either true or false, while n/d is a
rational number.

1.2 Theorem (Divisibility Properties) For all numbers n, m, and d,
(1) d | 0
(2) 0 | n =⇒ n = 0
(3) 1 | n
(4) (Reflexivity property) n | n
(5) n | 1 =⇒ n = 1 or n = −1
(6) (Transitivity property) d | n and n | m =⇒ d | m
(7) (Multiplication property) d | n =⇒ ad | an

(8) (Cancellation property) ad | an and a 6= 0 =⇒ d | n
(9) (Linearity property) d | n and d | m =⇒ d | an + bm for all a and b

(10) (Comparison property) If d and n are positive and d | n then d ≤ n

proof. For the first item, take k = 0. For the second, if 0 | n then n = 0 ·k = 0.
The next item holds because we can take n as the k in the definition. Re-

flexivity is similar: n = n · 1 shows that it holds. The next property follows
immediately from Basic Axiom 3 for Z, from the first Appendix.

For Transitivity, assume the d | n and that n | m. Then n = dk1 and
m = nk2 for some k1, k2 ∈ Z. Substitute to get m = nk2 = (dk1)k2. By the
Associative Property of Multiplication, (dk1)k2 = d(k1k2), which shows that d
divides m.
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2 CHAPTER 1. DIVISIBILITY

Multiplication also follows from associativity. Assume that d | n so that
n = dk. Then an = a(dk) = (ad)k shows that ad | ak.

For Cancellation, assume that a 6= 0 and that ad | an. Then there is a k
such that an = (ad)k. We will show that n = dk. Assume first that a > 0. By
the Trichotomy Property from the first Appendix, either n > dk or n = dk or
n < dk. If n > dk then we have that an > a(dk) = (ad)k, which contradicts this
paragraph’s assumption that an = (ad)k. If n < dk then an < a(dk) = (ad)k,
also contradicting the assumption. Therefore n = dk, and so d | n. The
argument for the a < 0 case is similar.

To verify Linearity, suppose that d | n and d | m so that n = dk1 and
m = dk2 for k1, k2 ∈ Z. Then an + bm = a(dk1) + b(dk2) = d(ak1 + bk2) shows
that d | (an + bm).

Finally, for Comparison, assume that d, n > 0 and d | n. Then n = dk
for some k. Observe that k is positive because the other two are positive. By
Trichotomy, either d < n or d = n or d > n. We will show that the d > n case
is not possible. Assume that d > n. Then dk > nk follows by one of the first
Appendix’s Properties of Inequalities. But that gives n > nk, which means that
n · 1 > n · k despite that fact that k is positive and so 1 ≤ k. This is impossible
because it violates the same Property of Inequalities. qed

1.3 Definition An integer n is even (or has even parity) if it is divisible by 2
and is odd (or is of odd parity) otherwise.

1.4 Lemma Recall that |a| equals a if a ≥ 0 and equals −a if a < 0.
(1) If d | a then −d | a and d | −a.
(2) If d | a then d | |a|
(3) The largest positive integer that divides a nonzero number a is |a|.

proof. For (1), if d | a then a = dk for some k. It follows that a = (−d)(−k)
and since −d and −k are also integers, this shows that −d | a. It also follows
that −a = (−k)d, and so d | −a.

For (2), suppose first that a is nonnegative. Then |a| = a and so if d | a
then d | |a|. Next suppose that a is negative. Since |a| = −a for negative a, and
since (1) shows that d | −a, and d therefore divides |a|.

For (3), first note that |a| actually divides a: in the a ≥ 0 case |a| | a because
in this case |a| = a and we know that a | a, while in the a < 0 case we have that
a = |a|(−1), so that |a| is indeed a factor of a. We finish by showing that |a|
is maximal among the divisors of a. Suppose that d is a positive number that
divides a. Then a = dk for some k, and also −a = d(−k). Thus d | |a|, whether
a is positive or negative. So by the Comparison property of Theorem 1.2, we
have that d ≤ |a|. qed



Chapter 2

Prime Numbers

2.1 Definition An integer p ≥ 2 is prime if it has no positive divisors other
than 1 and itself. An integer greater than or equal to 2 that is not prime is
composite.

Note that 1 is neither prime nor composite.

2.2 Lemma An integer n ≥ 2 is composite if and only if it has factors a and
b such that 1 < a < n and 1 < b < n.

proof. Let n ≥ 2. The ‘if’ direction is obvious. For ‘only if’, assume that n is
composite. Then it has a positive integer factor a such that a 6= 1, a 6= n. This
means that there is a b with n = ab. Since n and a are positive, so is b. Hence
1 ≤ a and 1 ≤ b. By Theorem 1.2, a ≤ n and b ≤ n. Since a 6= 1 and a 6= n we
have 1 < a < n. If b = 1 then a = n, which is not possible, so b 6= 1. If b = n
then a = 1, which is also not possible. So 1 < b < n, finishing this half of the
argument. qed

2.3 Lemma If n > 1 then there is a prime p such that p | n.

proof. Let S denote the set of all integers greater than 1 that have no prime
divisor. We must show that S is empty.

If S is not empty then by the Well-Ordering Property it has a smallest
member; call it m. Now m > 1 and has no prime divisor. Then m cannot be
prime (as every number is a divisor of itself). Hence m is composite. Therefore
by Lemma 2.2, m = ab where 1 < a < m and 1 < b < m. Since 1 < a < m, the
factor a is not a member of S. So a must have a prime divisor p. Then p | a
and a | m, so by Theorem 1.2, p | m. This contradicts the assumption that m
has no prime divisor. So the set S must be empty. qed

2.4 Theorem (Euclid’s Theorem) There are infinitely many primes.

proof. Assume, to get a contradiction, that there are only a finitely many
primes p1 = 2, p2 = 3, . . . , pn. Consider the number N = p1p2 · · · pn + 1.

3



4 CHAPTER 2. PRIME NUMBERS

Since p1 ≥ 2, clearly N ≥ 2. So by Lemma 2.3, N has a prime divisor
p. That prime must be one of p1, . . . , pn since that list was assumed to be
exhaustive. However, observe that the equation

N = pi (p1p2 · · · pi−1pi+1 · · · pn) + 1

along with 0 ≤ 1 < pi shows by Lemma 3.2 that n is not divisible by pi. This is
a contradiction; it follows that the assumption that there are only finitely many
primes is not true. qed

2.5 Remark Eucild’s Theorem, and its proof, is often cited as an example of
the beauty of Mathematics.

2.6 Theorem If n > 1 is composite then n has a prime divisor p ≤
√

n.

proof. Let n > 1 be composite. Then n = ab where 1 < a < n and 1 < b < n.
We claim that at least one of a or b is less than or equal to

√
n. For if not then

a >
√

n and b >
√

n, and hence n = ab >
√

n ·
√

n = n, which is impossible.
Suppose, without loss of generality, that a ≤

√
n. Since 1 < a, by Lemma 2.3

there is a prime p such that p | a. Hence, by Transitivity in Theorem 1.2, since
a | n we have p | n. By Comparison in Theorem 1.2, since p | a we have
p ≤ a ≤

√
n. qed

We can use Theorem 2.6 to help compute whether an integer is prime. Given
n > 1, we need only try to divide it by all primes p ≤

√
n. If none of these

divides n then n must be prime.

2.7 Example Consider the number 97. Note that
√

97 <
√

100 = 10. The
primes less than 10 are 2, 3, 5, and 7. None of these divides 97, and so 97 is
prime.



Chapter 3

Division

3.1 Theorem Where a and b > 0 are integers, there are integers q and r,
called the quotient and the remainder on division of a by b, satisfying these two
conditions.

a = bq + r 0 ≤ r < b

Further, those integers are unique.

Note that this result has two parts. One part is that the theorem says there
exists a quotient and remainder satisfying the conditions. The second part is
that the quotient, remainder pair are unique: no other pair of numbers satisfies
those conditions.

proof. To verify that for any a and b > 0 there exists an appropriate quotient
and remainder we need only produce suitable numbers. Consider these.

q =
⌊a

b

⌋
r = a− bq

Obviously a = bq + r, so these satisfy the first condition. To finish the existence
half of this proof, we need only check that 0 ≤ r < b. The Floor Lemma from
the Some Properties of R appendix gives

a

b
− 1 <

⌊a

b

⌋
≤ a

b
.

Multiply all of the terms of this inequality by −b. Since b is positive, −b is
negative, and so the direction of the inequality is reversed.

b− a > −b
⌊a

b

⌋
≥ −a

Add a to all three terms of the inequality and replace ba/bc by q to get

b > a− bq ≥ 0.

Since r = a− bq this shows that 0 ≤ r < b.

5



6 CHAPTER 3. DIVISION

We still must prove that q and r are unique. Assume that there are two
quotient, remainder pairs

a = bq1 + r1 with 0 ≤ r1 < b

and
a = bq2 + r2 with 0 ≤ r2 < b.

Subtracting

0 = a− a = (bq1 + r1)− (bq2 + r2) = b(q1 − q2) + (r1 − r2)

implies that

(3.1) r2 − r1 = b(q1 − q2).

We must show that the two pairs are equal, that r1 = r2 and q1 = q2. To obtain
a contradiction, suppose otherwise. First suppose that r1 6= r2. Then one must
be larger than the other; without loss of generality assume that r2 > r1. Then

0 ≤ r1 < r2 < b

and so r2−r1 < b. But (3.1) shows that b divides r2−r1 and by the Comparison
property of Theorem 1.2 this implies that b ≤ r2 − r1. This is the desired
contradiction and so we conclude that r1 = r2. With that, from equation 3.1 we
have 0 = b(q1−q2). Since b > 0, this gives that q1−q2 = 0 and so q1 = q2. qed

3.2 Corollary The number d divides the number n if and only if on division
of n by d the remainder is 0.

proof. If the remainder is 0 then n = dq + 0 = dq shows that d | n. For the
other half, if d | n then for some k we have n = dk = dk + 0 (with 0 ≤ 0 < d)
and the fact that the quotient, remainder pair is uniqus shows that k and 0
must be the quotient and the remainder. qed

That corollary says that Theorem 3.1 generalizes the results on divisibility.
For instance, fix b = 3. Then, given a, instead of only being able to say that
a is divisible or not, we can give a finer description: a leaves a remainder of 0
(this is the case where b | a), or 1, or 2.

3.3 Definition For b > 0 define a mod b = r where r is the remainder when a
is divided by b.

For example 23 mod 7 = 2 since 23 = 7 · 3 + 2 and −4 mod 5 = 1 since
−4 = 5 · (−1) + 1.



Chapter 4

Greatest Common Divisor

4.1 Definition An integer is a common divisor of two others if it divides both
of them.

We write C(a, b) for the set of numbers that are common divisors of a and b.

4.2 Definition The greatest common divisor of two nonzero integers a and b,
gcd(a, b), is the largest integer that divides both, except that gcd(0, 0) = 0.

The exception is there because every number divides zero, and so we specially
define gcd(0, 0) to be a convienent value.

4.3 Example The set of common divisors of 18 and 30 is

C(18, 30) = {−1, 1,−2, 2,−3, 3,−6, 6}.

So, gcd(18, 30) = 6.

4.4 Lemma gcd(a, b) = gcd(b, a).

proof. Clearly the two sets C(a, b) and C(b, a) are equal. It follows that their
largest elements are equal, that is, that gcd(a, b) = gcd(b, a). qed

4.5 Lemma gcd(a, b) = gcd(|a|, |b|).

proof. If a = 0 and b = 0 then |a| = a and |b| = b, and so in this case
gcd(a, b) = gcd(|a|, |b|). Suppose that one of a or b is not 0. Lemma 1.4 shows
that d | a ⇔ d | |a|. It follows that the two sets C(a, b) and C(|a|, |b|) are the
same set. So the largest member of that set, the greatest common divisor of a
and b, is also the greatest common divisor of |a| and |b|. qed

4.6 Lemma If a 6= 0 or b 6= 0, then gcd(a, b) exists and satisfies

0 < gcd(a, b) ≤ min{|a|, |b|}.

7



8 CHAPTER 4. GREATEST COMMON DIVISOR

proof. Note that gcd(a, b) is the largest integer in the set C(a, b). Since 1 | a
and 1 | b we know that 1 ∈ C(a, b). So the greatest common divisor must be at
least 1, and is therefore positive. On the other hand, if d ∈ C(a, b) then d | |a|
and d | |b|, so d is no larger than |a| and no larger than |b|. Thus, d is at most
the minimum of |a| and |b|. qed

4.7 Example The above results give that

gcd(48, 732) = gcd(−48, 732) = gcd(−48,−732) = gcd(48,−732).

We also know that 0 < gcd(48, 732) ≤ 48. Since if d = gcd(48, 732) then d | 48,
to find d we need check only for positive divisors of 48 that also divide 732.

4.8 Remark Observe that the first two lemmas, which draw conclusions about
the properties of the gcd operator, preceed Lemma 4.6, which shows that the
gcd exists.

If two numbers have a greatest common divisor of 1 then they have no
nontivial common factors.

4.9 Definition Two numbers are relatively prime if they have a greatest com-
mon divisor of 1.

Although the relatively prime relationship is symmetric — if gcd(a, b) = 1
then gcd(b, a) = 1 —we sometimes state it as “a is relatively prime to b.”

4.10 Lemma If g = gcd(a, b) then gcd(a/g, b/g) = 1.

proof. The greatest common divisor of a/g and b/g must exist, by the prior
result. Let gcd(a/g, b/g) = k. Then k is a divisor of both a/g and b/g so there
are numbers ja and jb such that jak = a/g and jbk = b/g. Therefore ja(kg) = a
and jb(kg) = b, and so kg is a common divisor of a and b. If k > 1 this would
be a contradiction, because then kg > g but g is the greatest common divisor.
Therefore k = 1. qed



Chapter 5

Bezout’s Lemma

5.1 Definition A number c is a linear combination of the numbers a and b if
c = as + bt for some s and t.

5.2 Example The number c = 16 is a linear combination of a = 2 and b = 5
since taking s = 3 and t = 2 gives 16 = 3 · 2 + 2 · 5. The number 21 is not a
linear combination of 2 and 4, since in the equation 21 = s · 2 + t · 4 the right
side is divisible by 2 while the left is not. (That is, there are no integers s and
t; we can solve the equation with rational numbers that are not integral.)

Thus, the Linearity statement in the Divisibility Properties theorem says
that if d divides a and b, then d divides all linear combinations of a and b. So
the greatest common divisor, gcd(a, b), divides every member of L(a, b), the set
of all linear combinations of a and b. The next result says that gcd(a, b) is itself
a member of L(a, b).

5.3 Lemma (Bezout’s Lemma) The greatest common divisor of two num-
bers is a linear combination of those two: for all integers a and b there exist
integers s and t such that gcd(a, b) = sa + tb.

proof. If a and b are 0 then s and t may be anything since gcd(0, 0) = 0 =
s · 0 + t · 0. So we may assume that a 6= 0 or b 6= 0. Consider the set L(a, b) =
{na + mb : n, m ∈ Z} of all linear combinations of a and b.

Denote the set of positive members of L(a, b) by L+(a, b). Note that L(a, b)
contains a, −a, b and −b, and since a 6= 0 or b 6= 0, at least one of these four
numbers is positive. Therefore L+(a, b) is not empty. Because of this, by the
Well-Ordering Property for N, we know that the set L+(a, b) contains a smallest
positive integer; call it d. We will show that d is the greatest common divisor
of a and b. That will finish the argument because d is a linear combination of
a and b as it is a member of L.

Since d ∈ L+(a, b) we have d = sa + tb for some integers s and t. Let
g = gcd(a, b). Then g | a and g | b, so by the Linearity property of Theorem 1.2,
we have g | (sa+tb), that is, g | d. Since g and d are positive, by the Comparision
property of Theorem 1.2, we have that g ≤ d.

9



10 CHAPTER 5. BEZOUT’S LEMMA

If we show that d is a common divisor of a and b, then we will have that
d ≤ g (as g is the greatest of the common divisors), and so we will have shown
that g = d. To show that d | a, write a = dq + r where 0 ≤ r < d and compute

r = a− dq = a− (sa + tb)q = (1− sq)a + (−tq)b.

to conclude that r ∈ L(a, b). Thus, if r were to be strictly greater than 0 then r
would be a member of L+(a, b). But this cannot be, since r is strictly less than
d and d is the smallest integer in L+(a, b). So we must have that r = 0. That
is, a = dq, and hence d | a. A similar argument shows that d | b. Thus, d is
indeed a common divisor of a and b, and d = g = gcd(a, b). qed

5.4 Example Notice that 1 = gcd(2, 3) and 1 = (−1)2 + 1 · 3. Notice also
that 1 = 2 · 2 + (−1)3. So the numbers s and t in Bezout’s Lemma are uniquely
determined. In fact, as we will see later that for each pair a, b there are infinitely
many s and t.

5.5 Corollary The set L(a, b) of all linear combinations of a and b equals the
set of multiples of gcd(a, b).

proof. We observed above that any member of L(a, b) is a multiple of gcd(a, b).
For the converse, consider the multiple k·gcd(a, b), apply Bezout’s Lemma to get
s, t ∈ Z so that gcd(a, b) = sa + tb, and substitute: k · gcd(a, b) = k · (sa + tb) =
(ks)a + (kt)b. qed

5.6 Lemma If a | bc and a is relatively prime to b then a | c.

proof. Since gcd(a, b) = 1, by Bezout’s Lemma there are coefficients s and t
such that 1 = as+bt. Multiply both sides by c to get c = cas+cbt = a(cs)+(bc)t.
Note that a | a(cs) and that a | bc by assumption, so Theorem 1.2 gives that a
divides the linear combination a(cs) + (bc)t = c. qed

Observe that 6 | (4 · 9) but 6 - 4 and 6 - 9 (6 is not relatively prime to 4,
and is also not relatively prime to 9). Thus the condition of relative primality
is needed in that lemma.

We can completely characterize L(a, b).

5.7 Lemma Fix a, b ∈ Z. If gcd(a, b) | c then the equation sa + tb = c has
infinitely many solution pairs s, t, which have the form

s = s0 − j · (b/d), t = t0 + j · (a/d) j ∈ Z

where s0, t0 is any particular solution pair.

proof. First assume that a solution pair s0, t0 exists, to show that any pair of
numbers of that form also solve the equation. Plug them into the equation.

(s0−j(b/d))·a+(t0+j(a/d))·b = (s0a+t0b)+j(−(ab/d)+(ab/d)) = s0a+t0b = c
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To finish we must show that pairs of the stated type are the only solutions..
Suppose that s and t also solve the equation: sa + tb = c. Subtracting gives
(s− s0)a + (t− t0)b = 0, that is,

(∗) (s− s0)a = (t0 − t)b.

Divide by g = gcd(a, b) on both sides to get (s− s0)(a/g) = (t0− t)(b/g), which
shows that b/g divides (s − s0)(a/g). By Lemma 4.10, gcd(a/g, b/g) = 1 and
so the prior result, Lemma 5.6, shows that b/g divides s − s0. Thus, for this
solution pair s, t, there is a j ∈ Z such that j · (b/g) = s− s0, that is, s has the
form s = s0− j(b/g). With that form for s, substituting into equation (∗) gives
that ((s0 − j(b/g)) − s0)a = −ja(b/g) equals (t0 − t)b. Dividing both sides by
b and rearranging gives that t = t0 + j(a/g). qed
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Chapter 6

The Euclidean Algorithm

We can efficiently compute the greatest common divisor of two numbers.
We first reduce the problem. Since gcd(a, b) = gcd(|a|, |b|) (and gcd(0, 0) =

0), we need only give a method to compute gcd(a, b) where a and b are nonneg-
ative. And, since gcd(a, b) = gcd(b, a), it is enough for us to give a method for
a ≥ b ≥ 0.

6.1 Lemma If a > 0 then gcd(a, 0) = a.

proof. Since every integer divides 0, C(a, 0) is just the set of divisors of a. The
largest divisor of a is |a|. Since a is positive, |a| = a, and so gcd(a, 0) = a. qed

The prior lemma reduces the problem of computing gcd(a, b) to the case
where a ≥ b > 0.

6.2 Lemma If a > 0 then gcd(a, a) = a.

proof. Obviously, a is a common divisor. By Lemma 4.6, gcd(a, a) ≤ |a| and
since a is positive, |a| = a. So a is the greatest common divisor. qed

We have now reduced the problem to the case a > b > 0. The central result
is next.

6.3 Lemma Let a > b > 0. If a = bq + r, then gcd(a, b) = gcd(b, r).

proof. It suffices to show that the two sets C(a, b) and C(b, r) are equal, because
then they must have the same greatest member. To show that the sets are equal
we will show that they have the same members.

First, suppose that d ∈ C(a, b), so that d | a and d | b. Note that r = a− bq.
By Theorem 1.2(3) we have that d | r. Thus d | b and d | r, and so d ∈ C(b, r).
We have shown that any member of C(a, b) is a member of C(b, r), that is, that
C(a, b) ⊆ C(b, r).

For the other containment, assume that d ∈ C(b, r) so that d | b and d | r.
Since a = bq + r, Theorem 1.2(3) applies again to shows that d | a. So d | a and
d | b, and therefore d ∈ C(a, b). qed

13
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The Euclidean Algorithm uses Lemma 6.3 to compute the greatest common
divisor of two numbers. Rather introduce a computer language in which to give
algorithm, we will illustrate it with an example.

6.4 Example Compute gcd(803, 154).

gcd(803, 154) = gcd(154, 33) since 803 = 154 · 5 + 33
gcd(154, 33) = gcd(33, 22) since 154 = 33 · 4 + 22
gcd(33, 22) = gcd(22, 11) since 33 = 22 · 1 + 11
gcd(22, 11) = gcd(11, 0) since 22 = 11 · 1 + 0
gcd(11, 0) = 11

Hence gcd(803, 154) = 11.

6.5 Remark This method is much faster than finding C(a, b) and can find
gcd’s of quite large numbers.

Recall that Bezout’s Lemma asserts that given a and b there exists two
numbers s and t such that gcd(a, b) = s ·a+ t ·b. We can use Euclid’s Algorithm
to find s and t by tracing through the steps, in reverse.

6.6 Example Express gcd(803, 154) as a linear combination of 803 and 154.

11 = 33 + 22 · (−1)
= 33 + (154− 33 · 4) · (−1) = 154 · (−1) + 33 · 5
= 154 · (−1) + (803− 154 · 5) · 5 = 803 · 5 + 154 · (−26)



Chapter 7

The Fundamental Theorem

7.1 Theorem (Fundamental Theorem of Arithmetic) Every number
greater than 1 factors into a product of primes n = p1p2 · · · ps. Further, writ-
ing the primes in ascending order p1 ≤ p2 ≤ · · · ≤ ps makes the factorization
unique.

Some of the primes in the product may be equal. For instance, 12 = 2 ·2 ·3 =
22·3. So the Fundamental Theorem is sometimes stated as: every number greater
than 1 can be factored uniquely as a product of powers of primes.

7.2 Example 600 = 2 · 2 · 2 · 3 · 5 · 5 = 23 · 3 · 52

We will break the proof of the Fundamental Theorem into a sequence of
Lemmas.

7.3 Lemma (Euclid’s Lemma) If p is a prime and p | ab, then p | a or p | b.

proof. Assume that p | ab. If p | a then we are done, so suppose that it does
not. Let d = gcd(p, a). Note that d > 0, and that d | p and d | a. Since d | p
we have that d = 1 or d = p. If d = p then p | a, which we assumed was not
true. So we must have d = 1. Hence gcd(p, a) = 1 and p | ab. So by Lemma 5.6,
p | b. qed

7.4 Lemma Let p be prime. Let a1, a2, . . . , an, n ≥ 1, be integers. If p |
a1a2 · · · an, then p | ai for at least one i ∈ {1, 2, . . . , n}.

proof. We use induction on n. For the n = 1 base case the result is clear.
For the inductive step, assume the inductive hypothesis: that the lemma

holds for n such that 1 ≤ n ≤ k. We must show that it holds for n = k + 1.
Assume that p is prime and that p | a1a2 · · · akak+1. Write a1a2 · · · ak as a, and
ak+1 as b. Then p | a or p | b by Lemma 7.3. If p | a = a1 · · · ak then by the
induction hypothesis, p | ai for some i ∈ {1, . . . , k}. If p | b then p | ak+1. So
we can say that p | ai for some i ∈ {1, 2, . . . , k + 1}. This verifies the lemma for
n = k + 1. Hence by mathematical induction, it holds for all n ≥ 1. qed

15
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7.5 Lemma (Fundamental Theorem, Existence) If n > 1 then there exist
primes p1, . . . , ps, where s ≥ 1, such that n = p1p2 · · · ps and p1 ≤ p2 ≤ · · · ≤ ps.

proof. We will use induction on n. The base step is n = 2: in this case, since
2 is prime we can take s = 1 and p1 = 2.

For the inductive step, assume the hypothesis that the lemma holds for
2 ≤ n ≤ k; we will show that it holds for n = k + 1. If k + 1 is prime then s = 1
and p1 = k + 1. If k + 1 is composite then write k + 1 = ab where 1 < a < k + 1
and 1 < b < k + 1. By the induction hypothesis there are primes p1, . . . , pu and
q1, . . . , qv such that a = p1 · · · pu and b = q1 · · · qv. This gives that k + 1 is a
product of primes

k + 1 = ab = p1p2 · · · puq1q2 · · · qv,

where s = u + v. Reorder the primes into ascending order, if necessary.
The base step and the inductive step together give us that the statement is

true for all n > 1. qed

7.6 Lemma (Fundamental Theorem, Uniqueness) If n = p1p2 · · · ps for
s ≥ 1 with p1 ≤ p2 ≤ · · · ≤ ps, and also n = q1q2 · · · qt for t ≥ 1 with
q1 ≤ q2 ≤ · · · ≤ qt, then t = s, and pi = qi for all i between 1 and s.

proof. The proof is by induction on s. In the s = 1 base case, n = p1 is prime
and we have p1 = q1q2 · · · qt. Now, t must be 1 or else this is a factorization of
the prime p1, and therefore p1 = q1.

Now assume the inductive hypothesis that the result holds for all s with
1 ≤ s ≤ k. We must show that the result then holds for s = k +1. Assume that
n = p1p2 · · · pkpk+1 where p1 ≤ p2 ≤ · · · ≤ pk+1, and also n = q1q2 · · · qt where
q1 ≤ q2 ≤ · · · ≤ qt. Clearly pk+1 | n, so pk+1 | q1 · · · qt. Euclid’s Lemma then
gives that pk+1 divides some qi. That implies that pk+1 = qi, or else pk+1 would
be a non-1 divisor of the prime qi, which is impossible. Hence pk+1 = qi ≤ qt.

A similar argument shows that qt = pj ≤ pk+1. Therefore pk+1 = qt.
To finish, cancel pk+1 = qt from the two sides of this equation.

p1p2 · · · pkpk+1 = q1q2 · · · qt−1qt

Now the induction hypothesis applies: k = t− 1 and pi = qi for i = 1, . . . , t− 1.
So the lemma holds also in the s = k + 1 case, and so by mathematical

induction it holds for all s ≥ 1. qed

7.7 Remark Unique factorization gives an alternative, conceptually simpler,
way to find the greatest common divisor of two numbers. For example, 600 =
23 · 31 · 52 · 70 and 252 = 22 · 32 · 50 · 7. Now, 23 divides both number. So does
31, but 32 does not divide both. Also, the highest power of 5 dividing both
numbers is 50, and similarly the highest power of 7 that works for both is 70.
So gcd(600, 252) = 22 · 31 · 50 · 70 = 24. In general, we can find the greatest
common divisor of two numbers factoring, then taking the minimum power of
2, times the minimum power of 3, etc.
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The difficulty with this method is that we must factor the numbers. But
factorization is very difficult! That is, for numbers that are large, factoring is
slow while the Euclidean algorithm is relatively fast.
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Chapter 8

Distribution of Primes

The Sieve of Eratosthenes is an ancient method to find primes. To find the
primes less than n, list the numbers from 2 to n− 1. The smallest number, 2, is
prime. Cross off all proper multiples of 2 (that is, the even numbers greater than
2). The smallest number remaining, 3, is prime. Cross off all proper multiples of
3, that is, 6, 9, etc. (some of them have already been eliminated). The smallest
remaining number, 5, is prime. Cross off all proper multiples of 5. Continue
this process until the list is exhausted.

Here is what is left when the sieve filters out the nonprimes less than 100.

00 01 02 03 04 05 06 07 08 09
0 2 3 5 7

10 11 13 17 19
20 23 29
30 31 37
40 41 43 47
50 53 59
60 61 67
70 71 73 79
80 83 89
90 97

Obviously, the columns with even numbers and the columns with multiples of
5 are empty (except for 2 and 5) but this is an artifact of the fact that the rows
of the table are 10 = 2 · 5 wide. Other than that, at first glance no pattern is
apparent.

8.1 Theorem (Wilson’s Theorem) There are arbitrarily long gaps between
primes: for any positive integer n there is a sequence of n consecutive composite
integers.

proof. Given n ≥ 1, consider a = (n + 1)! + 2. We will show that all of the
numbers a, a + 1, . . . , a + (n− 1) are composite.

19



20 CHAPTER 8. DISTRIBUTION OF PRIMES

Since n+1 ≥ 2, clearly 2 | (n+1)!. Hence 2 | (n+1)!+2. Since (n+1)!+2 > 2,
we therefore have that a = (n + 1)! + 2 is composite. We will finish by showing
that the i-th number in the sequence, a + i where 0 ≤ i ≤ n− 1, is composite.
Because 2 ≤ i + 2 ≤ n + 1, we have that (i + 2) | (n + 1)!. Hence i + 2 | a + i =
(n+1)!+(i+2). Because a+i > i+2 > 1, we have that a+i is composite. qed

8.2 Definition For any positive real number x, the number of primes less than
or equal to x is π(x).

For example, π(10) = 4.
The next result was first conjectured in 1793 by by Gauss, on the basis of

numerical evidence like that in the table above. It was, however, not proved
until over 100 years later, by Hadamard and Vallée Poussin. The proof is beyond
the scope of this course.

8.3 Theorem (The Prime Number Theorem)

lim
x→∞

π(x)
(x/ ln(x))

= 1.

Here is a table of values of π(10i) and 10i/ ln(10i) for i = 2, . . . , 10 (the
second set of values have been rounded to the nearest integer).

x π(x) round(x/ ln(x))
102 25 22
103 168 145
104 1229 1086
105 9592 8686
106 78498 72382
107 664579 620421
108 5761455 5428681
109 50847534 48254942

1010 455052511 434294482

This table has been continued up to 1021, but mathematicians are still working
on finding the value of π(1022). Of course, computing the approximations are
easy, but finding the exact value of π(1022) is hard.



Chapter 9

Fermat Primes and
Mersenne Primes

A formula that produces the primes would be nice. Historically, lacking such
a formula, mathematicians have looked for formulas that at least produce only
primes.

In 1640 Fermat noted that the numbers in this list

n 0 1 2 3 4
Fn = 2(2n) + 1 3 5 17 257 65, 537

are all prime. He conjectured that Fn is always prime. Numbers of the form
22n

+ 1 are called Fermat numbers.

9.1 Lemma Let a > 1 and n > 1. If an +1 is prime then a is even and n = 2k

for some k ≥ 1.

proof. We first show that n is even. Suppose otherwise, and recall the well-
known factorization.

an − 1 = (a− 1)(an−1 + an−2 + · · ·+ a + 1)

Replace a by −a.

(−a)n − 1 = (−a− 1)
(
(−a)n−1 + (−a)n−2 + · · ·+ (−a) + 1

)
If the exponent n is odd then n − 1 is even, n − 2 is odd, etc. So we have
(−a)n = −an, (−a)n−1 = an−1, (−a)n−2 = −an−2, etc., and the factorization
becomes

−(an + 1) = −(a + 1)
(
an−1 − an−2 + · · · − a + 1

)
.

Then changing the sign of both sides gives (an + 1) = (a + 1)(an−1 − an−2 +
· · · − a + 1). But with n ≥ 2, we have 1 < a + 1 < an + 1. This shows that if n
is odd and a > 1, then an + 1 is not prime.
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So n is even. Write n = 2s · t where t is odd. Then if an + 1 is prime we
have (a2s

)t + 1 is prime. But by what we just showed this cannot be prime if t
is odd and t ≥ 2. So we must have t = 1 and therefore n = 2s.

Also, an + 1 prime implies that a is even since if a is odd then so is an,
and in consequence an + 1 would be even. But the only even prime is 2, adnd
we are assuming that a > 1 and so we have a ≥ 2, which implies that so
an + 1 ≥ 3. qed

9.2 Definition A prime number of the form Fn = 2(2n) +1, n ≥ 0, is a Fermat
prime.

Euler showed that Fermat number next on the table, F5 = 4, 294, 967, 297,
is composite.

As n increases, the Fn’s increase in size very rapidly, and are not easy to
check for primality. We know that Fn is composite for all n such that 5 ≤ n ≤ 30,
and a large number of other values of n including 382447 (the largest one that
I know). Many researchers now conjecture that Fn is composite for n ≥ 5. So
Fermat’s original thought that Fn is always prime is badly mistaken.

Mathematicians have also looked for formulas that produce many primes.
That is, we can guess that numbers of various special forms are disproportion-
ately prime. One form that has historically been of interest is are the Mersenne
numbers Mn = 2n − 1.

n 2 3 5 7 13
f(n) 3 7 31 127 8191

All of the numbers on the second row are prime. Note that 24 − 1 is not prime,
so this is not supposed to be a formula that gives only primes.

9.3 Lemma Let a > 1 and n > 1. If an−1 is prime then a = 2 and n is prime.

proof. Consider again an − 1 = (a− 1)(an−1 + · · ·+ a + 1) Note that if a > 2
and n > 1 then a− 1 > 1 and an−1 + · · ·+ a + 1 > a + 1 > 3 so both factors are
greater then 1, and therefore an − 1 is not prime. Hence if an − 1 is prime then
we must have a = 2.

Now suppose 2n − 1 is prime. We claim that n is prime. For, if not, then
n = st where 1 < s < n and 1 < t < n. Then 2n − 1 = 2st − 1 = (2s)t − 1 is
prime. But we just showed that if an − 1 is prime then we must have a = 2. So
we must have 2s = 2, and hence s = 1 and t = n. Therefore n is not composite,
that is, n is prime. qed

9.4 Corollary If Mn is prime, then n is prime.

proof. This is immediate from Lemma 9.3. qed

At first it was thought that Mp = 2p − 1 is prime whenever p is prime. But
in 1536, Hudalricus Regius showed that M11 = 211 − 1 = 2047 is not prime:
2047 = 23 · 89.
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9.5 Definition A prime number of the form Mn = 2n−1, n ≥ 2, is a Mersenne
prime.

People continue to work on determining which Mp’s are prime. To date
(2003-Dec-09), we know that 2p − 1 is prime if p is one of the following 40
primes: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503,
132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593,
13466917, and 20996011.

The first number with more than a thousand digits known to be prime was
M4253. The largest number on that list was found on 2003-Nov-17. This number
has 6, 320, 430 digits. It was found as part of the Great Internet Mersenne Prime
Search (GIMPS). (You can participate in this search by setting a program to
run at times when your computer is not busy; see Chris Caldwell’s page for
more about this.) Later we will see a connection between Mersenne primes and
perfect numbers.

One reason that we know so much about Mersenne primes is that the follow-
ing test makes it easier to check whether or not Mp is prime when p is a large
prime.

9.6 Theorem (The Lucas-Lehmer Mersenne Prime Test) Let p be an
odd prime. Define the sequence r1, r2, r3, . . . , rp−1 by the rules r1 = 4, and for
k ≥ 2,

rk = (r2
k−1 − 2) mod Mp.

Then Mp is prime if and only if rp−1 = 0.

The proof of this is beyond the scope of this book.

9.7 Example Let p = 5. Then Mp = M5 = 31.

r1 = 4

r2 = (42 − 2) mod 31 = 14 mod 31 = 14

r3 = (142 − 2) mod 31 = 194 mod 31 = 8

r4 = (82 − 2) mod 31 = 62 mod 31 = 0

Hence by the Lucas-Lehmer test, M5 = 31 is prime.

9.8 Remark Note that the Lucas-Lehmer test for Mp = 2p−1 takes only p−1
steps. On the other hand, if we try to prove that Mp is prime by testing all
primes less than or equal to

√
Mp then must consider about 2(p/2) steps. This

is much larger, in general, than p.

No one knows whether there are infinitely many Mersenne primes.
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Chapter 10

The Functions σ and τ

10.1 Definition Where n is a positive integer, τ(n) is the number of positive
divisors of n.

10.2 Example The number 12 = 3 ·22 has positive divisors 1, 2, 3, 4, 6, 12, and
so τ(12) = 6.

10.3 Definition Where n is a positive integer, σ(n) is the sum of the positive
divisors of n.

A positive divisor d of n is a proper divisor if d < n. The sum of all proper
divisors of n is σ∗(n).

Note that if n ≥ 2 then σ∗(n) = σ(n)− n.

10.4 Example σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28, σ∗(12) = 16.

10.5 Definition A number n > 1 is perfect if σ∗(n) = n.

10.6 Example The first perfect number is 6 because its proper divisors are 1,
2 and 3.

10.7 Theorem Consider the prime factorization n = pe1
1 pe2

2 · · · per
r .

(1) τ(n) = (e1 + 1)(e2 + 1) · · · (er + 1)

(2) σ(n) =
pe1+1
1 − 1
p1 − 1

· pe2+1
2 − 1
p2 − 1

· · · p
er+1
r − 1
pr − 1

10.8 Example If n = 72 = 23 · 32 then τ(72) = (3 + 1)(2 + 1) = 12 and

σ(72) =
24 − 1
2− 1

· 33 − 1
3− 1

= 15 · 13 = 195.

Proof of item (1). From the Fundamental Theorem of Arithmetic, if d is a factor
of n then the prime factors of d come from those of n. Hence d | n iff d =
pf1
1 pf2

2 · · · pfr
r where for each i, 0 ≤ fi ≤ ei. There are (e1 +1)(e2 +1) · · · (er +1)

choices for the exponents f1, f2, . . . , fr. qed
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Our proof of the second item requires two preliminary results.

10.9 Lemma Suppose that n = ab, where a > 0, b > 0 and gcd(a, b) = 1.
Then σ(n) = σ(a)σ(b).

proof. Since a and b have only 1 as a common factor, the Fundamental The-
orem of Arithmetic, shows that d | n only when d factors into d = d1d2 where
d1 | a and d2 | b. That is, the divisors of ab are products of the divisors of a
with the divisors of b. Let the divisors of a be 1, a1, . . . , as and the divisors of b
be 1, b1, . . . , bt. These are the divisors of n = ab.

1, b1, b2, . . . , bt

a1 · 1, a1 · b1, a1 · b2, . . . , a1 · bt

a2 · 1, a2 · b1, a2 · b2, . . . , a2 · bt

...
as · 1, as · b1, as · b2, . . . , as · bt

This list has no repetitions because, as gcd(a, b) = 1, if aibj = akb` then ai = ak

and bj = b`. Therefore to find σ(b) we can sum the rows

1 + b1 + · · ·+ bt = σ(b)
a11 + a1b1 + · · ·+ a1bt = a1σ(b)

...
as · 1 + asb1 + · · ·+ asbt = asσ(b)

and add those partial sums

σ(n) = σ(b) + a1σ(b) + a2σ(b) + · · ·+ a3σ(b)
= (1 + a1 + a2 + · · ·+ as)σ(b)
= σ(a)σ(b)

to get the required result. qed

10.10 Lemma If p is a prime and k ≥ 0 then

σ(pk) =
pk+1 − 1

p− 1
.

proof. Since p is prime, the divisors of pk are 1, p, p2, . . . , pk. Hence

σ(pk) = 1 + p + p2 + · · ·+ pk =
pk+1 − 1

p− 1

follows from the formula for the sum of a geometric series. qed
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Proof of item (2). Let n = pe1
1 pe2

2 · · · per
r . This proof is by induction on the

number of prime factors r. In the r = 1 base case we have n = pe1
1 and the

result follows from Lemma 10.10.
For the inductive step, the inductive hypothesis is that the statment is true

when 1 ≤ r ≤ k. Consider the r = k + 1 case: n = pe1
1 · · · pek

k p
ek+1
k+1 where the

primes are distinct. Let a = pe1
1 · · · pek

k and b = p
ek+1
k+1 . Clearly gcd(a, b) = 1.

Lemma 10.9 applies to give that σ(n) = σ(a)σ(b). The inductive hypothesis
and Lemma 10.10 give

σ(a) =
(

pe1+1
1 − 1
p1 − 1

)
· · ·

(
pek+1

k − 1
pk − 1

)
σ(b) =

p
ek+1+1
k+1 − 1
pk+1 − 1

and therefore

σ(n) =
(

pe1+1
1 − 1
p1 − 1

)
· · ·

(
p

ek+1+1
k+1 − 1
pk+1 − 1

)
as desired. So the result holds for r = k + 1, and that implies that the theorem
is true for all integers by the principle of mathematical induction. qed
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Chapter 11

Perfect Numbers and
Mersenne Primes

A search for perfect numbers up to 10, 000 finds only these.

6 = 2 · 3
28 = 22 · 7

496 = 24 · 31

8128 = 26 · 127

Note that 3 = 22 − 1, 7 = 23 − 1, 31 = 25 − 1, and 127 = 27 − 1 are Mersenne
primes. We can conjecture that all perfect numbers fit this pattern. This chapter
discusses to what extent this is known to be true.

11.1 Theorem If 2p − 1 is a Mersenne prime then 2p−1 · (2p − 1) is perfect.

proof. Write q = 2p−1 and n = 2p−1q. Since q is odd and prime, Theorem 10.7
gives that σ(n) is

σ
(
2p−1q

)
=
(

2p − 1
2− 1

)(
q2 − 1
q − 1

)
= (2p − 1)(q + 1) = (2p − 1)2p = 2n.

That is, σ(n) = 2n, and so n is perfect. qed

11.2 Theorem If n is even and perfect then there is a Mersenne prime 2p − 1
such that n = 2p−1(2p − 1).

proof. Suppose that n is even and perfect. Factor out all of the 2’s to get
n = 2k · q with q an odd number, and k ≥ 1 since n is even. Since q is odd,
gcd(2k, q) = 1 and so by Lemmas 10.9 and 10.10 we have σ(n) = σ(2k)σ(q) =
(2k+1 − 1)σ(q). Thus, as n is perfect,

2k+1q = 2n = σ(n) = (2k+1 − 1)σ(q).
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Now substituting σ(q) = σ∗(q) + q, into the prior displayed equation gives

2k+1q = (2k+1 − 1)(σ∗(q) + q)

that is
2k+1q = (2k+1 − 1)σ∗(q) + 2k+1q − q

This implies that

(∗) σ∗(q)(2k+1 − 1) = q.

So σ∗(q) is a divisor of q. Since k ≥ 1 we have that 2k+1 − 1 ≥ 4 − 1 = 3. So
σ∗(q) is a proper divisor of q. But σ∗(q) is the sum of all of the proper divisors
of q. This can only happen if q has only one proper divisor, that is, it implies
that q is prime and so σ∗(q) = 1. Then equation (∗) shows that q = 2k+1 − 1.
So q is a Mersenne prime and k + 1 = p is prime. Therefore n = 2p−1 · (2p − 1),
as desired. qed

11.3 Corollary There is a one-to-one correspondence between the even perfect
numbers and the Mersenne primes.

Here are two questions that remain open: (i) Are there infinitely many even
perfect numbers? (ii) Are there any odd perfect numbers? (We know that if an
odd perfect number exists, then it must be greater than 1050.)



Chapter 12

Congruences

12.1 Definition Let m ≥ 0. We we say that the numbers a and b are congruent
modulo m, denoted a ≡ b (mod m), if a and b leave the same remainder when
divided by m. The number m is the modulus of the congruence. The notation
a 6≡ b (mod m) means that they are not congruent.

12.2 Lemma The numbers a and b are congruent modulo m if and only if
m | (a− b), and also if and only if m | (b− a).

proof. Write a = mqa + ra and b = mqb + rb for some qa, qb, ra, and rb, with
0 ≤ ra, rb < m. Subtracting gives a− b = m(qa − qb) + (ra − rb). Observe that
the restrictions on the remainders imply that −m < ra− rb < m, and so ra− rb

is not a multiple of m unless ra − rb = 0.
If a and b are congruent modulo m then ra = rb, which implies that a− b =

m(qa − qb), which in turn gives that a− b is a multiple of m.
The implications in the prior paragraph reverse: if a − b is a multiple of m

then in the equation a−b = m(qa−qb)+(ra−rb) we must have that ra−rb = 0
by the observation in the first paragraph, and therefore ra = rb.

The b− a statement is proved similarly. qed

12.3 Examples

1. 25 ≡ 1 (mod 4) since 4 | 24

2. 25 6≡ 2 (mod 4) since 4 - 23

3. 1 ≡ −3 (mod 4) since 4 | 4

4. a ≡ b (mod 1) for all a, b

5. a ≡ b (mod 0) ⇐⇒ a = b for all a, b

Do not confuse the use of mod in Definition 12.1

a ≡ b (mod m) if m | a− b
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with that of Definition 3.3.

a mod b = r where r is the remainder when a is divided by b

The two are related but not identitical.

12.4 Example One difference between the two is that 25 ≡ 5 (mod 4) is true
while 25 = 5 mod 4 is false (it asserts that 25 = 1).

The ‘mod’ in a ≡ b (mod m) defines a binary relation, a relationship between
two things. The ‘mod’ in a mod b is a binary operation, just as addition or
multiplication are binary operations. Thus,

a ≡ b (mod m) ⇐⇒ a mod m = b mod m.

That is, if m > 0 and a ≡ r (mod m) where 0 ≤ r < m then a mod m = r.
Expressions such as

x = 2

42 = 16

x2 + 2x = sin(x) + 3

are equations. By analogy, expressions such as

x ≡ 2 (mod 16)
25 ≡ 5 (mod 5)

x3 + 2x ≡ 6x2 + 3 (mod 27)

are called congruences.
The next two theorems show that congruences and equations share many

properties.

12.5 Theorem Congruence is an equivalence relation: for all a, b, c, and
m > 0 we have

(1) (Reflexivity property) a ≡ a (mod m)
(2) (Symmetry property) a ≡ b (mod m) ⇒ b ≡ a (mod m)
(3) (Transitivity property) a ≡ b (mod m) and b ≡ c (mod m) ⇒ a ≡ c
(mod m)

proof. For reflexivity: on division by m, any number leaves the same remainder
as itself.

For symmetry, if a leaves the same remainder as b, then b leaves the same
remainder as a.

For transitivity, assume that a leaves the same remainder as b on division
by m, and that b leaves the same remainder as c. The all three leave the
same remainder as each other, and in particular a leaves the same remainder as
c. qed
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Below we will consider polynomials f(x) = anxn +an−1x
n−1+ · · ·+a1x+a0.

We will assume that the coefficients an, . . . , a0 are integers and that x also
represents an integer variable. Here the degree of the polynomial is an integer
n ≥ 0.

12.6 Theorem If a ≡ b (mod m) and c ≡ d (mod m), then
(1) a + c ≡ b + d (mod m) and a− c ≡ b− d (mod m)
(2) ac ≡ bd (mod m)
(3) an ≡ bn (mod m) for all n ≥ 1
(4) f(a) ≡ f(b) (mod m) for all polynomials f(x) with integer coefficients.

Proof of (1). Since a− c = a + (−c), it suffices to prove only the addition case.
By assumption m | a − b and m | c − d. By linearity of the ‘divides’ relation,
m | (a − b) + (c − d), that is m | (a + c) − (b + d). Hence a + c ≡ b + d
(mod m). qed

Proof of (2). Since m | a− b and m | c− d, by linearity m | c(a− b) + b(c− d).
Now, c(a− b) + b(c− d) = ca− bd, hence m | ca− bd, and so ca ≡ bd (mod m),
as desired. qed

Proof of (3). We prove this by induction on n. If n = 1, the result is true by
the assumption that a ≡ b (mod m). Assume that the result holds for n =
1, . . . , k. Then we have ak ≡ bk (mod m). This, together with a ≡ b (mod m)
using property (2) above, gives that aak ≡ bbk (mod m). Hence ak+1 ≡ bk+1

(mod m) and the result holds in the n = k + 1 case. So the result holds for all
n ≥ 1, by induction. qed

Proof of (4). Let f(x) = cnxn + · · · + c1x + c0. We prove by induction on
the degree of the polynomial n that if a ≡ b (mod m) then cnan + · · · + c0 ≡
cnbn + · · · + c0 (mod m). For the degree n = 0 base case, by the reflexivity of
congruence we have that c0 ≡ c0 (mod m).

For the induction assume that the result holds for n = k. Then we have

(∗) ckak + · · ·+ c1a + c0 ≡ ckbk + · · ·+ c1b + c0 (mod m).

By item (3) above we have ak+1 ≡ bk+1 (mod m). Since ck+1 ≡ ck+1 (mod m),
using item (2) above we have

(∗∗) ck+1a
k+1 ≡ ck+1b

k+1 (mod m).

Now we can apply Theorem 15.3 (1) to (∗) and (∗∗) to obtain

ck+1a
k+1 + ckak + · · ·+ c0 ≡ ck+1b

k+1 + ckbk + · · ·+ c0 (mod m).

So by induction the result holds for all n ≥ 0. qed

12.7 Example (From [1].) The first five Fermat numbers 3, 5, 17, 257, and
65, 537 are prime. We will use congruences to show that F5 = 232 +1 is divisible
by 641 and is therefore not prime.
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Everyone knows that 22 = 4, 24 = 16, and 28 = 256. Also, 216 = (28)2 =
2562 = 65, 536. A straightforward division shows that 65, 536 ≡ 154 (mod 641).

Next, for 232, we have that (216)2 ≡ (154)2 (mod 641). That is, 232 ≡
23, 716 (mod 641). Since an easy division finds that 23, 716 ≡ 640 (mod 641),
and 640 ≡ −1 (mod 641), we have that 232 ≡ −1 (mod 641). Hence 232 +1 ≡ 0
(mod 641), and so . 641 | 232 + 1, as claimed. Clearly 232 + 1 6= 641, so 232 + 1
is composite.

The work done here did not require us to find the value of 232 + 1 =
4, 294, 967, 297 and divide it by 641; instead the calculations were with much
smaller numbers.



Chapter 13

Divisibility Tests

Elementary school children know how to tell if a number is even, or divisible by
5, by looking at the least significant digit.

13.1 Theorem If a number a has the decimal representation an−110n−1 +
an−210n−2 + · · ·+ a110 + a0 then

(1) a mod 2 = a0 mod 2
(2) a mod 5 = a0 mod 5

proof. Consider f(x) = an−1x
n−1 + · · ·+a1x+a0. Note that 10 ≡ 0 (mod 2).

So by Theorem 12.6

an−110n−1 + · · ·+ a110 + a0 ≡ an−10n−1 + · · ·+ a10 + a0 (mod 2).

That is, a ≡ a0 (mod 2); this proves item (1). Since 10 ≡ 0 (mod 5) also, the
proof of item (2) is similar. qed

13.2 Example Thus, the number 1457 is odd because 7 is odd: 1457 mod 2 =
7 mod 2 = 1. And on division by 5 it leaves a remainder of 1457 mod 5 =
7 mod 5 = 2.

13.3 Theorem Where a = an−110n−1 + an−210n−2 + · · · + a110 + a0 is the
decimal representation,

(1) a mod 3 = (an−1 + · · ·+ a0) mod 3
(2) a mod 9 = (an−1 + · · ·+ a0) mod 9
(3) a mod 11 = (a0 − a1 + a2 − a3 + · · · ) mod 11.

proof. Note that 10 ≡ 1 (mod 3). Theorem 12.6 gives

an−110n−1 + · · ·+ a110 + a0 ≡ an−11n−1 + · · ·+ a11 + a0 (mod 3)

and so a ≡ an−1 + · · · + a1 + a0 (mod 3). This proves item (1). Since 10 ≡ 1
(mod 9) also, the proof of item (2) is similar.
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For item (3), note that 10 ≡ −1 (mod 11) so

an−110n−1 + · · ·+ a110 + a0 ≡ an−1(−1)n−1 + · · ·+ a1(−1) + a0 (mod 11).

That is, a ≡ a0 − a1 + a2 − · · · (mod 11). qed

13.4 Example Consider 1457 again. For divisibility by 3 we have 1457 mod
3 = (1 + 4 + 5 + 7) mod 3 = 17 mod 3 = 8 mod 3 = 2. As for 9, we get
1457 mod 9 = (1 + 4 + 5 + 7) mod 9 = 17 mod 9 = 8 mod 9 = 8. Finally, for 11,
the calculation is 1457 mod 11 = 7− 5 + 4− 1 mod 11 = 5 mod 11 = 5.

Note that m | a ⇔ a mod m = 0 so from the prior two results we obtain
immediately the following.

13.5 Corollary Let a = an−110n−1 + an−210n−2 + · · ·+ a110 + a0.
(1) 2 | a ⇔ a0 = 0, 2, 4, 6 or 8
(2) 5 | a ⇔ a0 = 0 or 5
(3) 3 | a ⇔ 3 | a0 + a1 + · · ·+ an−1

(4) 9 | a ⇔ 9 | a0 + a1 + · · ·+ an−1

(5) 11 | a ⇔ 11 | a0 − a1 + a2 − a3 + · · · .

13.6 Theorem Let a = ar10r + · · ·+ a2102 + a110 + a0 be the decimal repre-
sentation, so that we write a as the sequence arar−1 · · · a1a0. Then

(1) 7 | a ⇔ 7 | ar · · · a1 − 2a0.
(2) 13 | a ⇔ 13 | ar · · · a1 − 9a0

(where ar · · · a1 is the sequence representing (a− a0)/10).

proof. For item (1), let c = ar · · · a1 so that a = 10c+a0. Since gcd(7,−2) = 1
we have that 7 | a ⇔ 7 | −2a. Consequently, consider −2a = −20c − 2a0.
Because 1 ≡ −20 (mod 7), we have that −2a ≡ c − 2a0 (mod 7). Therefore,
7 | −2a ⇔ 7 | c − 2a0. It follows that 7 | a ⇔ 7 | c − 2a0, which is what we
wanted to prove.

The proof of item (2) is similar. qed

13.7 Example We can test whether 7 divides 2481.

7 | 2481 ⇔ 7 | 248− 2 ⇔ 7 | 246 ⇔ 7 | 24− 12 ⇔ 7 | 12

Since 7 - 12 we have that 7 - 2481.

13.8 Example The number 12987 is divisible by 13 because

13 | 12987 ⇔ 13 | 1298− 63 ⇔ 13 | 1235 ⇔ 13 | 123− 45 ⇔ 13 | 78

and 13 · 6 = 78.
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More Properties of
Congruences

Theorem 12.6 provides some laws of algebra for ≡. A typical algebra problem is
to solve for an unknown; for instance, we can look for x such that 2x ≡ 7 mod 15.

14.1 Theorem Let m ≥ 2. If a and m are relatively prime then there exists
a unique integer a∗ such that aa∗ ≡ 1 (mod m) and 0 < a∗ < m.

proof. Assume that gcd(a,m) = 1. Bezout’s Lemma applies to give an s and
t such that as + mt = 1. Hence as − 1 = m(−t), that is, m | as − 1 and so
as ≡ 1 (mod m). Accordingly, let a∗ = s mod m so that 0 < a∗ < m. Then
a∗ ≡ s (mod m) so aa∗ ≡ 1 (mod m).

To show uniqueness, assume that ac ≡ 1 (mod m) and 0 < c < m. Then
ac ≡ aa∗ (mod m). Multiply both sides of this congruence on the left by c and
use the fact that ca ≡ 1 (mod m) to obtain c ≡ a∗ (mod m). Because both are
in [0 ..m), it follows that c = a∗. qed

We call a∗ the inverse of a modulo m. Note that we do not denote a∗ by
a−1 here since we keep that symbol for the usual meaning of inverse.

14.2 Remark The proof shows that Blankinship’s Method will compute the
inverse of a, when it exists. But for small m we may find a∗ by trial and error.
For example, take m = 15 and a = 2. We can check each possibility: 2 · 0 6≡ 1
(mod 15), 2 · 1 6≡ 1 (mod 15), . . . , 2 · 8 ≡ 1 (mod 15). So we can take 2∗ = 8.

Note that we may well have ca ≡ 1 mod m with c 6= a if c ≡ a∗ (mod m)
and c > m or c < 0. For instance, 8 · 2 ≡ 1 mod 15 and also 23 · 2 ≡ 1 mod 15.
So the inverse is unique only if we specify that 0 < a∗ < m.

The converse of Theorem 14.1 holds.

14.3 Theorem Let m > 0. If ab ≡ 1 (mod m) then both a and b are relatively
prime to m.
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proof. If ab ≡ 1 (mod m), then m | ab− 1. So ab− 1 = mt for some t. Hence,
ab + m(−t) = 1.

The proof of Bezout’s Lemma, Lemma 5.3, shows that gcd(a,m) is the small-
est positive linear combination of a and m. The last paragraph shows that
there is a combination that adds to 1. Since no combination can be positive
and smaller than 1, we have that gcd(a,m) = 1. The case of gcd(b, m) is
similar.. qed

14.4 Corollary A number a has an inverse modulo m if and only if a and m
are relatively prime.

The second paragraph of Theorem 14.1 uses a technique that is worth iso-
lating.

14.5 Theorem (Cancellation) Let m > 0. If gcd(c,m) = 1 then ca ≡ cb
(mod m) ⇒ a ≡ b (mod m).

proof. If gcd(c,m) = 1 then it has an inverse c∗ modulo m, such that c∗c ≡ 1
(mod m). Since ca ≡ cb (mod m) by Theorem 12.6, c∗ca ≡ c∗cb (mod m). But
c∗c ≡ 1 (mod m) so c∗ca ≡ a (mod m) and c∗cb ≡ b (mod m). By reflexivity
and transitivity this yields a ≡ b (mod m). qed

Although in general we cannot cancel if gcd(c,m) > 1, the next result is
some consolation.

14.6 Theorem If c > 0 and m > 0 then a ≡ b (mod m) ⇔ ca ≡ cb (mod cm).

proof. The congruence a ≡ b (mod m) is true if and only if m | (a− b) holds,
which in turn holds if and only if cm | (ca− cb). qed

14.7 Theorem Fix m > 0 and let d = gcd(c,m). Then ca ≡ cb (mod m) ⇒
a ≡ b (mod m/d).

proof. Since d = gcd(c,m), the equations c = d(c/d) and m = d(m/d) involve
integers. Rewriting ca ≡ cb (mod m) gives

d
( c

d

)
a ≡ d

( c

d

)
b (mod d

(m

d

)
).

By Theorem 14.6 we have( c

d

)
a ≡

( c

d

)
b (mod

m

d
).

Since d = gcd(c,m), we have that gcd(c/d, m/d) = 1 and so by cancellation,
Theorem 14.5, a ≡ b (mod m/d). qed

14.8 Theorem If m > 0 and a ≡ b (mod m) then gcd(a,m) = gcd(b, m).

proof. Let da = gcd(m,a) and db = gcd(m, b). Since a ≡ b (mod m) we have
a − b = mt for some t. Rewrite that as a = mt + b and note that db | m and
db | b, so db | a. Thus, db is a common divisor of m and a, and so db ≤ da. A
similar argument gives that da ≤ db, and therefore db = da. qed
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14.9 Corollary Fix m > 0. If a ≡ b (mod m) then a has an inverse modulo
m if and only if b does also.

proof. Immediate. qed
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Chapter 15

Residue Classes

The work that we’ve seen shows that if a ≡ b (mod m) then the two numbers
a and b, while not necessarily equal, are in some ways alike.

15.1 Definition Fix m > 0. The residue class class of a modulo m (or
congruence class, or equivalence class of a modulo m) is [a] = {x | x ≡ a
(mod m)}, the set of all integers congruent to a modulo m.

Note that, by definition, [a] is a set.

[a] = {mq + a | q ∈ Z} = {. . . ,−2m + a,−m + a, a,m + a, 2m + a, . . . }

Note also that [a] depends on m and so it would be more accurate to write [a]m
instead, but this would be cumbersome.

15.2 Theorem If m > 0 then [a] = [b] ⇔ a ≡ b (mod m).

proof. First assume that [a] = [b]. Note that a ∈ [a] because a ≡ a (mod m).
And, because [a] = [b], we have a ∈ [b]. By definition of [b], then a ≡ b (mod m).

For the implication the other way, assume that a ≡ b (mod m), aiming to
prove that the sets [a] and [b] are equal. To prove that the sets are equal, we
will prove that every element of the first is a member of the second, and vice
versa. Suppose that x ∈ [a], so that x ≡ a (mod m). Since a ≡ b (mod m), by
transitivity of equivalence, x ≡ b (mod m), and so x ∈ [b]. The argument to
show that if x ∈ [b] then x ∈ [a] is similar. qed

15.3 Theorem Given m > 0. For every a there is a unique r ∈ [0 ..m) such
that [a] = [r].

proof. Let r = a mod m so that 0 ≤ r < m, and a ≡ r (mod m), and by
Theorem 15.2, [a] = [r]. To prove that r is unique, suppose that [a] = [r′], where
0 ≤ r′ < m. By Theorem 15.2, this implies that a ≡ r′ (mod m). This, together
with the restriction that 0 ≤ r′ < m, implies that r′ = a mod m = r. qed

15.4 Theorem Given m > 0, there are exactly m distinct residue classes
modulo m, namely, [0], [1],. . . , and [m− 1].
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proof. By Theorem 15.3 we know that every residue class [a] is equal to one
of [0], or [1], . . . , or [m− 1]. So any residue classes is in this list. These residue
classes are distinct: if 0 ≤ r1 < m and 0 ≤ r2 < m and [r1] = [r2] then by the
uniqueness part of Theorem 15.3 we must have r1 = r2. qed

15.5 Definition Any element x ∈ [a] is a class representative. The element of
[a] that is in [0 ..m) is the principle class representative or principle residue.



Chapter 16

Zm and Complete Residue
Systems

Throughout this section we assume a fixed modulus m > 0.

16.1 Definition The set {[a] | a ∈ Z} of all residue classes modulo m is
denoted Zm.

Recall that in a set, the order in which elements appear does not matter,
and repeat elements collapse: the set {0, 2, 3, 1} and the set {2, 0, 2, 3, 1, 4, 1} are
equal. So, while at first glance Zm may seem to have infinitely many elements
Zm = {. . . , [−2], [−1], [0], [1], [2], . . . }, Theorem 15.4 shows that after the repeats
collapse Zm = {[0], [1], . . . , [m− 1]}, and so instead Zm has exactly m elements.

16.2 Example Fix m = 4. Then [1] = {. . . ,−7,−3, 1, 5, . . . }, and so all of
these classes are equal: · · · = [−7] = [−3] = [1] = [5] = · · · . We could, therefore,
instead of Z4 = {[0], [1], [2], [3]}, write Z4 = {[8], [5], [−6], [11]}.

16.3 Definition A set of m integers {a0, a1, . . . , am−1} is a complete residue
system modulo m (or a complete set of representatives for Zm) if the set Zm

equals the set {[a0], [a1], . . . , [am−1]}.

16.4 Example These are complete residue systems modulo 5.

1. {0, 1, 2, 3, 4}

2. {−2,−1, 0, 1, 2}

3. {−9, 14, 12, 10, 8}

4. {0 + 5n1, 1 + 5n2, 2 + 5n3, 3 + 5n4, 4 + 5n4}, where n1, n2, n3, n4, n5 may
be any integers.

For each m > 0 there are infinitely many distinct complete residue systems
modulo m. In particular, {0, 1, . . . ,m−1} is the set of least nonnegative residues
modulo m.
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16.5 Theorem Fix m > 0. If m = 2k then {0, 1, 2, . . . , k − 1, k,−(k −
1), . . . ,−2,−1} is a complete residue system modulo m. If m = 2k + 1, then
{0, 1, 2, . . . , k,−k, . . . ,−2,−1} is a complete residue system modulo m.

proof. If m = 2k, then since Zm = {[0], [1], . . . , [k], [k+1], . . . , [k+i], [k+k−1]},
it suffices to note that [k + i] = [k + i − 2k] = [−k + i] = [−(k − i)]. So
[k + 1] = [−(k − 1)], [k + 2] = [−(k − 2)], . . . , [k + k − 1] = [−1], as desired.

In the n = 2k+1 case, [k+i] = [−(2k+1)+k+i] = [−k+i+1] = [−(k−i+1)]
so [k + 1] = [−k], [k + 2] = [−(k − 1)], . . . , [2k] = [−1], as desired. qed

16.6 Definition The complete residue system modulo m given in the prior
theorem is the least absolute residue system modulo m.

16.7 Example Where m = 232, the least absolute residue system is

{−(231 − 1),−(231 − 2), . . . ,−2,−1, 0, 1, 2, . . . , 231}.



Chapter 17

Addition and Multiplication
in Zm

In this chapter we show how to define addition and multiplication of residue
classes modulo m. With respect to these binary operations Zm is a ring as
defined in Appendix A.

17.1 Definition For [a], [b] ∈ Zm, the sum of the residue class [a] and the
residue class [b] is the residue class [a + b]. The product of the residue class [a]
and the residue class [b] is the residue class [ab]. That is,

[a] + [b] = [a + b] [a][b] = [ab].

17.2 Example For m = 5 we have [2] + [3] = [5] and [2][3] = [6]. Note that
since 5 ≡ 0 (mod 5) and 6 ≡ 1 (mod 5) we can also write [2] + [3] = [0] and
[2][3] = [1].

We must check that these binary operations are well defined. That is, since
a residue class can have many representatives, we must check that the results
of an operation do not depend on the representatives chosen for that operation.

For example, fix m = 5 and consider [7] + [11]. We know that the residue
classes [7] and the residue class [2] are equal, and also that [11] = [21]. Therefore
for the binary operations to make sense we must have that [7]+ [11] = [2]+ [21].
In this case, [7] + [11] = [18] and [2] + [21] = [23], and [18] = [23] so this one
example is fine.

17.3 Theorem The results of the sum and product of residue classes does not
depend on the choice of class representative: for any modulus m > 0, if [a] = [b]
and [c] = [d] then [a] + [c] = [b] + [d] and [a][c] = [b][d].

proof. This follows immediately from Theorem 12.6. qed

When performing addition and multiplication in Zm, we may at any time
change class representatives, rewriting [a] by [a′], where a ≡ a′ (mod m).
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17.4 Example Take m = 151 and consider the calculation [150][149]. Then
150 ≡ −1 (mod 151) and 149 ≡ −2 (mod 151), and so [150][149] = [−1][−2] =
[2], an easier calculation.

When working with Zm it is often useful to write all residue classes in the
least nonnegative residue system, as we do in constructing the following addition
and multiplication tables for Z4.

+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

· [0] [1] [2] [3]
[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

Notice that we have reduced results of the sum and product to keep the repre-
sentative in [0 .. 4). That is, in constructing those tables we follow the alogrithm
that resclassa + [b] = [(a + b) mod m] and [a][b] = [(ab) mod m].

This leads to an alternative way to define Zm and addition and multiplication
in Zm. For clarity we will use different notation.

17.5 Definition For m > 0, let Jm be the set = {0, 1, 2, . . . ,m− 1} endowed
with two binary operations: for a, b ∈ Jm, let a ⊕ b = (a + b) mod m and
a� b = (ab) mod m.

Here are the addition and multiplication tables for J4.

⊕ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

� 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

17.6 Remark The precise expression of the intuition that Jm with ⊕ and
� is just like Zm with addition and multiplication is to say that the two are
“isomorphic.” In this book we will leave the idea as informal.

17.7 Example Let’s solve the congruence 272x ≡ 901 (mod 9). Using residue
classes modulo 9 we see that this congruence is equivalent to [272x] = [901],
which is equivalent to [272][x] = [901]. That is equivalent to [2][x] = [1]. We
know [x] ∈ {[0], [1], . . . , [8]}, so by trial and error we see that x = 5 is a solution.



Chapter 18

The Group of Units

This is the multiplication table for Z6.

� [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

Note that some rows, and some columns, contain all of the members of Z6

while others do not. We can state that as: for some [a], [b] ∈ Z6 the equation
[a]� x = [b] has no solution x.

18.1 Example The equation [5]�x = [3] has the solution x = [3]. In fact, for
any [b] ∈ Z6, the equation [5] � x = [b] has a solution. However, the equation
[4]� x = [1] has no solution.

18.2 Definition Let m > 0. A residue class [a] ∈ Zm is a unit if there is
another residue class [b] ∈ Zm such that [a] � [b] = [1]. In this case [a] and [b]
are said to be inverses of each other in Zm.

18.3 Theorem Let m > 0. A residue class [a] ∈ Zm is a unit if and only if
gcd(a,m) = 1.

proof. Let [a] be a unit. Then there is a [b] such that [a] � [b] = [1]. Hence
[ab] = [1] and so ab ≡ 1 (mod m). Thus, by Theorem 14.3, gcd(a,m) = 1.

To prove the converse, let gcd(a,m) = 1. By Theorem 14.1 there is an
integer a∗ such that aa∗ ≡ 1 (mod m). Hence [aa∗] = [1]. So [a] � [a∗] = [1]
and we can take b = a∗. qed

Note that from Theorem 14.8 if [a] = [b]— that is, if a ≡ b (mod m)— then
gcd(a,m) = 1 ⇔ gcd(b, m) = 1. So, in checking whether or not a residue class
is a unit we can use any representative of the class.
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18.4 Theorem For m > 0, the set of units in Zm is the set of residue classes
{[i] | 1 ≤ i ≤ m and gcd(i,m) = 1}.

proof. If [a] ∈ Zm then [a] = [i], where 0 ≤ i ≤ m − 1, so for each m > 0 we
need only consider residue classes with representatives in the interval [0 ..m).

If m = 1 then Zm consists of a single residue class Z1 = {[0]} = {[1]}. Since
[1]� [1] = [1], we have that this single class [1] is a unit.

If m > 1 then gcd(0,m) = m 6= 1 and gcd(m,m) = m 6= 1, but gcd(i,m) = 1
for 1 ≤ i ≤ m. So the theorem follows from Theorem 18.3. qed

18.5 Definition The set of all units in Zm, the group of units, is denoted Um.

(See Appendix A for the definition of a group.)

18.6 Example Here are the first few Um’s.

i 1 2 3 4 5 6
Ui {[1]} {[1]} {[1], [2]} {[1], [3]} {[1], [2], [3], [4]} {[1], [5]}

18.7 Theorem The set of units Um has these properties.

1. (Closure) If [a] and [b] are members of Um then the product [a][b] is also
a member of Um.

2. (Associativity) For all [a], [b], [c] in Um we have ([a] � [b]) � [c] = [a] �
([b]� [c]).

3. (Existence of an identity) [1]� [a] = [a]� [1] = [a] for all [a] ∈ Um.

4. (Existence of inverses) For each [a] ∈ Um there is a [a]∗ ∈ Um such that
[a]� [a]∗ = [1].

5. (Commutativity) For all [a], [b] ∈ Um, we have that [a]� [b] = [b]� [a].

18.8 Example Theorem 18.3 shows that

U15 = {[1], [2], [4], [7], [8], [11], [13], [14]}
= {[1], [2], [4], [7], [−7], [−4], [−2], [−1]}.

Rather than list the entire multiplication table, we just show the inverse of each
element.

r [1] [2] [4] [7] [8] [11] [13] [14]
inverse of r [1] [8] [4] [13] [2] [11] [7] [14]

18.9 Theorem Let m > 0 and fix [a], [b] ∈ Um. Then the equation [a]� x
resclassb has a unique solution x ∈ Um.

proof. To see that it has a solution, consider [a]∗�[b]. By the closure property,
that is an element of Um. Also, [a]� ([a]∗ � [b]) = ([a]� [a]∗)� [b] = [1]� [b] =
[1 · b] = [b], as required (the first equality follows by the associative property).

To see that the solution is unique, suppose that x, x′ ∈ Um are such that
[a] � x = [b] and also [a] � x′ = [b]. Then [a] � x = [a] � x′. Multiplying both
sides of that equation by the inverse [a]∗ gives [a]∗� ([a]�x) = ([a]∗� [a])�x =
[1]� x = x on the left, and x′ on the right. So the two are equal. qed
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18.10 Definition If X is a set, the cardinality |X| is the number of elements
in X.

18.11 Example |{1}| = 1, |{0, 1, 3, 9}| = 4, |Zm| = m if m > 0.

18.12 Definition If m ≥ 1 then the Euler phi function (or the totient) is
φ(m) = |{i ∈ Z | 1 ≤ i ≤ m and gcd(i, m) = 1}|.

18.13 Example Here are the first few values of φ.

i 1 2 3 4 5 6
φ(i) 1 1 2 2 4 2

Compare this to the table in Example 18.6.

18.14 Corollary If m > 0 then |Um| = φ(m).

Note that if p is any prime then φ(p) = p− 1.
In general, though, φ(m) is not easy to calculate. However, computing φ(m)

is easy once we know the prime factorization of m.

18.15 Theorem Fix a, b > 0. If gcd(a, b) = 1 then φ(ab) = φ(a)φ(b).

18.16 Theorem If p is prime and n > 0 then φ (pn) = pn − pn−1.

18.17 Theorem Let p1, p2, . . . , pk be distinct primes and let n1, n2, . . . , nk be
positive integers. Then

φ (pn1
1 pn2

2 · · · pnk

k ) =
(
pn1
1 − pn1−1

1

)
· · ·
(
pnk

k − pnk−1
k

)
.

The proofs of Theorem 18.15 and Theorem 18.17 are routine arguments by
induction on n, and are left as exercises.

Proof of Theorem 18.16. We want to count the number of elements in the set
A = {1, 2, . . . , pn} that are relatively prime to pn. Let B be the set of elements
of A that are not relatively prime, that is, that have a factor greater than 1 in
common with pn. The nuber p is prime, so the only factors of pn are 1, p, . . . , pn,
and hence b = pk for some k. It follows that if a number b is an element of B
then it has the form b = kp for some 1 ≤ k ≤ pn−1. That is, B is a subset of
this set: {p, 2p, 3p, . . . , kp, . . . , pn−1p}. But obviously every element of that set
is not relatively prime to pn, so in fact B equals that set.

The number of elements in A is |A| = pn and the number in B is |B| = pn−1,
so the number of elements of A that are not in B is pn − pn−1. qed

18.18 Example φ(12) = φ(22 · 3) = (22 − 21)(31 − 30) = 2 · 2 = 4

18.19 Example φ(9000) = φ(23 · 53 · 32) = (23 − 22)(53 − 52)(32 − 31) =
4 · 100 · 6 = 2400
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Chapter 19

The Chinese Remainder
Theorem

19.1 Definition A linear congruence has the form ax ≡ b (mod n) where x is
a variable.

19.2 Example The linear congruence 2x ≡ 1 (mod 3) is solved by x =
2 because 2 · 2 = 4 ≡ 1 (mod 3). The solution set of that congruence is
{. . . , 2, 5, 8, 11, . . . }.

19.3 Example The congruence 4x ≡ 1 (mod 2) has no solution, because 4x
is even, and so is not congruent to 1, modulo 2.

19.4 Lemma Fix a modulus m and a number a. The congruence ax ≡ b
(mod m) has a solution if an only if gcd(a,m) | b. If a solution x0 does exist
then, where d = gcd(a, b), the set of solutions is

{. . . , x0 + (−m/d), x0, x0 + (m/d), x0 + (2m/d), x0 + (3m/d), . . . }

the residue class [x0] modulo m/d.

proof. The existence of an x solving ax ≡ b (mod m) is equivalent to the
existence of a k such that ax − b = km, which in turn is equivalent to the
equivalence of a k such that xa + (−k)m = b. With that, this result is a
restatement of Lemma 5.7. qed

One generalization of Lemma 19.4 is to consider systems of linear congru-
ences. In 1247, Ch’in Chiu-Shao published a solution for a special case of that
problem. We first need a preliminary result.

19.5 Lemma If gcd(a, b) = 1 and c is a number such that a | c and b | c then
ab | c
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proof. Because a | c and b | c there are numbers ka, kb such that kaa = c and
kbb = c. By Bezout’s Lemma, there are s and t such that as + bt = 1. Multiply
by c to get cas + cbt = c. Substitution gives (kbb)as + (kaa)bt = c. Then ab
divides the left side of the equation and so ab must divide the right side, c. qed

19.6 Theorem (Chinese Remainder Theorem) Suppose that m1, . . . ,mn

are pairwise relatively prime (that is, gcd(mi,mj) = 1 whenever i 6= j). Then
the system of congruences

x ≡ a1 (mod m1)
x ≡ a2 (mod m2)

...
x ≡ an (mod mn)

has a unique solution modulo m1m2 . . .mn.

proof. Let M = m1m2 . . .mn and for i ∈ {1, . . . , n} let Mi = M/mi =
m1m2 . . .mi−imi+1 . . .mn. Observe that gcd(Mi,mi) = 1 and so Lemma 19.4
says that the linear congruence Mix ≡ 1 (mod mi) has a set of solutions that
is a single congruence class [xi] modulo mi.

Now consider the number

s0 = a1M1x1 + a2M2x2 + · · ·+ anMnxn.

We claim that s0 solves the system. For, consider the i-th congruence x ≡ ai

(mod mi). Because mi divides Mj when i 6= j, we have that s0 ≡ aiMixi

(mod mi). Since xi was chosen because of the property that Mixi ≡ 1 (mod mi),
we have that s0 ≡ ai · 1 ≡ ai (mod mi), as claimed.

To finish we must show that the solution is unique modulo M . Suppose that
x also solves the system, so that for each i ∈ {1, . . . , n} we have that x ≡ ai ≡ x0

(mod mi). Restated, for each i we have that ni | (x− x0).
We can now show that m1m2 . . .mn | (x−x0). We have that gcd(m1,m2) =

1 and m1 | (x − x0) and m2 | (x − x0), so the prior lemma applies and we
conclude that m1m2 | (x − x0). In this way, we can build up to the entire
product m1 . . .mn. qed



Chapter 20

Fermat’s Little Theorem

20.1 Definition For [a] ∈ Um, the powers of the residue class are given by
[a]1 = [a], [a]2 = [a][a], etc.

20.2 Lemma If [a] ∈ Um then [a]n ∈ Um for n ≥ 1, and [a]n = [an].

proof. We will check this by induction on n. The n = 1 base case is trivial:
[a]1 = [a] = [a1], and by assumption [a] ∈ Um. For the inductive step, suppose
that [a]k = [ak] ∈ Um for k ≥ 1 and consider the k + 1-st power.

[a]k+1 = [a]k[a] = [ak][a] = [aka] = [ak+1]

By induction the theorem holds for all n ≥ 1. qed

20.3 Theorem (Euler’s Theorem) If m > 0, and a is relatively prime to m,
then aφ(m) ≡ 1 (mod m).

proof. For m > 0, we have that gcd(a,m) = 1 if and only if [a] ∈ Um. The prior
result gives that an ≡ 1 (mod m) ⇐⇒ [an] = [1] ⇐⇒ [a]n = [1]. Therefore,
Euler’s Theorem is equivalent to the following: if m > 0 and [a] ∈ Um then
[a]φ(m) = [1].

We will write X1, X2, . . . , Xφ(m) for the residue classes in Um.
We first show that if X ∈ Um then the set O = {XX1, XX2, . . . , XXφ(m)}

equals the set Um. Containment one way is easy: any member of O is a member
of Um by the closure property of Theorem 18.7. For containment the other
way, consider Xi ∈ Um,and note that Theorem 18.9 shows that the equation
X �x = Xi has a solution x = Xj for some j, so Xi = XXj is an element of O.

Next, for any X ∈ Um consider the product XX1XX2 · · ·XXφ(m). The
associative property says that we can parenthesize this term in any way, and
the prior paragraph then gives that the product is (XX1)(XX2) · · · (XXφ(m)) =
X1X2 · · ·Xφ(m).

Finally, let A = X1X2 · · ·Xφ(m), and for any X ∈ Um consider Xφ(m)A.
The commutative property of Theorem 18.7 gives that

Xφ(m)A = Xφ(m)X1X2 · · ·Xφ(m) = (XX1)(XX2) · · · (XXφ(m)).
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The prior paragraph then shows that Xφ(m)A = A.
Multiplying both sides of that equation by the inverse A∗ of A gives

(Xφ(m)A)A∗ = Xφ(m)(AA∗) = Xφ(m)[1] = Xφ(m)

on the left and AA∗ = [1] on the right, as desired. qed

20.4 Example Fix m = 12. The positive integers a < m with gcd(a,m) = 1
are 1, 5, 7 and 11, and so φ(m) = 4. We will check Euler’s result for all four.

First, 14 ≡ 1 (mod 12) is clear. Next, 52 ≡ 1 (mod 12) since 12 | 25−1, and
so 54 ≡ (52)2 ≡ 12 (mod 12). From that one, and because 7 ≡ −5 (mod 12)
and 4 is even, 74 ≡ 54 (mod 12) ≡ 1 (mod 12). And, fourth, 11 ≡ −1 (mod 12)
and again since 4 is even we have that 114 ≡ (−1)4 (mod 12) ≡ 1 (mod 12).

20.5 Theorem (Fermat’s Little Theorem) If p is prime, and a is relatively
prime to p, then ap−1 ≡ 1 (mod p).

proof. Where p is prime, φ(p) = p− 1. qed

20.6 Example Fermat’s Little Theorem can simplify the computation of
an mod p where p is prime. Recall that if an ≡ r (mod p) where 0 ≤ r < p, then
an mod p = r. We can do two things to simplify the computation: (i) replace a
by a mod p, and (ii) replace n by n mod (p− 1).

Suppose that we want to calculate 12347865435 mod 11 Note that 1234 ≡
−1 + 2 − 3 + 4 (mod 11), that is, 1234 ≡ 2 (mod 11). Since gcd(2, 11) = 1 we
have that 210 ≡ 1 (mod 11). Now 7865435 = (786543) · 10 + 5 so

27865435 ≡ 2(786543)·10+5 (mod 11)

≡
(
210
)786543 · 25 (mod 11)

≡ 1786543 · 25 (mod 11)

≡ 25 (mod 11),

and 25 = 32 ≡ 10 (mod 11). Hence, 12347865435 ≡ 10 (mod 11). It follows that
12347865435 mod 11 = 10.

20.7 Remark Fermat’s theorem is called “little ” as a contrast with Fermat’s
Last Theorem, which states that xn + yn = zn has no solutions x, y, z ∈ N
when n > 2. For many years this was the most famous unsolved problem in
Mathematics, until it was proved by Andrew Wiles in 1995, over 350 years after
it was first mentioned by Fermat. Fermat’s Little Theorem is much easier to
prove, but has more far-reaching consequences for applications to cryptography
and secure transmission of data on the Internet.



Chapter 21

Probabilistic Primality
Tests

Fermat’s Little Theorem says that if p is prime and 1 ≤ a ≤ p−1, then ap−1 ≡ 1
(mod p). It has this converse.

21.1 Theorem If m ≥ 2 and for all a such that 1 ≤ a ≤ m − 1 we have
am−1 ≡ 1 (mod m) then m must be prime.

proof. If the hypothesis holds, then for all a with 1 ≤ a ≤ m − 1, we know
that a has an inverse modulo m, namely, am−2. By Theorem 18.3, this says
that for all 1 ≤ a ≤ m− 1 we have that gcd(a,m) = 1. But this means that m
is prime, because if not then we would have m = ab with 1 < a, b < m, which
would mean gcd(a,m) = a > 1. qed

Therefore, one way to check that a number m is prime would be to check that
1m−1 ≡ 1 (mod m), and that 2m−1 ≡ 1 (mod m), . . . , and that m− 1m−1 ≡ 1
(mod m).

This check is a lot of work, but it does have an advantage. Consider m = 63.
Note that 26 = 64 ≡ 1 (mod 63) and raising both sides to the 10-th power gives
260 ≡ 1 (mod 63). Multiplying both sides by 22 yields the conclusion that
262 ≡ 4 (mod 63). Since 4 6≡ 1 (mod 63) we have that 262 6≡ 1 (mod 63). This
tells us, without factoring 63, that 63 is not prime.

On the other hand, knowing only that 2m−1 ≡ 1 (mod m) is not enough
to show that m is prime. For instance, 2m−1 ≡ 1 (mod m) for the composite
number m = 341.

Nonetheless, consider only the base b = 2. There are 455,052,511 odd primes
p ≤ 1010, all of which satisfy 2p−1 ≡ 1 (mod p). There are only 14,884 com-
posite numbers 2 < m ≤ 1010 that satisfy 2m−1 ≡ 1 (mod m). Thus, for a
randome number m with 2 < m ≤ 1010, if m satisfies 2m−1 ≡ 1 (mod m) then
the probability that m is prime is

455, 052, 511
455, 052, 511 + 14, 884

≈ .999967292.
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In other words, if we find that 2m−1 ≡ 1 (mod m), then it is highly likely (but
not a certainty) that m is prime, at least when m ≤ 1010. Thus we are led to
the following algorithm (expressed in the syntax of Maple).

> is_prob_prime:=proc(n)
if n <=1 or Power(2,n-1) mod n <> 1 then

return "not prime";
else

return "probably prime";
end if;

end proc:

What happens if we use 3 instead of 2 in the above probabilistic primality
test? Or, better yet, what if we evaluate am−1 mod m for several different a’s?

The number of primes less than 106 is 78, 498. The number of numbers
m ≤ 106 that are composite and such that 2m−1 ≡ 1 (mod m) is 245. The
number of numbers m ≤ 106 that are composite and such that both 2m−1 ≡ 1
(mod m) and 3m−1 ≡ 1 (mod m) is 66. The number of numbers m ≤ 106 that
are composite and such that am−1 ≡ 1 (mod m) where a is any of the first
thirteen primes is 0. (If m > 106 and am−1 ≡ 1 (mod m) for all a in the set of
the first thirteen prime then it is highly likely, but not certain, that m is prime.)

That is, if we check for primality by using the scheme of this chapter then we
may possibly find out early that the number is not prime, having done very little
work. Otherwise, as we work our way through bases a ∈ [1 ..m), calculating
whether am−1 ≡ 1 (mod m), we gain confidence that m is prime. This is the
Solovay-Strassen pseudoprimality test .

In practice, there are better probabilistic primality tests than the one de-
scribed here. For instance, the built-in Maple procedure isprime is a very
sophisticated probabilistic primality test. So far no one has found an integer n
for which isprime(n) gives the wrong answer.



Chapter 22

Representations in Other
Bases

22.1 Definition Let b ≥ 2 and n > 0. The base b representation of n is n =
[ak, ak−1, . . . , a1, a0]b for some k ≥ 0, where n = akbk +ak−1b

k−1 + · · ·+a1b+a0

and ai ∈ {0, 1, . . . , b− 1} for i = 0, 1, . . . , k.

22.2 Example (1) 267 = [5, 3, 1]7, since 267 = 5 · 72 + 3 · 7 + 1
(2) 147 = [1, 0, 0, 1, 0, 0, 1, 1]2, since 147 = 1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 ·
23 + 0 · 22 + 1 · 2 + 1

(3) 4879 = [4, 8, 7, 9]10, since 4879 = 4 · 103 + 8 · 102 + 7 · 10 + 9
(4) 10705679 = [A, 3, 5, B, 0, F ]16, since 10705679 = 10 · 165 + 3 · 164 + 5 ·
163 + 11 · 162 + 0 · 16 + 15

Observe that a number’s base 10 representation is just its ordinary one.
The representations are said to be in binary if b = 2, in ternary if b = 3,

in octal if b = 8, in decimal if b = 10, and in hexadecimal if b = 16. If b is
understood, especially if b = 10, we write akak−1 · · · a1a0, without the subscript
base. In the case of b = 16, which is used frequently in computer science, for
the ai of 10, 11, 12, 13, 14 and 15 we use A, B, C, D, E and F , respectively.

For a fixed base b > 2, the numbers ai’s the digits of the base b representa-
tion. In the binary case, the ai’s are bits, a shortening of “binary digits”.

22.3 Theorem If b ≥ 2 then every n > 0 has a unique base b representation.

proof. To show that a representation exists, iterate the Division Algorithm:

n = bq0 + r0 0 ≤ r0 < b

q0 = bq1 + r1 0 ≤ r1 < b

q1 = bq2 + r2 0 ≤ r2 < b

...
qk = bqk+1 + rk+1 0 ≤ rk+1 < b.

57



58 CHAPTER 22. REPRESENTATIONS IN OTHER BASES

Note that n > q0 > q1 > · · · > qk. This shows that iteration of the Division
Algorithm cannot go on forever, and we must eventually obtain q` = 0 for
some `, so that q`−1 = b · 0 + r`. We claim that the desired representation is
n = [r`, r`−1, . . . , r0]. For, note that n = bq0 + r0 and q0 = bq1 + r1, and hence
n = b(bq1 + r1) + r0 = b2q1 + br1 + r0. Continuing in this way we find that
n = b`+1q` + b`r` + · · ·+ br1 + r0. And, since q` = 0 we have

(∗) n = b`r` + · · ·+ br1 + r0,

which shows that n = [r`, . . . , r1, r0]b.
To see that this representation is unique, note that from equation (∗) we

have
n = b

(
b`−1r` + · · ·+ r1

)
+ r0, 0 ≤ r0 < b.

Because r0 is uniquely determined by n, so is the quotient q = b`−1r` + · · ·+ r1.
A similar argument shows that r1 is uniquely determined. Continuing in this
way we see that all the digits r`, r`−1, . . . , r0 are uniquely determined. qed

22.4 Example We find the base 7 representation of 1,749.

1749 = 249 · 7 + 6
249 = 35 · 7 + 4
35 = 5 · 7 + 0
5 = 0 · 7 + 5

Hence 1749 = [5, 0, 4, 6]7.

22.5 Example This finds the binary representation of 137.

137 = 2 · 68 + 1
68 = 2 · 34 + 0
34 = 2 · 17 + 0
17 = 2 · 8 + 1
8 = 2 · 4 + 0
4 = 2 · 2 + 0
2 = 2 · 1 + 0
1 = 2 · 0 + 1

Therefore 137 = [1, 0, 0, 0, 1, 0, 0, 1]2.

22.6 Remark We can sometimes “eyeball” the representation in another base
of a small number. For instance, we can see how to represent n = 137 in binary,
without the machinery of the proof. Note that 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64, 27 = 128, and 28 = 256. By eye, we spot that the value closest
to 137 but not greater than it is 27, and we compute that 137 − 27 = 9. The
power of 2 closest to it but not above 9 is 23, and 9−23 = 1. Finally, 1 is a power
of 2, since 1 = 20. Therefore 137 = 27+23+20 and so 137 = [1, 0, 0, 0, 1, 0, 0, 1]2.



Chapter 23

Computation of aN mod m

Some Number Theory work involves computing with large numbers. Since com-
puter multiplication of numbers is a slow operation (relative to computer addi-
tion), we can ask: where n is any positive integer, what is the smallest number
of multiplications required to compute an?

For instance, the naive way to calculate 28 is to do seven multiplications.

22 = 2 · 2 = 4

23 = 2 · 4 = 8

24 = 2 · 8 = 16

25 = 2 · 16 = 32

26 = 2 · 32 = 64

27 = 2 · 64 = 128

28 = 2 · 128 = 256

In general, computing an by this naive method requires n− 1 multiplications.

But we can compute 28 with only three multiplications

22 = 2 · 2 = 4

24 =
(
22
)2

= 4 · 4 = 16

28 =
(
24
)2

= 16 · 16 = 256

If the exponent has the form n = 2k then this successive squaring method
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requires only k-many multiplications.

a2 = a · a

a22
= (a2)2 = a2 · a2

a23
= (a22

)2 = a22
· a22

...

a2k

= (a2k−1
)2 = a2k−1

· a2k−1

This is quite a savings because if n = 2k then k is generally much smaller than
n− 1, just as 3 is smaller than 7.

This is the foundation of the binary method to compute an. It is best
explained by example.

23.1 Example To compute 315, first express the exponent in binary 15 =
23 + 22 + 2 + 1 = [1, 1, 1, 1]2. Thus, 315 = 323 · 322 · 32 · 3.

Next, we use successive squaring to get the factors in that expansion of 315.

32 = 3 · 3 = 9

322
= 9 · 9 = 81

323
= 81 · 81 = 6561

Putting those factors together

3 · 32 = 3 · 9 = 27

(3 · 32) · 322
= 27 · 81 = 2187

(3 · 32 · 322
)323

= 2187 · 6561 = 14348907

gives that 315 = 14348907. This took just six multiplications, while the naive
method would have taken fourteen. (Finding the binary representation of 15
took some extra effort, but not much.)

23.2 Theorem Computing xn using the binary method requires blg(n)c divi-
sions and at most 2blg(n)c multiplications.

proof. If n = [ar, . . . , a0]2 and ar = 1 then 2r ≤ n ≤< 2r+1. By the familiar
properties of any logarithm, lg(2r) ≤ lg(n) < lg(2r+1). Since lg2(2x) = x this
gives r ≤ lg(n) < r + 1, hence r = blg(n)c. Note that r is the number of times
we need to divide to get n’s binary representation n = [ar, . . . , a0]2.

To compute the powers x, x2, x22
, . . . , x2r

by successive squaring requires
r = blg(n)c multiplications and similarly to compute the product

x2r

· xar−12
r−1

· · ·xa12 · xa0

requires r multiplications. So after obtaining the binary representation we need
at most 2r = 2blg(n)c multiplications. qed
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Note that if we count an application of the Division Algorithm and a mul-
tiplication as having the same cost then the above tells us that we need at
most 3blg(n)c operations to compute xn. So, for example, if n = 106, then
3blg(n)c = 57.

To compute an mod m, we use the binary method of exponentiation, with
the added refinement that after every multiplication we reduce modulo m. This
keeps the products from getting too big for our computer or calculator.

23.3 Example We compute 315 mod 10:

32 = 3 · 3 = 9 ≡ 9 (mod 10)

34 = 9 · 9 = 81 ≡ 1 (mod 10)

38 ≡ 1 · 1 ≡ 1 ≡ 1 (mod 10)

and so 315 = 38 · 34 · 32 · 31 ≡ 1 · 1 · 9 · 3 = 27 ≡ 7 (mod 10).
Note that 315 ≡ 7 (mod 10). In Example 23.1 we calculated that 315 =

14348907 which is clearly congruent to 7 mod 10, but the multiplications there
were not so easy.

23.4 Example To find 2644 mod 645, we first get the binary representation
644 = [1, 0, 1, 0, 0, 0, 0, 1, 0, 0]2. That is, 644 = 29 + 27 + 22 = 512 + 128 + 4. By
successive squaring and reducing modulo 645 we get

22 = 2 · 2 = 4 ≡ 4 (mod 645)

24 ≡ 4 · 4 = 16 ≡ 16 (mod 645)

28 ≡ 16 · 16 = 256 ≡ 256 (mod 645)

216 ≡ 256 · 256 = 65, 536 ≡ 391 (mod 645)

232 ≡ 391 · 391 = 152, 881 ≡ 16 (mod 645)

264 ≡ 16 · 16 = 256 ≡ 256 (mod 645)

2128 ≡ 256 · 256 = 65, 536 ≡ 391 (mod 645)

2256 ≡ 391 · 391 = 152, 881 ≡ 16 (mod 645)

2512 ≡ 16 · 16 = 256 ≡ 256 (mod 645).

Now 2644 = 2512 · 2128 · 24, and hence 2644 ≡ 256 · 391 · 16 (mod 645). So
256 · 391 = 100099 ≡ 121 (mod 645) and 121 · 16 = 1936 ≡ 1 (mod 645). Hence
2644 mod 645 = 1.
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Chapter 24

Public Key Cryptosystems

Everyone has tried secret codes. A common one is the Caesar cipher: the
sender and the recipient agree in advance to express letters as numbers (1 for
A, 2 for B, etc.) and also agree to use an encoding that offsets the message;
for instance f(n) = (n + 13) mod 26 offsets the letters by 13. The sender then,
in place of transmitting the number n, will transmit f(n) — instead of A, the
sender will transmit K, the thirteenth letter. This code is very easy to break,
but nonetheless notice that there is a general encryption/decryption scheme of
sending offset letters, and within that scheme it relies on the single secret key,
the 13.

In 1976, W Diffie and M Hellman proposed a new kind of cryptographic
system where there are two keys. A message encrypted with the first key can be
decrypted with the second, and a message encrypted with the second key can
be decrypted with the first. We will first illustrate some advantages of such a
system and then give one way to produce such key pairs.

24.1 Example If two people, Alice and Bob, want to have private commu-
nications then each can take a key. Bob alone can read Alice’s messages, and
Alice alone can read Bob’s.

24.2 Example Alice can keep one key a secret, and publish the other key in a
public place such as the Internet. Then people who receive an encrypted message
that claims to be from Alice can get Alice’s public key and try to decrypt the
message. If the result is sensible text, then Alice must have been the one who
encrypted it, since she kept her other key private. This is authentication; her
message has been digitally signed .

Also, people who want to send a message to Alice in private can encrypt it
with her public key. Only she can decrypt it, using her private key.

24.3 Example Key pairs can be used to do things that seem impossible.
Suppose that Alice and Bob want to settle a dispute by flipping a coin, but they
must do so over the Internet. Each person will flip separately, and they agree
that Alice wins if the two coins come out the same while Bob wins if they are
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different. However they do not trust each other and so they cannot just email
each other the results. How can they agree if neither will believe the other?

Each person generates a key pair. Each then sends the other the message
with “heads” or “tails” encrypted using one of their two keys. After that, each
person publishes their other key, the one that they did not use to encrypt. The
other person can now decrypt the message they’ve received— they are sure that
they are not being cheated because they now have the other person’s outcome,
albiet encrypted (and the key pairs have the property that finding a new key
pair that makes the message decrypt the other way is essentially impossible).

Implicit in these examples are a number of technical requirements on key
pairs: from either key we should not be able to find the other, we should not be
able to decrypt the message by just trying every possible key, etc. These techni-
cal requirements have been met by a number of schemes. The most important
is RSA, due to R Rivest, A Shamir, and L Adelman in 1977 [11]. This chapter
outlines its number-theoretic underpinning.

Assume that our message has been converted to an integer in the set Jm =
{0, 1, 2, . . . ,m − 1} where m is some positive integer to be determined. (For
example, we can take the file as a collection of bits and interpret it as a num-
ber written in binary.) Generally this is a large integer. We will require two
functions:

E : Jm → Jm (E for encipher) and D : Jm → Jm (D for decipher).

By ‘encipher’ and ‘decipher’ we only mean that D(E(x)) = x for all x ∈ Jm.
We first need two statements about congruences.

24.4 Lemma Let m1,m2 ∈ Z+ be relatively prime. Then a ≡ b (mod m1)
and a ≡ b (mod m2) if and only if a ≡ b (mod m1m2).

proof. One direction is easy: if a ≡ b (mod m1m2) then there is k ∈ Z such
that a− b = k(m1m2). Rewriting that as a− b = (km1)m2 shows that a− b is
a multiple of m2 and so a ≡ b (mod m2). The other equivalence is similar.

If a ≡ b (mod m1) and a ≡ b (mod m2) then there are k1, k2 ∈ Z such
that a − b = k1m1 and a − b = k2m2. Therefore k1m1 = k2m2. This shows
that m1 | k2m2. As m1 is relatively prime to m2, Lemma 5.6 then gives that
m1 | k2. Writing k2 = km1 for some k, and substituting into the earlier equation
a− b = k2m2 gives that a− b = km1m2. Therefore a− b | m1m2 and so a ≡ b
(mod m1m2). qed

24.5 Lemma Let p and q be two distinct primes and let m = pq. Suppose
that e and d are positive integers that are inverses of each other modulo φ(m).
Then xed ≡ x (mod m) for all x.

proof. By Theorem 18.17, φ(m) = (p − 1)(q − 1). Since ed ≡ 1 (mod φ(m))
we have that ed − 1 = kφ(m) = k(p − 1)(q − 1) for some k. Note the k > 0
unless ed = 1, in which case the theorem is obvious. So we have

(∗) ed = kφ(m) + 1 = k(p− 1)(q − 1) + 1



65

for some k > 0.
We will show that xed ≡ x (mod b) for all x. There are two cases. For

the first case, if gcd(x, p) = 1 then by Fermat’s Little Theorem we have that
xp−1 ≡ 1 (mod p). Raising both sides of the congruence to the power (q − 1)k
gives x(p−1)(q−1)k ≡ 1 (mod p). Then multiplying by x gives x(p−1)(q−1)k+1 ≡ x
(mod p). That is, by (∗)

(∗∗) xed ≡ x (mod p).

For the second case, the gcd(x, p) = p case, the relation (∗∗) is obvious, since
then x ≡ 0 (mod p).

A similar argument proves that xed ≡ x (mod q) for all x. So by Lemma 24.4
and the fact that gcd(p, q) = 1, we have that xed ≡ x (mod m) for all x. qed

24.6 Theorem Let p and q be two distinct primes, let m = pq, and suppose
that e and d are positive integers that are inverses of each other modulo φ(m).
Where Jm = {0, 1, 2, . . . ,m− 1}, define E : Jm → Jm and D : Jm → Jm by

E(x) = xe mod m and D(x) = xd mod m.

Then E and D are inverse functions.

proof. It suffices to show that D(E(x)) = x for all x ∈ Jm. Suppose that
x ∈ Jm, and that E(x) = xe mod m = r1, and also that D (r1) = rd

1 mod m =
r2. We must show that r2 = x. Since xe mod m = r1 we know that xe ≡ r1

(mod m). Hence xed ≡ rd
1 (mod m). We also know that rd

1 ≡ r2 (mod m) and
hence xed ≡ r2 (mod m). By Lemma 24.5, xed ≡ x (mod m) so we have that
x ≡ r2 (mod m). Since both x and r2 are elements of Jm, both are the principle
residue: x = r2. qed
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Appendix A

Proof by Induction

Most of the proof methods used in mathematics are instinctive to a person with
a talent for the work. This section covers a method, the method of Mathematical
Induction that is not.

As with all proofs, we will have some assertion to prove. Each assertion will
say that something is true for all integers. Thus, we can denote the assertion
P (n). Our first example is the proof that for all n, if n ≥ 5 then 2n > 5n.

P (n): n ≥ 5 ⇔ 2n > 5n

An argument by induction involves two steps. In the base step we show that
P is true for some first integer. Typically, that is a straightforward verification.
For our example, we show that P (5) is true by just checking that 25 = 32 is
indeed greater than 5 · 5 = 25, which of course it is.

The second step is called the inductive step. We must show that

if P (5), . . . , P (k) are all true then P (k + 1) is also true.

At the end of the proof we will show why this suffices. For the moment note
only that we are not asserting that P (5), . . . , P (k) are in fact all true (as that
would be assuming the thing that we are to prove); instead we are proving that
if they are true then P (k + 1) follows.

To prove this if-then statement, take the inductive hypothesis that P (5),
. . . , P (k) hold. Then, by the hypothesis that P (k) is true we have 2k > 5k,
and Multiplying both sides by 2 gives 2k+1 > 10k We are trying to prove that
2k+1 > 5(k + 1) so if we can show 10k ≥ 5k + 5 then we will be done. Because
k ≥ 5, we have that 5k ≥ 5 and therefore 10k = 5k + 5k ≥ 5k + 5 = 5(k + 1).
We have therefore established P (k + 1) follows from the inductive hypothesis,
as 2k+1 > 10k ≥ 5(k + 1). That ends the inductive step.

To see why the two steps togehter prove the assertion, note that we have
checked the statement for 5. To see it is true for 6, note that in the inductive
step we proved that P (5) ⇔ P (6). To see that the statement is true for 7, note
that we have proved in the inductive step that P (5) and P (6) ⇔ P (7) (and the
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prior sentence shows that P (6) holds). In this way we can see that the statement
is true for all numbers n ≥ 5.

Here is an induction proof that is more streamlined, more like the ones given
elsewhere in the book..

1.1 Proposition If n ≥ 5 then 2n > 5n.

proof. We prove the proposition by induction on the variable n.
If n = 5 then we have 25 > 5 · 5 or 32 > 25, which is true.
Next, assume the hypothesis that 2n > 5n for 5 ≤ n ≤ k. Taking n = k gives

that 2k > 5k. Multiplying both sides by 2 gives 2k+1 > 10k. Now 10k = 5k+5k
and k ≥ 5, and so 5k ≥ 5. Hence 10k = 5k + 5k ≥ 5k + 5 = 5(k + 1). It follows
that 2k+1 > 10k ≥ 5(k + 1) and therefore 2k+1 > 5(k + 1).

Hence by mathematical induction we conclude that 2n > 5n for n ≥ 5. qed



Appendix B

Axioms for Z

The set of natural numbers is N = {0, 1, 2, 3, · · · }. The set of integers includes
the natural numbers and the negative integers Z = {. . . ,−2,−1, 0, 1, 2, · · · }. We
sometimes want to restrict our attention to the positive integers Z+ = {1, 2, · · · }.

The rational numbers include all of the fractions Q = {n/m | n, m ∈
Z and m 6= 0}. The real numbers R enlarge that set with the irrationals (which
are too hard to precisely describe here). Note that Z+ ⊂ N ⊂ Z ⊂ Q ⊂ R.

In the first chapter we rely on some particularly important properties of Z,
the axioms.

1. If a, b ∈ Z, then a + b, a − b and ab ∈ Z. (That is, Z is closed under
addition, subtraction and multiplication.)

2. If a ∈ Z then there is no x ∈ Z such that a < x < a + 1.

3. If a, b ∈ Z and ab = 1, then either a = b = 1 or a = b = −1.

4. Laws of Exponents For n, m ∈ N and a, b ∈ R with a and b not both 0 we
have (an)m = anm and (ab)n = anbn. and anam = an+m.

5. Properties of Inequalities: For a, b, c in R the following hold: if a < b and
b < c, then a < c, and if a < b then a + c < b + c, and if a < b and 0 < c
then ac < bc, and if a < b and c < 0 then bc < ac, and finally, given a and
b, one and only one of a = b , a < b, b < a holds.

6. Well-Ordering Property Every non-empty subset of N contains a least
element.

7. Mathematical Induction Let P (n) be a statement concerning the integer
variable n. Let n0 be any fixed integer. Then P (n) is true for all integers
n ≥ n0 if both of the following statements hold: (the base step) P (n)
is true for n = n0, and (the inductive step) whenever P (n) is true for
n0 ≤ n ≤ k then P (n) is true for n = k + 1.
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Appendix C

Some Properties of R

3.1 Definition Where x ∈ R, the floor (or greatest integer) bxc is the largest
integer less than or equal to x. Its ceiling dxe is the least integer greater than
or equal to x.

For example, b3.1c = 3 and d3.1e = 4, b3c = 3 and d3e = 3, and b−3.1c = −4
and d−3.1e = −3.

From that definition we immediately have that bxc = max{n ∈ Z | n ≤ x},
and that n = bxc ⇐⇒ n ≤ x < n + 1. From this we have also that bxc ≤ x and
that bxc = x ⇐⇒ x ∈ Z.

3.2 Lemma (Floor Lemma) Where x is real, x− 1 < bxc ≤ x.

proof. Let n = bxc. Then by the above comments, we have n ≤ x < n + 1.
This gives immediately that bxc ≤ x, as already noted above. It also gives that
x < n + 1 which implies that x− 1 < n, that is, that x− 1 < bxc. qed

3.3 Definition The decimal representation of a positive integer a is given by
a = an−1an−2 · · · a1a0 where

a = an−110n−1 + an−210n−2 + · · ·+ a110 + a0

and the digits an−1, an−2, . . . , a1, a0 are in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, with
an−1 6= 0. This representation shows that a is, with respect to base 10, an n
digit number (or is n digits long).
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