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General Instructions

Course Number : SI 507

Course Title : Numerical Analysis

Course Syllabus

1. Mathematical Preliminaries: Continuity of a Function and Intermediate Value Theorem; Mean Value
Theorem for Differentiation and Integration; Taylor’s Theorem (1 and 2 dimensions).

2. Error Analysis: Floating-Point Approximation of a Number; Loss of Significance and Error Propagation;
Stability in Numerical Computation.

3. Linear Systems: Gaussian Elimination; Pivoting Strategy; LU factorization; Residual Corrector Method;
Solution by Iteration; Conjugate Gradient Method; Ill-Conditioned Matrices, Matrix Norms; Eigenvalue prob-
lem - Power Method; Gershgorin’s Theorem.

4. Nonlinear Equations: Bisection Method; Fixed-Point Iteration Method; Secant Method; Newton Method;
Rate of Convergences; Solution of a System of Nonlinear Equations; Unconstrained Optimization.

5. Interpolation by Polynomials: Lagrange Interpolation; Newton Interpolation and Divided Differences;
Hermite Interpolation; Error of the Interpolating Polynomials; Piecewise Linear and Cubic Spline Interpola-
tion; Trigonometric Interpolation; Data Fitting and Least-Squares Approximation Problem.

6. Differentiation and Integration: Difference formulae; Some Basic Rules of Integration; Adaptive Quadra-
tures; Gaussian Rules; Composite Rules; Error Formulae.

7. Differential Equations: Euler Method; Runge-Kutta Methods; Multi-Step Formulae; Predictor-Corrector
Methods; Stability and Convergence; Two Point Boundary Value Problems.

Texts/References

1. K. E. Atkinson, An Introduction to Numerical Analysis (2nd edition), Wiley-India, 1989.
2. S. D. Conte and Carl de Boor, Elementary Numerical Analysis - An Algorithmic Approach (3rd edition),

McGraw-Hill, 1981.

General Rules

1. Attendance in lectures as well as tutorials is compulsory. Students not fulfilling the 80% attendance require-
ment may be awarded the XX grade.

2. Attendance will be recorded through an attendance sheet that will be circulated in the class. Each student
is expected to sign against his/her name only. Students who are found indulging in proxy attendance or any
form of cheating will be severely punished.

Evaluation Plan

1. There will be two quizzes (dates will be announced later), each of weightage 10% and one hour duration.
2. The Mid-Semester Examination scheduled during 11-18 September 2010 will be of 30% weightage.
3. The End-Semester Examination scheduled during 16-28 November will be of 40% weightage.
4. Lab assignments will be given through out the semester and the students are expected to complete the

assignment and produce all the outputs asked at the end of the semester. A oral viva will be conducted to
each student. The weightage will be of 10%.

5. To pass the course (DD), one needs to score minimum of 40% of the maximum mark scored in the class. For
instance, if the maximum mark scored is 80% at the end of the semester, then the passing mark will be 32%.
Higher grades will be based on the over all performance of the class.

Web Page: Course related materials will be uploaded in
http://www.math.iitb.ac.in/∼baskar/baskar t.htm
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Preface

In addition to the references provided above, class notes will be distributed in the class as a typed
material. These notes are meant only for SI 507 in Autumn 2010 as a supplementary material and cannot
be considered as a text book. Students are requested to refer the text books listed under course syllabus
for more details. These notes may have errors of all kind and the author request the readers to take care
of such error while going through the material. The author will be grateful to those who brings to his
notice any kind of error.
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Introduction

Numerical analysis is a branch of Mathematics that deals with devising efficient methods for obtaining
numerical solutions to difficult Mathematical problems.

Most of the Mathematical problems that arise in science and engineering are very hard and sometime
impossible to solve exactly. Thus, an approximation to a difficult Mathematical problem is very impor-
tant to make it more easy to solve. Due to the immense development in the computational technology,
numerical approximation has become more popular and a modern tool for scientists and engineers. As a
result many scientific softwares are developed (for instance, Matlab, Mathematica, Maple etc.) to handle
more difficult problems in an efficient and easy way. These softwares contain functions that uses standard
numerical methods, where a user can pass the required parameters and get the results just by a single
command without knowing the details of the numerical method. Thus, one may ask why we need to
understand numerical methods when such softwares are at our hands?

In fact, there is no need of a deeper knowledge of numerical methods and their analysis in most of the
cases in order to use some standard softwares as an end user. However, there are at least three reasons
to gain a basic understanding of the theoretical background of numerical methods.

1. Learning different numerical methods and their analysis will make a person more familiar with the
technique of developing new numerical methods. This is important when the available methods are
not enough or not efficient for a specific problem to be solved.

2. In many circumstances, one has more methods for a given problem. Hence, choosing an appropriate
method is important for producing an accurate result in lesser time.

3. With a sound background, one can use methods properly (especially when a method has its own
limitations and/or disadvantages in some specific cases) and, most importantly, one can understand
what is going wrong when results are not as expected.

Numerical analysis include three parts. The first part of the subject is about the development of a
method to a problem. The second part deals with the analysis of the method, which includes the error
analysis and the efficiency analysis. Error analysis gives us the understanding of how accurate the result
will be if we use the method and the efficiency analysis tells us how fast we can compute the result.
The third part of the subject is the development of an efficient algorithm to implement the method as
a computer code. A complete knowledge of the subject includes familiarity in all these three parts. This
course is designed to meet this goal.

A first course in Calculus is indispensable for numerical analysis. The first chapter of these lecture
notes quickly reviews all the essential calculus for following this course. Few theorems that are repeatedly
used in the course are collected and presented with an outline of their proofs.

Chapter 2 introduces the concept of errors. One may be surprised to see errors at the initial stage
of the course when no methods are introduced. Of course, there are two types of errors involved in a
method, namely,

1. the error involved in approximating a problem and

2. the error due to computation.
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The first type of error is purely mathematical and often known as truncation error. The second one is
due to the floating-point approximation of a number. This error is committed by computer due to their
limited memory capacity. For instance, the number 1/3=0.3333... has infinitely many digits and since a
computer can deal with a number with finite number of digits, this number has to be approximated to
the number 0.333...3 with finite number of digits (depending on the memory capacity of the computer).
Such an approximation is called the floating-point approximation. Chapter 2 is devoted mainly to
the floating-point error and related concepts.

Devising methods to solve linear systems and computation of eigenvalues and eigen vectors are the
subject of the chapter 2. In this chapter, we discuss direct methods which gives exact solution to the
systems mathematically. However, when we implement these direct methods on a computer we will get
an approximate solution as the computed solution involves floating-point error. The chapter then discuss
some iterative methods for solving linear systems. After a brief discussion of matrix analysis, the chapter
ends with power method for computing a eigenvalue and the corresponding eigen vector for a given matrix.
Not all eivenvalues can be computed using this method and also not all matrices can be applicable to
this method. Gershgorin’s theorem may be used to decide whether power method can be used for a given
matrix. We state this theorem without proof and discuss its application to power method.

Chapter 4 introduces various iterative methods for a nonlinear equation and their convergence anal-
ysis. The methods are further extended to system of nonlinear equations. Unconditioned optimization is
discussed at the end of the chapter. Interpolation by polynomials, data fitting and least-square approx-
imation are the subject of Chapter 5. Chapter 6 introduced numerical differentiation and integration.
These notes end with some basic methods for solving ordinary differential equations.
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Mathematical Preliminaries

This chapter reviews some of the results from calculus that are frequently used in this course. Only
definitions and important theorems with outline of a proof are provided. However, the readers are assumed
to be familiar with a first course in calculus.

Section 1 defines continuity of a function and proves intermediate value theorem. This theorem plays
a basic role in finding initial guess in iterative methods for solving nonlinear equations in chapter 3.
Derivative of a function, Rolle’s theorem and the mean-value theorem for derivatives in provided in
section 2. The mean-value theorem for integration is discussed in section 3. These two theorems are
crucially used in deriving truncation error for numerical methods. Finally, Taylor’s theorem is discussed
in section 4, which is essential for derivation and error analysis of almost all numerical methods discussed
in this course.

Throughout this chapter, we use the notation [a, b] for a closed interval and (a, b) for an open interval,
where a and b are some finite real numbers such that a < b.

1.1 Continuity of a Function

Definition 1.1 (Continuity).

A function f : R → R is said to be continuous at a point x0 ∈ R if

lim
x→x0

f(x) = f(x0). (1.1)

In other words, for any given ǫ > 0, there exists a δ > 0 such that

|f(x)− f(x0)| < ǫ whenever |x− x0| < δ. (1.2)

{

{

y

x
0

Fig. 1.1. y = x2

δ

ǫ

Example 1.2. Consider the function f(x) = x2. Clearly, f(x) = x2 → x2
0 when x → x0. Thus, this

function is continuous. Let us now check the condition (1.2). We have,

|f(x)− f(x0)| = |x2 − x2
0| = |x+ x0| |x− x0| = |x− x0 + 2x0| |x− x0| ≤ |x− x0|(|x− x0|+ 2|x0|).
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For any given ǫ > 0, choose 0 < δ < −|x0|+
√

x2
0 + ǫ > 0 to get (1.2) as required. An illustration of this

example is depicted in figure 1.1. ⊓⊔

Remark 1.3. Note that the δ in the above example depends on x0. For a continuous function f , if for
any given ǫ > 0, the δ does not depend on x0, then the function is said to be uniformly continuous. ⊓⊔

Theorem 1.4 (Intermediate-Value Theorem).

Let f(x) be a continuous function on the interval [a, b]. If f(x1) < α < f(x2) for some number α and
some x1, x2 ∈ [a, b] with x1 < x2, then

α = f(ξ), for some ξ ∈ [a, b].

Proof: Let S := {x ∈ [x1, x2] : f(x) < α} and ξ := supS.

(1) Clearly, there exists a sequence {an} in S such that an → ξ. Since f is continuous at ξ, we have
f(an) → f(ξ), which implies f(ξ) ≤ α.

(2) The sequence

bn = ξ +
x2 − ξ

n
∈ [x1, x2], n ∈ N.

converges to ξ and hence f(bn) → f(ξ). As bn /∈ S f(bn) ≥ α, and hence f(ξ) ≥ α.

Combining the above two inequalities, we see that f(ξ) = α and it is clear that ξ ∈ [a, b], which
completes the proof. ⊓⊔

1.2 Differentiation of a Function

Definition 1.5 (Differentiation).

A function f : (a, b) → R is said to be differentiable at a point c ∈ (a, b) if the limit

lim
h→0

f(c+ h)− f(c)

h

exists. In this case, the value of the limit is denoted by f ′(c) and is called the derivative of f at c. The
function f is said to be differentiable in (a, b) if it is differentiable at every point in (a, b).

Remark 1.6. There are two other ways to define the derivative of a continuous function f : (a, b) → R.
Let us list all the three equivalent definitions

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
,

f ′(c) = lim
h→0

f(c)− f(c− h)

h
,

f ′(c) = lim
h→0

f(c+ h)− f(c− h)

2h
,

where c ∈ (a, b). For any fixed h > 0, the formulae

D+
h f(c) :=

f(c+ h)− f(c)

h
(1.3)

D−
h f(c) :=

f(c)− f(c− h)

h
(1.4)

D0
hf(c) :=

f(c+ h)− f(c− h)

2h
(1.5)

are called the forward difference, backward difference and central difference formulae. The ge-
ometrical interpretation of the above three formulae is shown in figure 1.2. More discussion on these
difference operators is found in chapter 6 of these notes. ⊓⊔



1.3 Integration of a Function 11

. ..
xx−h x+h

Forward
Backward

Central

x

y

y=f(x)

f’

Fig. 1.2. Geometrical interpretation of difference operators

Theorem 1.7 (Rolle’s Theorem).

Let f(x) be continuous on the bounded interval [a, b] and differentiable on (a, b). If f(a) = f(b), then

f ′(ξ) = 0, for some ξ ∈ (a, b).

Proof: Let m,M ∈ [a, b] be such that

f(m) = min{f(x) : x ∈ [a, b]} and f(M) = max{f(x) : x ∈ [a, b]}.

If either m or M is an interior point of [a, b], then the result follows from the problem 11. Otherwise,
both m and M are end points of [a, b] and hence f(m) = f(M). Thus, the maximum and the minimum
values of f on [a, b] coincide. Hence, f is constant on [a, b], and therefore, f ′(x) = 0 for every x ∈ (a, b).⊓⊔

Theorem 1.8 (Mean-Value Theorem for Derivatives).

If f(x) is continuous on a bounded interval [a, b] (with a 6= b) and differentiable on (a, b), then

f(b)− f(a)

b− a
= f ′(ξ), for some ξ ∈ (a, b)

Proof: Consider F : [a, b] → R defined by

F (x) = f(x)− f(a)− s(x− a), where s =
f(b)− f(a)

b− a
.

Then F (a) = 0 and the choice of the constant s is such that F (b) = 0. So, Rolle’s theorem applies to F ,
and as a result, there is ξ ∈ (a, b) such that F ′(ξ) = 0. This implies that f ′(ξ) = s, as desired. ⊓⊔

1.3 Integration of a Function

Theorem 1.9 (Mean-Value Theorem for Integrals).

Let g(x) be a non-negative or non-positive integrable function on [a, b]. If f(x) is continuous on [a, b],
then

∫ b

a

f(x)g(x)dx = f(ξ)

∫ b

a

g(x)dx, for some ξ ∈ [a, b].

Proof: Assume that g is non-negative on [a, b]. Then we have

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ M

∫ b

a

g(x)dx,

where m and M are the minimum and maximum of f in the interval [a, b].

If
∫ b

a
g(x)dx = 0, then we have

∫ b

a

f(x)g(x)dx = 0
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in which case the result is trivial. Assume the contrary and divide both sides of the above inequality by
∫ b

a
g(x)dx to get

m ≤ A(f) ≤ M,

where

A(f) =
1

∫ b

a g(x)dx

∫ b

a

f(x)g(x)dx.

Since f is continuous, intermediate-value theorem tells us that there is a ξ ∈ [a, b] such that A(f) = f(ξ),
which proves the theorem.

When g is non-positive, replace g by −g and the same argument as above proves the theorem. ⊓⊔

1.4 Taylor’s Formula

Theorem 1.10 (Taylor’s Formula with Remainder).

If f(x) has n+ 1 continuous derivatives on [a, b] and c is some point in [a, b], then for all x ∈ [a, b]

f(x) = f(c) + f ′(c)(x − c) +
f ′′(c)(x − c)2

2!
+ · · ·+ f (n)(c)(x− c)n

n!
+Rn+1(x),

where

Rn+1(x) =
1

n!

∫ x

c

(x− t)nf (n+1)(t)dt.

Proof: We prove the formula by induction.

(1) Let us first prove the formula for n = 1 for which we have

R2(x) = f(x)− f(c)− f ′(c)(x− c) =

∫ x

c

f ′(t)dt− f ′(c)

∫ x

c

dt =

∫ x

c

(f ′(t)− f ′(c))dt.

The last integral may be written as
∫ x

c udv, where u = f ′(t) − f ′(c), and v = t − x. Now du/dt = f ′′(t)
and dv/dt = 1, so by the integration by parts, we have

R2(x) =

∫ x

c

udv = uv|xc −
∫ x

c

(t− x)f ′′(t)dt =

∫ x

c

(x− t)f ′′(t)dt,

since u = 0 when t = c, and v = 0 when t = x. This completes the proof when n = 1.

(2) We now assume that the formula is true for some n and prove it for n+ 1. The Taylor’s formula for
n+ 1 can be written as

Rn+1(x) = f(x)−
(

f(c) + f ′(c)(x − c) +
f ′′(c)(x− c)2

2!
+ · · ·+ f (n−1)(c)(x − c)n−1

(n− 1)!
+

f (n)(c)(x − c)n

n!

)

= Rn(x)−
f (n)(c)(x − c)n

n!

Since, the Taylor’s formula holds for n, we can use the given remainder formula for Rn(x). Using the
identity

(x− c)n

n
=

∫ x

c

(x− t)n−1dt,

we obtain

Rn+1(x) =
1

(n− 1)!

∫ x

c

(x− t)(n−1)f (n)(t)dt − f (n)(c)

(n− 1)!

∫ x

c

(x− t)n−1dt

=
1

(n− 1)!

∫ x

c

(x− t)(n−1)[f (n)(t)− f (n)(c)]dt.

The last integral may be written in the form
∫ x

c udv, where u = f (n)(t) − f (n)(c) and v = −(x − t)n/n.
Noting that u = 0 when t = c, and that v = 0 when t = x, we get from integration by parts
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Rn+1(x) =
1

(n− 1)!

∫ x

c

udv = − 1

(n− 1)!

∫ x

c

vdu =
1

n!

∫ x

c

(x− t)nf (n+1)(t)dt.

This completes the inductive step from n to n+ 1, so the theorem is true for all n ≥ 1. ⊓⊔

Remark 1.11. Note that as x → c, the remainder Rn+1(x) → 0. Thus, the Taylor’s formula (without
remainder) can be used to get an approximate value of f at any point x in a small neighborhood of c,
once the values of f and all its n derivatives are known at c. ⊓⊔

We now state the two dimensional Taylor’s formula and leave the proof as an exercise. For the sake
of simplicity, we give the formula for n = 1 and an obvious extension holds.

Theorem 1.12 (Taylor’s Formula in 2-Dimensions).

If f(x, y) is a continuous function of the two independent variables x and y with continuous first and
second partial derivatives in a neighborhood D of the point (a, b), then

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b) +R2(x, y),

for all (x, y) ∈ D, where

R2(x, y) =
fxx(ξ, η)(x − a)2

2
+ fxy(ξ, η)(x − a)(y − b) +

fyy(ξ, η)(y − b)2

2
,

for some (ξ, η) ∈ D depending on (x, y) and the subscripts of f denote partial differentiation.

The proof of this theorem follows from the theorem 1.10 and the following lemma.

Lemma 1.13 (Chain Rule).

If the function f(x1, x2, · · · , xn) has continuous first partial derivatives with respect to each of its variables,
and x1 = x1(t), x2 = x2(t), · · · , xn = xn(t) are continuously differentiable functions of t, then g(t) =
f(x1(t), x2(t), · · · , xn(t)) is also continuously differentiable, and

g′(t) =
∂f

∂x1
x′
1(t) +

∂f

∂x2
x′
2(t) + · · ·+ ∂f

xn
x′
n(t).

Notes

The material covered in this chapter is taken partly (including few of the exercise problems) from Ghor-
pade and Limaye (2006), and Apostal Volume 1 (2002) . These books may be refered for more details on
calculus used throughout this course.
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Exercise 1

I. Continuity of a Function

1. Explain why each of the following functions is continuous or discontinuous.
(a) The temperature at a specific location as a function of time.
(b) The temperature at a specific time as a function of the distance from a fixed point.

2. Study the continuity of f in each of the following cases:

(a) f(x) =

{

x2 if x < 1√
x if x ≥ 1

, (b) f(x) =

{

−x if x < 1
x if x ≥ 1

, (c) f(x) =

{

0 if x is rational
1 if x is irrational

,

3. Let f : [0,∞) → R be given by

f(x) =







1, if x = 0,
1/q, if x = p/qwherep, q ∈ N and p, q have no common factor,
0, if x is irrational.

Show that f is discontinuous at each rational in [0,∞) and it is continuous at each irrational in
[0,∞). [Note: This function is known as Thomae’s function.]

4. Let P and Q be polynomials. Find

lim
x→∞

P (x)

Q(x)
and lim

x→0

P (x)

Q(x)

if the degree of P is (a) less than the degree of Q and (b) greater than the degree of Q.

5. Let f be defined on an interval (a, b) and suppose that f is continuous at some c ∈ (a, b) and
f(c) 6= 0. Then, show that there exist a δ > 0 such that f has the same sign as f(c) in the interval
(c− δ, c+ δ).

6. Show that the equation
sinx+ x2 = 1

has at least one solution in the interval [0, 1].

7. Show that f(x) = (x− a)2(x− b)2 + x takes on the value (a+ b)/2 for some x ∈ (a, b).

8. Let f(x) be continuous on [a, b], let x1, · · · , xn be points in [a, b], and let g1, · · · , gn be real
numbers all of same sign. Then show that

n
∑

i=1

f(xi)gi = f(ξ)

n
∑

i=1

gi, for some ξ ∈ [a, b].

9. Show that the equation f(x) = x, where

f(x) = sin

(

πx+ 1

2

)

, x ∈ [−1, 1]

has at least one solution in [−1, 1].

10. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous function from I onto I. Prove
that f(x) = x for at least one x ∈ I. [Note: A solution of this equation is called the fixed point
of the function f ]

II. Differentiation of a Function

11. Let c ∈ (a, b) and f : (a, b) → R is differentiable at c. If c is a local extremum (maximum or
minimum) of f , then show that f ′(c) = 0.

12. Let f(x) = 1 − x2/3. Show that f(1) = f(−1) = 0, but that f ′(x) is never zero in the interval
[−1, 1]. Explain how this is possible, in view of Rolle’s theorem.

13. Show that the function f(x) = cosx for all x ∈ R is continuous by choosing an appropriate δ > 0
for a given ǫ > 0 as in the definition 1.1.

14. Suppose f is differentiable in an open interval (a, b). Prove that following statements
(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is non-decreasing.
(b) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.
(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is non-increasing.
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15. For f(x) = x2, find the point ξ specified by the mean-value theorem for derivatives. Verify that
this point lies in the interval (a, b).

16. Cauchy’s Mean-Value Theorem: If f(x) and g(x) are continuous on [a, b] and differentiable
on (a, b), then show that there exists a point c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c).

III. Integration of a Function

17. In the mean-value theorem for integrals, let f(x) = ex, g(x) = x, [a, b] = [0, 1]. Find the point ξ
specified by the theorem and verify that this point lies in the interval (0, 1).

18. Assuming g ∈ C[0, 1] (means g : [0, 1] → R is a continuous function), show that

∫ 1

0

x2(1− x)2g(x)dx =
1

30
g(ξ), for some ξ ∈ [0, 1].

19. Is the following statement true? Justify.

The integral
∫ 4π

2π (sin t)/tdt = 0 because, by theorem 1.9, for some c ∈ (2π, 4π) we have

∫ 4π

2π

sin t

t
dt =

1

c

∫ 4π

2π

sin tdt =
cos(2π)− cos(4π)

c
= 0.

20. If n is a positive integer, show that

∫

√
(n+1)π

√
nπ

sin(t2)dt =
(−1)n

c
,

where
√
nπ ≤ c ≤

√

(n+ 1)π.

IV. Taylor’s Formula

21. Show that the remainder Rn+1(x) in the Taylor’s expansion of a n+1 continuously differentiable
function f can be written as

Rn+1(x) =
(x− c)n+1

(n+ 1)!
f (n+1)(ξ),

where ξ ∈ (c, x).

22. Find the Taylor’s expansion for f(x) =
√
x+ 1 upto n = 2 (ie. the Taylor’s polynomial of order

2) with remainder R3(x) about c = 0.

23. Use Taylor’s formula about c = 0 to evaluate approximately the value of the function f(x) = ex

at x = 0.5 using three terms (ie., n = 2) in the formula. Find the value of the remainder R3(0.5).
Add these two values and compare with the exact value.

24. Prove the theorem 1.12

25. Obtain the Taylor’s expansion of ex sin y about (a, b) = (0, 0). Find the expression for R2(x, y) and
determine its maximum value in the region D := {0 ≤ x ≤ π/2, 0 ≤ y ≤ π/2}.
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Error Analysis

A real number x can have infinitely many digits. But a digital calculating device can hold only a finite
number of digits and therefore, after a finite number of digits (depending on the capacity of the calculating
device), the rest should be discarded in some sense. In this way, the representation of the real number x
on a computing device is only approximate. Although, the omitted part of x is very small in its value,
this approximation can lead to considerably large error in the numerical computation.

In this chapter, we study error due to approximating numbers. In section 1.1, we study how a real
number can be represented on a computing device. In section 2.2, we introduce two ways of approximating
a number so as to fit in a digital computing device of restricted memory capacity. Section 1.3 introduces
the definition of errors and the concept of significant digits. Finally in section 1.4, we study how an
error due to approximating a number can propagate during the numerical computation. The concept of
condition number and stability of evaluating a function are also covered in this section.

2.1 Floating-Point Form of Numbers

On a computer, real numbers are represented in the floating-point form, which we shall introduce in
this section.

Definition 2.1 (Floating-Point Form).

Let x be a non-zero real number. An n-digit floating-point number in base β has the form

fl(x) = (−1)s × (.d1d2 · · · dn)β × βe (2.1)

where

(.d1d2 · · · dn)β =
d1
β

+
d2
β2

+ · · ·+ dn
βn

(2.2)

is a β-fraction called the mantissa or significand, s = 1 or 0 is called the sign and e is an integer
called the exponent. The number β is also called the radix and the point preceding d1 in (2.1) is called
the radix point.

Example 2.2. When β = 2, the floating-point representation (2.1) is called the binary floating-point
representation and when β = 10, it is called the decimal floating-point representation. ⊓⊔

Remark 2.3. Note that there are only finite number of digits in the floating-point representation (2.1),
where as a real number can have infinite sequence of digits for instance 1/3 = 0.33333...... Therefore, the
representation (2.1) is only an approximation to a real number. ⊓⊔
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Definition 2.4 (Normalization).

A floating-point number is said to be normalized if either d1 6= 0 or d1 = d2 = · · · = dn = 0.

Example 2.5. The following are examples of real numbers in the decimal floating point representation.

I. The real number x = 6.238 can be represented as 6.238 = (−1)0 × 0.6238 × 101, in which case, we
have s = 0, β = 10, e = 1, d1 = 6, d2 = 2, d3 = 3 and d4 = 8. Note that this representation is the
normalized floating-point representation.

II. The real number x = −0.0014 can be represented in the decimal float-point representation as
−0.0014 = (−1)1 × 0.0014 × 101, which is not in the normalized form. But this representation is
not in the normalized form. The normalized representation is x = (−1)1 × 0.14× 10−2. ⊓⊔

Definition 2.6 (Overflow and Underflow).

The exponent e is limited to a range

m < e < M. (2.3)

During the calculation, if some computed number has an exponent e > M then we say, the memory
overflow or if e < m, we say the memory underflow.

Remark 2.7. In the case of overflow, computer will usually produce meaningless results or simply prints
the symbol NaN, which means, the quantity obtained due to such a calculation is ’not a number’. The
symbol ∞ is also denoted as NaN on some computers. The underflow is less serious because in this case,
a computer will simply consider the number as zero. ⊓⊔

Remark 2.8. The floating-point representation (2.1) of a number has two restrictions, one is the number
of digits n in the mantissa and the second is the range of e. The number n is called the precision or
length of the floating point representation. ⊓⊔

Example 2.9. The IEEE (Institute of Electrical and Electronics Engineers) standard for floating-point
arithmetic (IEEE 754) is the most widely-used standard for floating-point computation, and is followed
by many hardware (CPU and FPU), including intel processors, and software implementations. Many
computer languages allow or require that some or all arithmetic be carried out using IEEE 754 formats
and operations. The IEEE 754 floating-point representation for a binary number x is given by 1

fl(x) = (−1)s × (1.a1a2 · · · an)2 × 2e, (2.4)

where a1, · · · , an are either 1 or 0. The IEEE 754 standard always uses binary operations.

The IEEE single precision floating-point format uses 4 bytes (32 bits) to store a number. Out of
these 32 bits, 24 are allocated for storing mantissa (one binary digit needs 1 bit storage space), 1 bit for
s (sign) and remaining 8 bits for the exponent. The storage scheme is given by

|(sign) b1 | (exponent) b2b3 · · · b9 | (mantissa) b10b11 · · · b32|

Note here that there are only 23 bits used for mantissa. This is because, the digit 1 before the binary
point in (2.4) is not stored in the memory and will be inserted at the time of calculation.

Instead of the exponent e, we store the non-negative integer E = (b2b3 · · · b9)2 and define e = E−127.
If all bi’s (i = 2, · · · , 9) are zero, then E = (0)10 and if all bi’s are 1, then E = (255)10. In addition to
this, one space corresponding to e = 128 (orE=255) is reserved for ∞ or NaN depending on whether
b10 = · · · = b32 = 0 or otherwise. Thus, in IEEE 754, we have −126 ≤ e ≤ 127 (note that the range of e is
not from -127, because this number is reserved for those numbers not represented otherwise, see Atkinson
and Han, 2004, for more details) and one memory space for NaN. The decimal number zero needs a
special representation, which is stored as E = 0 (ie., b2 = · · · = b9 = 0), b1 = 0 and b10 = · · · = b32 = 0.

1 Note the difference between the representation given in (2.1) and here. Since, it is a binary representation, the
digit before the binary point is always 1 and therefore, this information need not be stored in the computer
memory at all. This is the reason why this form of representation rather than (2.1) was prefered.
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In the representation (2.4), the value of s is stored in b1, the positive integer E = e + 127 is stored
in bits b2 through b9. The string of digits a1a2 · · ·a23 are stored in bits b10 through b32. The leading
binary digit 1 in the mantissa is not stored in the memory. However, this information is inserted into
the mantissa when a floating-point number x is brought out of the memory and sent into an arithmetic
operation. In the IEEE single precision storage system the overflow occurs for real numbers |x| > xmax,
where

xmax = 1.11 · · · 1× 2127 ≈ 2128 ≈ 3.40× 1038.

The IEEE double precision floating-point representation of a number has a precision of 53 binary
digits and the exponent e is limited by −1023 ≤ e ≤ 1023. ⊓⊔

2.2 Chopping and Rounding a Number

Any real number x can be represented exactly as

x = (−1)s × (.d1d2 · · · dndn+1 · · · )β × βe, (2.5)

with d1 6= 0 or d2 = d3 = · · · = 0, s = 0 or 1, and e satisfies (2.3), for which the floating-point form (2.1)
is an approximate representation. Let us denote this approximation of x by fl(x). There are two ways to
produce fl(x) from x as defined below.

Definition 2.10 (Chopped and Rounded Numbers).

The chopped machine approximation of x is given by

fl(x) = (−1)s × (.d1d2 · · · dn)β × βe. (2.6)

The rounded machine approximation of x is given by

fl(x) =

{

(−1)s × (.d1d2 · · · dn)β × βe , 0 ≤ dn+1 < β
2

(−1)s × (.d1d2 · · · (dn + 1))β × βe , β
2 ≤ dn+1 < β

(2.7)

2.3 Different Type of Errors

The approximate representation of a real number obviously differs from the actual number, whose differ-
ence is called an error.

Definition 2.11 (Errors).

The error in a computed quantity is defined as

Error = True Value - Approximate Value.

The absolute error is the absolute value of the error defined above. The relative error is a measure of
the error in relation to the size of the true value as given by

Relative Error =
Error

True Value

The percentage error is defined as 100 times the relative error.

The term truncation error is used to denote error, which result from approximating a smooth function
by truncating its Taylor series representation to a finite number of terms.

Example 2.12. A second degree polynomial approximation to

f(x) =
√
x+ 1, x ∈ [0, 1]

using the Taylor series expansion about x = 0 is given by

f(x) ≈ 1 +
x

2
− x2

8
+

x3

16(
√
1 + ξ)5

.

Therefore, the truncation error is given by x3/(16(
√
1 + ξ)5). ⊓⊔
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Remark 2.13. Let xA be the approximation of the real number x. Then

E(xA) := Error(xA) = x− xA. (2.8)

Ea(xA) := Absolute Error(xA) = |E(xA)| (2.9)

Er(xA) := Relative Error(xA) =
E(xA)

x
(2.10)

⊓⊔

Example 2.14. If we denote the relative error in fl(x) as ǫ > 0, then we have

fl(x) = (1− ǫ)x, (2.11)

where x is a real number. ⊓⊔

2.4 Loss of Significant Digits

In place of relative error, we often use the concept of significant digits.

Definition 2.15 (Significant Digits).

If xA is an approximation to x, then we say that xA approximates x to r significant β-digits if

|x− xA| ≤
1

2
βs−r+1 (2.12)

with s the largest integer such that βs ≤ |x|.

Example 2.16. (a) For x = 1/3, the approximate number xA = 0.333 has three significant digits, since
|x − xA| ≈ .00033 < 0.0005 = 0.5 × 10−3. But 10−1 < 0.333 · · · = x. Therefore, in this case s = −1 and
hence r = 3.
(b) For x = 0.02138, the approximate number xA = .02144 has the aboslute error |x − xA| ≈ .00006 <
0.0005 = 0.5× 10−3. But 10−2 < 0.02138 = x. Therefore, in this case s = −2 and therefore, the number
xA has only two significant digits, but not three, with respect to x. ⊓⊔

Remark 2.17. In a very simple way, the number of leading non-zero digits of xA that are correct relative
to the corresponding digits in the true value x is called the number of significant digits in xA. ⊓⊔

The role of significant digits in the numerical calculation is very important in the sense that the loss
of significant digits may result in drastic amplification of the relative error.

Example 2.18. Let us consider two real numbers

x = 7.6545428 = 0.76545428× 101, y = 7.6544201 = 0.76544201× 101.

The numbers

xA = 7.6545421 = 0.76545421× 101, yA = 7.6544200 = 0.76544200× 101

are approximation to x and y, correct to six and seven significant digits, respectively. In eight-digit
floating-point arithmetic,

zA = xA − yA = 0.12210000× 10−3

is the exact difference between xA and yA and

z = x− y = 0.12270000× 10−3

is the exact difference between x and y. Therefore,

z − zA = 0.6× 10−6 < 0.5× 10−5
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and hence zA has only three significant digits with respect to z as 10−3 < z = 0.0001227. Thus, we
started with two approximate numbers xA and yA which are correct to six and seven significant digits
with respect to x and y respectively, but their difference zA has only three significant digits with respect
to z and hence, there is a loss of significant digits in the process of subtraction. A simple calculation
shows that

Er(zA) ≈ 53736× Er(xA),

and similarly for y. Loss of significant digits is therefore dangerous if we wish to minimize the relative
error. The loss of significant digits in the process of calculation is refered to as Loss of Significance. ⊓⊔

Example 2.19. Consider the function f(x) = x(
√
x+ 1 − √

x). On a six-digit decimal calculator, we
have f(100000) = 100 whereas the true value is 158.113. This makes a drastic error in the calculation.
This is the result of the loss of significant digits, which can be seen from the fact that as x increases, the
terms

√
x+ 1 and

√
x comes closer to each other and therefore loss of significant error in their computed

value increases.

Such loss can often be avoided by rewritting the given expression (whenever possible) in such a way
that subtraction is avoided. For instance, the defintion of f(x) given in this example can be rewritten as

f(x) =
x√

x+ 1 +
√
x
.

With this new definition, we see that on a six-digit calculator, we have f(100000) = 158.114000. ⊓⊔

Example 2.20. When the function f(x) = 1 − cosx is evaluated in six-decimal-digit arithmetic (say).
Since cosx ≈ 1 for x near zero, there will be loss of significant digits for x near zero. So, we have to use
an alternative formula for f(x) such as

f(x) = 1− cosx =
1− cos2 x

1 + cosx
=

sin2 x

1 + cosx

which can be evaluated quite accurately for small x. We can also use Taylor’s expansion to get an
alternative expression for f(x) as

f(x) =
x2

2
− x4

24
+ · · · =

2
∑

n=1

(−1)n
x2n

2n!
+R(x),

where

R(x) =
x2(n+1)

2(n+ 1)!
f (2(n+1))(ξ) = −x6

6!
cos ξ

with ξ very close to zero. ⊓⊔

2.5 Propagation of Error

Once an error is committed, it affects subsequent results as this error propagates through subsequent
calculations. We first study how the results are affected by using approximate numbers instead of actual
numbers and then will take up function evaluation.

Let xA and yA denote the numbers used in the calculation, and let xT and yT be the corresponding
true values. We will now see how error propagates with the four basic arithmetic operations.

Propagated error in addition and subtraction

Let xT = xA + ǫ and yT = yA + η are positive numbers. The relative error Er(xA ± yA) is given by

Er(xA ± yA) =
(xT ± yT )− (xA ± yA)

xT ± yT
=

(xT ± yT )− (xT − ǫ± (yT − η))

xT ± yT
=

ǫ ± η

xT ± yT
.

This shows that relative error propagate slowly with addition, whereas amplifies drastically with subtrac-
tion when xT ≈ yT as we have witnessed in examples 2.18 and 2.19.
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Propagated error in multiplication

The relative error Er(xA × yA) is given by

Er(xA × yA) =
(xT × yT )− (xA × yA)

xT × yT
=

(xT × yT )− ((xT − ǫ)× (yT − η))

xT × yT

=
ηxT + ǫyT − ǫη

xT × yT
=

ǫ

xT
+

η

yT
−
(

ǫ

xT

)(

η

yT

)

= Er(xA) + Er(YA)− Er(xA)Er(YA).

This shows that relative error propagate slowly with multiplication.

Propagated error in division

The relative error Er(xA/yA) is given by

Er(xA/yA) =
(xT /yT )− (xA/yA)

xT /yT
=

(xT /yT )− ((xT − ǫ)/(yT − η))

xT /yT

=
xT (yT − η)− yT (xT − ǫ)

xT (yT − η)
=

yT ǫ− xT η

xT (yT − η)
=

yT
yT − η

(Er(xA)− Er(yA))

=
1

1− Er(YA)
(Er(xA)− Er(yA)).

This shows that relative error propagate slowly with division, unless Er(YA) ≈ 1. But this is very unlikely
because we always expect the error to be very small, ie., very close to zero in which case the right hand
side is approximately equal to Er(xA)− Er(YA).

Total calculation error

When using floating-point arithmetic on a computer, the calculation of xAωyA (here ω denotes one
of the basic arithmetic operation ’+’, ’−’, ’×’ and ’/’) involves an additional rounding or chopping error.
The computed value of xAωyA will involve the propagated error plus a rounding or chopping error. To
be more precise, let ω̂ denotes the complete operation as carried out on the computer, including any
rounding or chopping. Then the total error is given by

(xTωyT )− (xAω̂yA) = [(xTωyT )− (xAωyA)] + [(xAωyA)− (xAω̂yA)].

The first term on the right is the propagated error and the second term is the error due to rounding or
chopping the number obtained from the calculation xAωyA.a

Propagated error in function evaluation

Consider evaluating f(x) at the approximate value xA rather than at x. Then consider how well does
f(xA) approximate f(x)? Using the mean-value theorem, we get

f(x)− f(xA) = f ′(ξ)(x − xA),

where ξ is an unknown point between x and xA. The relative error of f(x) with respect to f(xA) is given
by

Er(f(x)) =
f ′(ξ)

f(x)
(x − xA) =

f ′(ξ)

f(x)
xEr(x). (2.13)

Since xA and x are assumed to be very close to each other and ξ lies between x and xA, we make the
approximation

f(x)− f(xA) ≈ f ′(x)(x − xA) ≈ f ′(xA)(x − xA).

Definition 2.21 (Condition number of a function).

The condition number of a funtion f at a point x = c is given by

∣

∣

∣

∣

f ′(c)

f(c)
c

∣

∣

∣

∣

(2.14)
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Example 2.22. Consider the function f(x) =
√
x, for all x ∈ [0,∞). Then

f ′(x) =
1

2
√
x
, for all x ∈ [0,∞).

The condition number of f is
∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=
1

2
, for all x ∈ [0,∞).

From (2.13) we see that taking square roots is a well-conditioned process since it actually reduces the
relative error. ⊓⊔

Example 2.23. Consider the function

f(x) =
10

1− x2
, for all x ∈ R.

Then f ′(x) = 20x/(1− x2)2, so that

∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=

∣

∣

∣

∣

(20x/(1− x2)2)x

10/(1− x2)

∣

∣

∣

∣

=
2x2

|1− x2|

and this number can be quite large for |x| near 1. Thus, for x near 1 or -1, this function is ill-conditioned,
as it magnifies the relative error. ⊓⊔

Definition 2.24 (Stability and Instability in Evaluating a Function).

Suppose there are n steps to evaluate a function f(x). Then the total process of evaluating this function
is said to have instability if atleast one step is ill-conditioned. If all the steps are well-conditioned, then
the process is said to be stable.

Example 2.25. Consider the function

f(x) =
√
x+ 1−

√
x, for all x ∈ [0,∞).

For a sufficiently large x, the condition number of this function is

∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1/
√
x+ 1− 1/

√
xx√

x+ 1−√
x

∣

∣

∣

∣

=
1

2

x√
x+ 1

√
x
≈ 1

2
,

which is quite good. But, if we calculate f(12345) in six digit rounding arithmetic, we find

f(12345) =
√
12346−

√
12345 = 111.113− 111.108 = 0.005,

while, actually, f(12345) = 0.00450003262627751 · · · . The calculated answer has 10% error.

Let us analyze the computational process. It consists of the following four computational steps:

x0 := 12345, x1 := x0 + 1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2 − x3.

Now consider the last two step where we already computed x2 and now going to compute x3 and finally
evaluate the function

f3(t) = x2 − t.

At this step, the condition number for f3 is given by

∣

∣

∣

∣

f ′(t)

f(t)
t

∣

∣

∣

∣

=

∣

∣

∣

∣

t

x2 − t

∣

∣

∣

∣

.

Thus, f is ill-conditioned when t approaches x2. For instance, for t ≈ 111.11, while x2 − t ≈ 0.005,
the condition number for f3 is approximately 22, 222 or more than 40,000 times as big as the condition
number of f itself. Therefore, the above process of evaluating the function f(x) is unstable.

Let us rewrite the same function f(x) as
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f(x) =
1√

x+ 1 +
√
x
.

In six digit rounding arithmetic, this gives

f(12345) =
1√

12346 +
√
12345

=
1

222.221
= 0.0045002,

which is in error by only 0.0003%. The computational process is

x0 := 12345, x1 := x0 + 1, x2 :=
√
x1, x3 :=

√
x0, x4 := x2 + x3, x5 := 1/x4.

It is easy to verify that the condition number of each of the above steps is well-conditioned. For instance,
the last step defines f3(t) = 1/(x2 + t), and the condition number of this function is approximately,

∣

∣

∣

∣

f ′(x)

f(x)
x

∣

∣

∣

∣

=

∣

∣

∣

∣

t

x2 + t

∣

∣

∣

∣

≈ 1

2

for t sufficiently close to x2. Therefore, this process of evaluating f(x) is stable. ⊓⊔
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Exercise 2

I. Floating-Point Representation

1. Write the storage scheme for the IEEE double precision floating-point representation of a real
number with the precision of 53 binary digits. Find the overflow limit (in binary numbers) in this
case.

2. In a binary representation, if 2 bytes (ie., 2 × 8 = 16 bits) are used to represent a floating-point
number with 8 bits used for the exponent. Then, as of IEEE 754 storage format, find the largest
binary number that can be represented.

II. Errors

3. The machine epsilon (also called unit round) of a computer is the smallest positive floating-

point number δ such that fl(1 + δ) > 1. Thus, for any floating-point number δ̂ < δ, we have

fl(1 + δ̂) = 1, and 1 + δ̂ and 1 are identical within the computer’s arithmetic.

For rounded arithmetic on a binary machine, show that δ = 2−n is the machine epsilon, where n
is the number of digits in the mantissa.

4. If fl(x) is the machine approximated number of a real number x and ǫ is the corresponding relative
error, then show that fl(x) = (1− ǫ)x.

5. Let x, y and z are the given machine approximated numbers. Show that the relative error in
computing x(y + z) is ǫ1 + ǫ2 − ǫ1ǫ2, where ǫ1 = Er(fl(y + z)) and ǫ2 = Er(fl(xfl(y + z))).

6. If the relative error of fl(x) is ǫ, then show that

|ǫ| ≤ β−n+1 (for chopped fl(x)), |ǫ| ≤ 1

2
β−n+1 (for rounded fl(x)),

where β is the radix and n is the number of digits in the machine approximated number.

7. Consider evaluating the integral In =

∫ 1

0

xn

x+ 5
dx for n = 0, 1, · · · , 20. This can be carried out

in two iterative process, namely, (i) In = 1
n − 5In−1, I0 = ln(6/5) (called forward iteration) and

(ii) In−1 = 1
5n − 1

5In, I20 = 7.997522840 × 10−3 (called backward iteration). Compute In for
n = 0, 1, 2, · · · , 20 using both iterative and show that backward iteration gives correct results,
whereas forward iteration tends to increase error and gives entirely wrong results. Give reason for
why this happens.

8. Find the truncation error around x = 0 for the following functions
(a) f(x) = sinx, (b) f(x) = cosx.

9. Let xA = 3.14 and yA = 2.651 be correctly rounded from xT and yT , to the number of decimal
digits shown. Find the smallest interval that contains
(i) xT , (ii) yT , (iii) xT + yT , (iv) xT − yT , (v) xT × yT and (vi) xT /yT .

10. A missile leaves the ground with an initial velocity v forming an angle φ with the vertical. The
maximum desired altitude is αR where R is the radius of the earth. The laws of mechanics can
be used to deduce the relation between the maximum altitude α and the initial angle φ, which is
given by

sinφ = (1 + α)

√

1− α

1 + α

( |ve|
|v|

)2

,

where ve = the escape velocity of the missile. It is desired to fire the missile with an angle φ and
|ve|/|v| = 2 so that the maximum altitude reached by the missile is 0.25R (ie., α = 0.25). If the
maximum altitude reached is within an accuracy of ±2%, then determine the range of values of
φ. [Hint: Treat sinφ as a function of α and use mean-value theorem]

III. Loss of Significant Digits and Propagation of Error

11. For the following numbers x and their corresponding approximations xA, find the number of
significant digits in xA with respect to x. (a) x = 451.01, xA = 451.023,
(b) x = −0.04518, xA = −0.045113, (c) x = 23.4604, xA = 23.4213.
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12. Show that the function f(x) =
1− cosx

x2
leads to unstable computation when x ≈ 0. Rewrite

this function to avoid loss-of-significance when x ≈ 0. Further check the stablity of f(x) in the
equivalent definition of this function in avoiding loss-of-significance error.

13. Let xA and yA, the approximation to x and y, respectively, be such that the relative errors Er(x)
and Er(y) are very much smaller than 1. Then show that (i) Er(xy) ≈ Er(x) + Er(y) and (ii)
Er(x/y) ≈ Er(x) − Er(y). (This shows that relative errors propagate slowly with multiplication
and division).

14. The ideal gas law is given by PV = nRT , where R is a gas constant given (in MKS system) by
R = 8.3143 + ǫ, with |ǫ| ≤ 0.12× 10−2. By taking P = V = n = 1, find a bound for the relative
error in computing the temperature T .

15. Find the condition number for the following functions (a) f(x) = x2, (b) f(x) = πx, (c) f(x) = bx.

16. Given a value of xA = 2.5 with an error of 0.01. Estimate the resulting error in the function
f(x) = x3.

17. Compute and interpret (find whether the funtions are well or ill-conditioned) the condition number
for (i) f(x) = tanx, at x = π

2 + 0.1
(

π
2

)

. (ii) f(x) = tanx, at x = π
2 + 0.01

(

π
2

)

.

18. Let f(x) = (x−1)(x−2) · · · (x−8). Estimate f(1+10−4) using mean-value theorem with xT = 1
and xA = 1 + 10−4.

IV. Miscellaneous

19. Big-oh: If f(h) and g(h) are two functions of h, then we say that

f(h) = O(g(h)), as h → 0

if there is some constant C such that
∣

∣

∣

∣

f(h)

g(h)

∣

∣

∣

∣

< C

for all h sufficiently small, or equivalently, if we can bound

|f(h)| < C|g(h)|

for all h sufficiently small. Intuitively, this means that f(h) decays to zero at least as fast as the
function g(h).

Little-oh: We say that

f(h) = o(g(h)), as h → 0 if

∣

∣

∣

∣

f(h)

g(h)

∣

∣

∣

∣

→ 0, as h → 0.

Note that this definition is stronger than the ”big-oh” statement and means that f(h) decays to
zero faster than g(h).
(a) If f(h) = o(g(h)), then show that f(h) = O(g(h)).
(b) Give an example to show that the converse is not true.
(c) What is meant by f(h) = o(1) and f(h) = O(1)?
(d) Give an example of f(h) and g(h) such that f(h) is much bigger than g(h), but still

f(h) = O(g(h)) as h → 0.

20. Assume that f(h) = p(h) +O(hn) and g(h) = q(h) +O(hm), for some positive integers n and m.
Find the order of approximation of their sum, ie., find the largest integer r such that

f(h) + g(h) = p(h) + q(h) +O(hr).
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Linear Systems

The most general form of a linear system is

a11x1 + a12x2+ · · · +a1nxn = b1

a21x1 + a22x2+ · · · +a2nxn = b2

· · ·
· · · (3.1)

· · ·
an1x1 + an2x2+ · · · +annxn = bn

In the matrix notation, we can write this as

Ax = b

where A is an n× n matrix with entries aij , b = (b1, · · · , bn)T and x = (x1, · · · , xn)
T are n-dimensional

vectors.

Theorem 3.1. Let n be a positive integer, and let A be given as in (3.1). Then the following statements
are equivalent

I. det(A) 6= 0

II. For each right hand side b, the system (3.1) has unique solution x.

III. For b = 0, the only solution for the system (3.1) is the zero solution.

3.1 Gaussian Elimination

Let us introduce the Gaussian Elimination method for n = 3. The method for a general n× n system
is similar.

Consider the 3× 3 system

a11x1 + a12x2 + a13x3 = b1 (E1)

a21x1 + a22x2 + a23x3 = b2 (E2) (3.2)

a31x1 + a32x2 + a33x3 = b3 (E3)

Step 1: Assume that a11 6= 0 (otherwise interchange the row for which the coefficient of x1 is non-zero).
Let us eliminate x1 from (E2) and (E3). For this define

m21 =
a21
a11

, m31 =
a31
a11

.

Multiply (E1) with m21 and subtract with (E2), and multiply (E1) with m31 and subtract with (E3) to
give
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a11x1 + a12x2 + a13x3 = b1 (E1)

a
(2)
22 x2 + a

(2)
23 x3 = b

(2)
2 (E2)

a
(2)
32 x2 + a

(2)
33 x3 = b

(2)
3 (E3)

The coefficients a
(2)
ij are defined by

a
(2)
ij = aij −mi1a1j , i, j = 2, 3

b
(2)
i = bi −mi1b1, i = 2, 3

Step 2: Assume that a
(2)
22 6= 0 and eliminate x2 from (E3). Define

m32 =
a
(2)
32

a
(2)
22

.

Subtract m32 times (E2) from (E3) to get

a11x1 + a12x2 + a13x3 = b1 (E1)

a
(2)
22 x2 + a

(2)
23 x3 = b

(2)
2 (E2)

a
(3)
33 x3 = b

(3)
3 (E3)

The new coefficients are defined by

a
(3)
33 = a

(2)
33 −m32a

(2)
23 , b

(3)
3 = b

(2)
3 −m32b

(2)
2 .

Step 3: Using back substitution to solve successively for x3, x2 and x1, we get

x3 =
b
(3)
3

a
(3)
33

x2 =
b
(2)
2 − a

(2)
23 x3

a
(2)
22

(3.3)

x1 =
b1 − a12x2 − a13x3

a11

The algorithm for n = 3 is easily extended to a general n× n non-singular linear system.

Gaussian elimination method is a direct method which solves the linear system exactly. However,
sometime, this method fail to give the correct solution as illustrated in the following example.

Example 3.2. When we solve the linear system

6x1 + 2x2 + 2xn = −2

2x1 +
2

3
x2 +

1

3
xn = 1

x1 + 2x2 − xn = 0

Let us solve this system using Gaussian elimination method on a computer using a floating-point repre-
sentation with four digits in the mantissa and all operations will be rounded.

The given system is

6.000x1 + 2.000x2 + 2.000xn = −2.000

2.000x1 + 0.6667x2 + 0.3333xn = 1.000

1.000x1 + 2.000x2 − 1.000xn = 0.0000

After eliminating x1 from the second and third equations, we get (with m21 = 0.3333, m31 = 0.1667)

6.000x1 + 2.000x2 + 2.000xn = −2.000

0.000x1 + 0.0001x2 − 0.3333xn = 1.667 (3.4)

0.000x1 + 1.667x2 − 1.333xn = 0.3334
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After eliminating x2 from the third equation, we get (with m32 = 16670)

6.000x1 + 2.000x2 + 2.000xn = −2.000

0.000x1 + 0.0001x2 − 0.3333xn = 1.667

0.000x1 + 0.0000x2 + 5555xn = −27790

Using back substitution, we get x1 = 1.335, x2 = 0 and x3 = −5.003, whereas the actual solution is
x1 = 2.6, x2 = −3.8 and x3 = −5. The difficulty with this elimination process is that in (4.4), the element
in row 2, column 2 should have been zero, but rounding error prevented it and makes the relative error
very large. To avoid this, interchange row 2 and 3 in (4.4) and then continue the elimination. The final
system is (with m32 = 0.00005999)

6.000x1 + 2.000x2 + 2.000xn = −2.000

0.000x1 + 1.667x2 − 1.333xn = 0.3334

0.000x1 + 0.0000x2 − 0.3332xn = 1.667

with back substitution, we obtain the approximate solution as x1 = 2.602, x2 = −3.801 and Dx3 = −5.003.
⊓⊔

Partial Pivoting To avoid the problem presented by the above example, we use the following strategy.
At step k, calculate

c = max
k≤i≤n

|a(k)ik | (3.5)

This is the maximum size of the elements in column k of the coefficient matrix of step k, beginning at

row k and going downward. If the element |a(k)kk | < c, then interchange (Ek) with one of the following

equations, to obtain a new equation (Ek) in which |a(k)kk | = c. This strategy makes a
(k)
kk as far away from

zero as possible. The element a
(k)
kk is called the pivot element for step k of the elimination, and the

process described in this paragraph is called partial pivoting or more simply, pivoting.

Operations Count It is important to know the length of a computation and for that reason, we count
the number of arithmetic operations involved in Gaussian elimination. Let us divide the count into three
parts.

I. The elimination step. We now count the additions/subtractions, multiplications and divisions in
going from the given system to the triangular system.

Step Additions/Subtractions Multiplications Divisions
1 (n− 1)2 (n− 1)2 n− 1
2 (n− 2)2 (n− 2)2 n− 2
. . . .
. . . .
. . . .

n− 1 1 1 1

Total n(n−1)(2n−1)
6

n(n−1)(2n−1)
6

n(n−1)
2

Here we use the formula

p
∑

j=1

j =
p(p+ 1)

2
,

p
∑

j=1

j2 =
p(p+ 1)(2p+ 1)

6
, p ≥ 1.

II. Modification of the right side Proceeding as before, we get

Addition/Subtraction = (n− 1) + (n− 2) + · · ·+ 1 = n(n−1)
2

Multiplication/Division = (n− 1) + (n− 2) + · · ·+ 1 = n(n−1)
2

III. The back substitution Addition/Subtraction = (n− 1) + (n− 2) + · · ·+ 1 = n(n−1)
2

Multiplication/Division = n+ (n− 1) + · · ·+ 1 = n(n+1)
2
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Total number of operations in obtaining x is

Addition/Subtraction = n(n−1)(2n−1)
6 + n(n−1)

2 + n(n−1)
2 = n(n−1)(2n+5)

6

Multiplication/Division = n(n2+3n−1)
3

Even if we take only multiplication and division into consideration, we see that for large value of n, the
operation count required for Gaussian elimination is about 1

3n
3. This means that as n doubled, the cost

of solving the linear system goes up by a factor of 8. In addition, most of the cost of Gaussian elimination
is in the elimination step. For elimination, we have

Multiplication/Division = n(n−1)(2n−1)
6 +n(n−1)

2 = 1
3 (n

3 − n) = 1
3n

3(1− 1/n2) ≈ 1
3n

3,
whereas the remaining steps counts only

Multiplication/Division = n(n−1)
2 +n(n+1)

2 = n2

Hence, once the elimination part is completed, it is much less expensive to solve the linear system.

3.2 LU Factorization Method

Let Ax = b denote the system to be solved with A the n×n coefficient matrix. In the Gaussian elimination,
the linear system was reduced to the upper triangular system Ux = g with

U =

















u11 u12 · · · u1n

0 u22 · · · u2n

. · · · .

. · · · .

. · · · .
0 · · · 0 unn

















and uij = a
(i)
ij . Introduce an auxiliary lower triangular matrix L based on the multipliers mij as

L =

















1 0 · · · 0
m21 1 · · · 0
. · · · .
. · · · .
. · · · .

mn1 · · · mnn−1 1

















The relationship of the matrices L and U to the original matrix A is given by the following theorem.

Theorem 3.3. Let A be a non-singular matrix, and let L and U be defined as above. Then if U is produced
without pivoting as in the Gaussian elimimation, then

LU = A

and this is called the LU factorization of A.

LU factorization leads to another perspective on Gaussian elimination. Since LU = A, the linear
system Ax = b can be re-written as

LUx = b.

And this is equivalent to solving the two systems

Lg = b, Ux = g (3.6)

The first system is the lower tirangular system

g1 = b1

m21g1 + g2 = b2

.

.

.

mn1g1 +mn2g2 + · · ·+mnn−1gn−1 + gn = bn



3.2 LU Factorization Method 31

Once g is obtained by forward substitution from this system the upper triangular system Ux = g can
be solved using back substitution. Thus once the factorization A = LU is done, the solution of the linear
system Ax = b is reduced to solving two triangular systems where the computational cost is reduced
drastically in the situation when the system is to be solved for a fixed A but for various b.

Rather than constructing L and U by using the elimination steps, it is possible to solve directly for
these matrices. Let us illustrate the direct computation of L and U in the case of n = 3. Write A = LU
as





a11 a12 a13
a21 a22 a23
a31 a32 a33



 =





1 0 0
m21 1 0
m31 m32 1









u11 u12 u13

0 u22 u23

0 0 u33



 (3.7)

The right hand matrix multiplication implies

a11 = u11, a12 = u12, a13 = u13,

a21 = m21u11, a31 = m31u11. (3.8)

These gives first column of L and the first row of U . Next multiply row 2 of L times columns 2 and 3 of
U , to obtain

a22 = m21u12 + u22, a23 = m21u13 + u23 (3.9)

These can be solved for u22 and u23. Next multiply row 3 of L to obtain

m31u12 +m32u22 = a32, m31u13 +m32u23 + u33 = a33 (3.10)

These equations yield values for m32 and u33, completing the construction of L and U . In this process,
we must have u11 6= 0, u22 6= 0 in order to solve for L.

Note that in general the diagonal elements of L need not be 1. The above procedure of LU decompo-
sition is called Doolittle’s method.

Example 3.4. Let

A =





1 1 −1
1 2 −2

−2 1 1





Using (3.8), we get

u11 = 1, u12 = 1, u13 = −1, m21 =
a21
u11

= 1,m31 =
a31
u11

= −2

Using (3.9) and (3.10),

u22 = a22 −m21u12 = 2− 1× 1 = 1

u23 = a23 −m21u13 = −2− 1× (−1) = −1

m32 = (a32 −m31u12)/u22 = (1− (−2)× 1)/1 = 3

u33 = a33 −m31u13 −m32u23 = 1− (−2)× (−1)− 3× (−1) = 2

Thus,

A =





1 0 0
1 1 0

−2 3 1









1 1 −1
0 1 −1
0 0 2





Taking b = (1, 1, 1), we now solve the system Ax = b using LU factorization, with the matrix A given
above. As discussed above, first we have to solve the lower triangular system





1 0 0
1 1 0

−2 3 1









g1
g2
g3



 =





1
1
1



 .
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Forward substitution yields g1 = 1, g2 = 0, g3 = 3. Keeping the vector g = (1, 0, 3) as the right hand side,
we now solve the upper triangular system





1 1 −1
0 1 −1
0 0 2









x1

x2

x3



 =





1
0
3



 .

Backward substitution yields x1 = 1, x2 = 3/2, x3 = 3/2.. ⊓⊔

3.3 Error in Solving Linear Systems

In computing solution for a linear system using Gaussian elimination, we have seen the propagation of
rounding error, which can lead to entirely wrong solution. In this section, we introduce some method to
obtain errors prediction and ways to correct them inorder to minimize the error in the computed solution.

Let xA denote the computed solution using some method. Define

r = b−AxA (3.11)

This vector is called the residual vector in the approximation of b by AxA. Since b = Ax, we have

r = b−AxA = Ax−AxA = A(x− xA).

If we denote the error e = x− xA, then the above identity can be written as

Ae = r (3.12)

This shows that the error e satisfies a linear system with the same coefficient matrix A as in the orginal
system Ax = b.

There is an obvious difficulty in implementing this procedure on a computer. Since b and AxA are
very close to each other, the computation of r involves loss of significant digits which leads to a very high
relative error. To avoid an incorrect residual r, the calculation of (3.11) should be carried out in a higher-
precision (say if b and AxA are calculated in single-precision, then r can be computed in double-precision
and then rounded back to single precision).

Example 3.5. Consider the system

0.729x1 + 0.81x2 + 0.9x3 = 0.6867

x1 + x2 + x3 = 0.8338

1.331x1 + 1.210x2 + 1.100x3 = 1.000

As before, we use a four digit decimal-machine with rounding. The true solution of this system is

x1 = 0.2245, x2 = 0.2814, x3 = 0.3279

correct rounded to four digits. We consider the solution of the system by Gaussian elimination without
pivoting. This leads to the answers

x1 ≈ 0.2251, x2 ≈ 0.2790, x3 ≈ 0.3295.

Using 8 digit floating point decimal arithmetic, with rounding, we get the residual as

r = (0.00006210, 0.0002000, 0.0003519)T .

Solving the linear system Ae = r, we obtain the approximation to the error

eA = [−0.0004471, 0.002150,−0.001504]T .

Compare this to the true error

e = x− xA = [−0.0007, 0.0024,−0.0016]T

Thus eA gives a firly good idea of the size of the error e in the computed solution xA. ⊓⊔
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The Residual Correction Method:

Step 1: Let x0 = xA be the initially computed value for the solution of the system Ax = b, generally
obtained by using Gaussian elimination. Define

r0 = b−Ax0.

The error defined by e0 = x− x0 is obtained (approximately) by solving the system

Ae0 = r0

using Gaussian elimination.

Step 2: Define
x1 = x0 + e0

and repeat step 1 to calculate
r1 = b−Ax1, x2 = x1 + e1

where e1 = x− x1 is the approximate solution of the system Ae1 = r1.

Continue this process untill there is no further decrease in the size of ek, k ≥ 0. ⊓⊔

Example 3.6. Use a computer with four digit floating-point decimal arithmetic with rounding, and use
Gaussian elimination with pivoting, the system to be solved is

x1 + 0.5x2 + 0.3333x3 = 1

0.5x1 + 0.3333x2 + 0.25x3 = 0

0.3333x1 + 0.25x2 + 0.2x3 = 0

The true solution rounded to four digits is x2 = (9.062, − 36.32, 30.30)T . Using the Residual correction
method, we have

x0 = (8.968, − 35.77, 29.77)T

r0 = (−0.005341, − 0.004359, − 0.0005344)T

e0 = (0.09216, − 0.5442, 0.5239)T

x1 = (9.060, − 36.31, 30.29)T

r1 = (−0.0006570, − 0.0003770, − 0.0001980)T

e2 = (0.001707, − 0.01300, 0.01241)T

x2 = (9.062, − 36.32, 30.30)T

3.4 Matrix Norm

A useful notion of measuring a vector (in general a matrix) is the well-known norms

Definition 3.7 (Vector Norm).

A vector norm on R
n is a function from R

n to [0,∞) denoted by ‖ · ‖ that satisfies the following
properties:
For any x,y ∈ R

n, α ∈ R,

I. ‖x‖ ≥ 0

II. ‖x‖ = 0 if and only if x = 0

III. ‖αx‖ = |α|‖x‖
IV. ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Example 3.8. Some examples of vector norm are given here.
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I. The Euclidean norm is defined as

‖x‖2 =

√

√

√

√

n
∑

j=1

x2
i . (3.13)

II. The maximum norm (similar to the infinite norm defined in section 2.4) is defined as

‖x‖∞ := max
1≤i≤n

|xi|,x = (x1, · · · , xn). (3.14)

Definition 3.9 (Matrix Norm).

A matrix norm on the set of all n × n matrices is a real-valued function, || · ||, defined on this set,
satisfying for all n× n matrices A and B and all real numbers α:

I. ||A|| ≥ 0;

II. ||A|| = 0, if and only if A is a zero matrix;

III. ||αA|| = |α| ||A||;
IV. ||A+B|| ≤ ||A||+ ||B||;

Definition 3.10 (Natural or Induced Matrix Norm).

If || · || is a vector norm on R
n, then

||A|| = max
||x||=1

||Ax||

is a matrix norm and is called the natural or induced matrix norm associated with the vector norm.

Remark 3.11. In this course, all matrix norms will be assumed to be natural matrix norms.

For any z 6= 0, we have x = z/||z|| as a unit vector. Hence

max
||x||=1

||Ax|| = max
||z||6=0

∥

∥

∥

∥

A

(

z

||z||

)∥

∥

∥

∥

= max
||z||6=0

||Az||
||z|| ,

and we can alternatively write

‖A‖ = max
z 6=0

‖Az‖
‖z‖ (3.15)

Lemma 3.12. For any n× n matrices A and B, and x ∈ R
n, we have

I. ‖Ax‖ ≤ ‖A‖‖x‖
II. ‖AB‖ ≤ ‖A‖‖B‖

For any n× n matrix A the maximum row norm is defined as

‖A‖ := max
1≤i≤n

n
∑

j=1

|aij |. (3.16)

It can be shown (proof is omitted here) that the maximum row norm is induced by the maximum norm
defined in (3.14). The Eulidean norm (3.13) induces the matrix norm (proof is omitted here)

‖A‖2 =
√

rσ(ATA), (3.17)

where
rσ(A) = max

λ∈σ(A)
|λ|

with σ(A) being the set of all eigenvalues of A, called the spectrum of A.
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Example 3.13. If we take

A =





1 1 −1
1 2 −2

−2 1 1



 ,

then

3
∑

j=1

|a1j | = |1|+ |1|+ | − 1| = 3,

3
∑

j=1

|a2j | = |1|+ |2|+ | − 2| = 5,

3
∑

j=1

|a3j | = | − 2|+ |1|+ |1| = 4.

Therefore, the maximum row norm of the given matrix A is 5.

On the other hand, the eigenvalues of ATA are λ1 ≈ 0.0616, λ2 ≈ 5.0256 and λ3 ≈ 12.9128. Thus,
‖A‖2 ≈

√
12.9128 ≈ 3.5934. ⊓⊔

Theorem 3.14. Let A be nonsingular. Then, the solution x1 and x2 of the systems Ax = b1 and Ax =
b2, respectively, satisfy

‖x1 − x2‖
‖x1‖

≤ ‖A‖‖A−1‖‖b1 − b2‖
‖b1‖

(3.18)

Proof. Subtracting Ax2 = b2 from Ax1 = b1, we get

A(x1 − x2) = b1 − b2 or x1 − x2 = A−1(b1 − b2).

Using the above lemma, we get

‖x1 − x2‖ = ‖A−1(b1 − b2)‖ ≤ ‖A−1‖‖b1 − b2‖.

Dividing by ‖x1‖, we obtain

‖x1 − x2‖
‖x1‖

≤ ‖A−1‖‖b1 − b2‖
‖x1‖

= ‖A‖‖A−1‖‖b1 − b2‖
‖A‖‖x1‖

.

But ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖. Using this inequality, we get the desired result. ⊓⊔

The multiplying coefficient ‖A‖‖A−1‖ is interesting. It depends entirely on the matrix in the problem
and not on the right-side vector, yet it shows up as an amplifier to the relative change in the RHS vector.

Definition 3.15 (Condition Number).

For a given non-singular matrix A ∈ R
n×n and a given matrix norm ‖ ·‖, the condition number of A with

respect to the given norm is defined by

κ(A) := ‖A‖‖A−1‖ (3.19)

When the condition number of a matrix is very large, even a small variation in the RHS vector can lead
to a drastic variation in the solution. Such matrices are called ill-conditioned matrices. The matrices
with small condition number are called well-conditioned matrices.

Example 3.16. A well-known example of an ill-conditioned matrix is the Hilbert matrix

Hn =

















1 1
2

1
3 · · · 1

n
1
2

1
3

1
4 · · · 1

n+1

· · · ·
· · · ·
· · · ·
1
n

1
n+1

1
n+1 · · · 1

2n−1

















(3.20)
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For n = 4, we have

κ(H4) = ‖H4‖‖H−1
4 ‖ =

25

12
13620 ≈ 28000

which may be taken as an ill-conditioned matrix. ⊓⊔

Ill-conditioned matrices are very rare in applications. However, discretization of many partial differential
equations leads to moderately ill-conditioned linear systems. For this reason, it is best to use linear
equation solvers that have some way to detect ill-conditioning, if possible. Otherwise, the error can be
computed explicitely as described in section 3.3 to ensure the accuracy in the computed solution.

The following example show how a small variation in the RHS vector lead to a big difference in the
solution.

Example 3.17. The linear system

5x1 + 7x2 = 0.7

7x1 + 10x2 = 1

has the solution x1 = 0, x2 = 0.1. Let us denote this by xT = (0, 0.1). The perturbed system

5x1 + 7x2 = 0.69

7x1 + 10x2 = 1.01

has the solution x1 = −0.17, x2 = 0.22, which we denote by xA = (−0.17, 0.22). The relative error
between the solutions of the above systems in the maximum vector norm is given by

‖xT − xA‖∞
‖xT ‖∞

= 1.7,

which is too high. On the other hand, the condition number of the coefficient matrix of the above system
is 289, and the relative error between the right hand side vectors in the maximum norm is 0.01. Thus,
the right hand side of the inequality (3.18) is 2.89, which obviously satisfies this inequality. ⊓⊔

Theorem 3.18. Let A ∈ R
n×n be non-singular. Then, for any singular n× n matrix B, we have

1

κ(A)
≤ ‖A−B‖

‖A‖ . (3.21)

Proof. We have

1

κ(A)
=

1

‖A‖‖A−1‖

=
1

‖A‖









1

max
x 6=0

‖A−1x‖
‖x‖









≤ 1

‖A‖





1
‖A−1y‖

‖y‖





where y is arbitrary. Now take y = Az. Then we get

1

κ(A)
≤ 1

‖A‖

(‖Az‖
‖z‖

)

,

where z is arbitrary. Let z be such that Bz = 0 (this is possible since B is singular), we get

1

κ(A)
≤ ‖(A−B)z‖

‖A‖‖z‖ ≤ ‖(A−B)‖‖z|
‖A‖‖z‖ =

‖(A−B)‖
‖A‖ ,

and we are done. ⊓⊔

The importance of this result is that it tells us that if A is close to a singular matrix, then the reciprocal
of the condition number will be near to zero, ie., κ(A) itself will be large.
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3.5 Iterative Methods

The n × n linear system can also be solved using iterative procedures. The most fundamental iterative
method is the Jacobi iterative method, which we will explain in the case of 3×3 system of linear equations.

Consider the 3× 3 system

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

When the diagonal elements of this system are non-zero, we can rewrite the above equation as

x1 =
1

a11
(b1 − a12x2 − a13x3)

x2 =
1

a22
(b2 − a21x1 − a23x3)

x3 =
1

a33
(b3 − a31x1 − a32x2)

Let x(0) = (x
(0)
1 , x

(0)
2 , x

(0)
3 ) be an initial guess to the true solution x, then define an iteration sequence:

x
(m+1)
1 =

1

a11
(b1 − a12x

(m)
2 − a13x

(m)
3 )

x
(m+1)
2 =

1

a22
(b2 − a21x

(m)
1 − a23x

(m)
3 )

x
(m+1)
3 =

1

a33
(b3 − a31x

(m)
1 − a32x

(m)
2 )

for m = 0, 1, 2, · · · . This is called the Jacobi Iteration method.

A modified version of Jacobi method is the Gauss-Seidel method and is given by

x
(m+1)
1 =

1

a11
(b1 − a12x

(m)
2 − a13x

(m)
3 )

x
(m+1)
2 =

1

a22
(b2 − a21x

(m+1)
1 − a23x

(m)
3 )

x
(m+1)
3 =

1

a33
(b3 − a31x

(m+1)
1 − a32x

(m+1)
2 )

Note that the Jacobi method is of the form

Nx(m+1) = b+ Ux(m)

where

N =

















a11 0 · · · 0
0 a22 · · · 0
. . · · · .
. . · · · .
. . · · · .
0 0 · · · ann

















and U = N −A. For Gauss-Seidel method, we have

N =

















a11 0 · · · 0
a21 a22 · · · 0
. . · · · .
. . · · · .
. . · · · .

an1 an2 · · · ann
















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with U = N −A.

A general linear iterative method for the solution of the system of linear system of equations Ax = b

may be defined in the form

x(m+1) = Bx(m) + c, m = 1, 2, · · · . (3.22)

In this case of Jacobi and Gauss-Seidel methods, we have B = N−1U and c = N−1b.

Note that the true solution satisfies the equation

x = Bx+ c

and therefore, the error e(m) = x− x(m) satisfies the system

e(m+1) = Be(m).

On taking norm, we get

‖e(m+1)‖ = ‖Be(m)‖ ≤ ‖B‖‖e(m)‖ ≤ · · · ≤ ‖B‖m+1‖e(0)‖.

Thus, when ‖B‖ < 1, the iteration method always converges for any initial guess.

Definition 3.19 (Diagonally Dominant Matrices). A matrix A is said to be diagonally dominant
if it satisfies the inequality

n
∑

j=1,j 6=i

|aij | < |aii|, i = 1, 2, · · · , n.

In the case of Jacobi method, we have

x
(m+1)
i =

1

aii



bi −
n
∑

j=1,j 6=i

aijx
(m)
j



 , i = 1, · · · , n m ≥ 0 (3.23)

Therefore, each component of the error satisfies

e
(m+1)
i = −

n
∑

j=1,j 6=i

aij
aii

e
(m)
j , i = 1, · · · , n m ≥ 0.

which gives

|e(m+1)
i | ≤

n
∑

j=1,j 6=i

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

‖e(m)‖∞.

Define

µ = max
1≤i≤n

n
∑

j=1,j 6=i

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

. (3.24)

Then
|e(m+1)

i | ≤ µ‖e(m)‖∞,

which is true for all i = 1, 2, · · · , n. Therefore, we have

‖e(m+1)‖∞ ≤ µ‖e(m)‖∞.

For µ < 1, ie., when the matrix A is diagonally dominant, then Jacobi method converges. Note that the
converse is not true. That is, the Jacobi method may converge for A not diagonally dominant.

We will now prove that the Gauss-Seidal method converges if the given matrix A is diagonally domi-
nant. The Gauss-Seidal method reads

x
(m+1)
i =

1

aii







bi −
i−1
∑

j=1

aijx
(m+1)
j −

n
∑

j=i+1

aijx
(m)
j







, i = 1, 2, · · · , n. (3.25)
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Therefore, the error in each component is given by

e
(m+1)
i = −

i−1
∑

j=1

aij
aii

e
(m+1)
j −

n
∑

j=i+1

aij
aii

e
(m)
j , i = 1, 2, · · · , n. (3.26)

Define

αi =

i−1
∑

j=1

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

, βi =

n
∑

j=i+1

∣

∣

∣

∣

aij
aii

∣

∣

∣

∣

, i = 1, 2, · · · , n,

with α1 = β1 = 0. Note that µ given in (3.24) can be written as

µ = max
1≤i≤n

(αi + βi)

and since A is assumed to be diagonally dominant, we have µ < 1. Now

|e(m+1)
i | ≤ αi‖e(m+1)‖∞ + βi‖e(m)‖∞, i = 1, 2, · · · , n. (3.27)

Let k be such that
‖e(m+1)‖∞ = |e(m+1)

k |.
Then with i = k in (3.27),

‖e(m+1)‖∞ ≤ αk‖e(m+1)‖∞ + βk‖e(m)‖∞.

Since µ < 1, we have αk < 1 and therefore the above inequality give

‖e(m+1)‖∞ ≤ βk

1− αk
‖e(m)‖∞.

Define

η = max
1≤i≤n

βk

1− αk
. (3.28)

Then the above inequality takes the form

‖e(m+1)‖∞ ≤ η‖e(m)‖∞. (3.29)

Since for each i,

(αi + βi)−
βi

1− αi
=

αi[1− (αi + βi)]

1− αi
≥ αi

1− αi
[1− µ] ≥ 0,

we have

η ≤ µ < 1. (3.30)

Thus, Gauss-Seidal method converges more faster than the Jacobi method and also when the given matrix
is diagonally dominant, then the Gauss-Seidal method converges.

3.6 Eigenvalue Problem: The Power Method

Power method is normally used to determine the largest eigenvalue (in magnitude) and the corresponding
eigenvector of the system

Ax = λx.

Let λ1, λ2, · · · , λn be the eigenvalues of A such that

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| (3.31)

and further assume that the corresponding eigenvectors v1, v2, · · · , vn forms a basis for Rn. Therefore,
any vector v ∈ R

n can be written as

v = c1v1 + c2v2 + · · ·+ cnvn.
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Premultiplying by A and substituting Avi = λivi, i = 1, · · · , n, we get

Av = c1λ1v1 + · · ·+ cnλnvn

= λ1

(

c1v1 + c2

(

λ2

λ1

)

v2 + · · ·+ cn

(

λn

λ1

)

vn

)

Premultiplying by A again and simplying, we get

A2v = λ2
1

(

c1v1 + c2

(

λ2

λ1

)2

v2 + · · ·+ cn

(

λn

λ1

)2

vn

)

· · ·
· · ·
· · ·

Akv = λk
1

(

c1v1 + c2

(

λ2

λ1

)k

v2 + · · ·+ cn

(

λn

λ1

)k

vn

)

Using the assumption (3.31), we can see that

∣

∣

∣

∣

λk

λ1

∣

∣

∣

∣

< 1, k = 2, · · · , n.

Therefore, we have

lim
k→∞

Akv

λk
1

= c1v1. (3.32)

For c1 6= 0, the RHS is a scalar multiple of the eigenvector. Also, from the above expression for Akv, we
get

lim
k→∞

(Ak+1v)i
(Akv)i

= λ1, (3.33)

where i denotes a component of the corresponding vectors.

The power method is based on the results (3.32) and (3.33).

Algorithm 3.20. Choose an arbitrary initial guess x(0). For k = 1, 2, · · ·
Step 1 Compute y(k) = Ax(k−1)

Step 2 Take µk = y
(k)
i , where ‖y(k)‖∞ = |y(k)i |,

Step 3 Set x(k) =
y(k)

µk
.

Step 4 If ‖x(k−1) − x(k)‖∞ > ǫ, go to step 1.
For some pre-assigned positive quantity ǫ.

Let us now study the convergence of this method.

Theorem 3.21 (Power method).

Let A be an non-singular n× n matrix with the following conditions:

I. A has n linearly independent eigenvectors, vi, i = 1, · · · , n.
II. The eigenvalues λi satisfy

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|.

III. The vector x(0) ∈ R
n is such that

x(0) =

n
∑

j=1

cjvj , c1 6= 0.
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Then the power method converges in the sense that there exists constants C1 and C2 such that

‖x(k) −Kv1‖ ≤ C1

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

, for some K 6= 0

and

|λ1 − µk| ≤ C1

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

.

Proof. From the definition of x(k), we have

x(k) =
Ax(k−1)

µk
=

Ay(k−1)

µkµk−1
=

AAx(k−2)

µkµk−1
=

A2x(k−2)

µkµk−1
= · · · = Akx(0)

µkµk−1 · · ·µ1
.

Therefore, we have
x(k) = mkA

kx(0),

where mk = 1/(µ1µ2 · · ·µk). But, x
(0) =

n
∑

j=1

cjvj , c1 6= 0. Therefore

x(k) = mkλ
k
1



c1v1 +
n
∑

j=2

cj

(

λj

λ1

)k

vj



 .

Taking maximum norm on both sides and noting that ‖x(k)‖∞ = 1, we get

1 = |mkλ
k
1 |

∥

∥

∥

∥

∥

∥

c1v1 +
n
∑

j=2

cj

(

λj

λ1

)k

vj

∥

∥

∥

∥

∥

∥

∞

.

This implies on taking limit,

| lim
k→∞

mkλ
k
1 | =

1

|c1|‖v1‖∞
< ∞.

This is equivalent to

lim
k→∞

mkλ
k
1 = ± 1

c1‖v1‖∞
< ∞.

Finally,
lim
k→∞

x(k) = lim
k→∞

mkλ
k
1 .c1v1 = Kv1

Moreover,

‖x(k) −Kkv1‖∞ =

∥

∥

∥

∥

∥

∥

mkλ
k
1

n
∑

j=2

cj

(

λj

λ1

)k

vj

∥

∥

∥

∥

∥

∥

∞

≤ C

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

.

For eigenvalue,
µkx

(k) = y(k).

Therefore,

µk =
y
(k)
i

x
(k)
i

=
(Ax(k−1))i
(x(k))i

Taking limit, we have

lim
k→∞

µk =
A(Kv1)i
K(v1)i

=
λ(v1)i
(v1)i

= λ1.

which gives the desired result. ⊓⊔
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Example 3.22. Consider the matrix

A =





3 0 0
−4 6 2
16 −15 −5





The eigenvalues of this matrix are λ1 = 3, λ2 = 1 and λ3 = 0. The corresponding eigen vectors are
X1 = (1, 0, 2)T , X2 = (0, 2,−5)T and X3 = (0, 1,−3)T .

Initial Guess 1: Let us take x0 = (1, 0.5, 0.25)T . The power method gives the following:
Iteration No: 1

y1 = Ax0 = (3.000000,−0.500000, 7.250000, )T

µ1 = 7.250000

x1 =
y1

µ1
= (0.413793,−0.068966, 1.000000, )T

Iteration No: 2

y2 = Ax1 = (1.241379,−0.068966, 2.655172, )T

µ2 = 2.655172

x2 =
y2

µ2
= (0.467532,−0.025974, 1.000000, )T

Iteration No: 3

y3 = Ax2 = (1.402597,−0.025974, 2.870130, )T

µ3 = 2.870130

x3 =
y3

µ3
= (0.488688,−0.009050, 1.000000, )T

Iteration No: 4

y4 = Ax3 = (1.466063,−0.009050, 2.954751, )T

µ4 = 2.954751

x4 =
y4

µ4
= (0.496172,−0.003063, 1.000000, )T

Iteration No: 5

y5 = Ax4 = (1.488515,−0.003063, 2.984686, )T

µ5 = 2.984686

x5 =
y5

µ5
= (0.498717,−0.001026, 1.000000, )T

Iteration No: 6

y6 = Ax5 = (1.496152,−0.001026, 2.994869, )T

µ6 = 2.994869

x6 =
y6

µ6
= (0.499572,−0.000343, 1.000000, )T

Iteration No: 7

y7 = Ax6 = (1.498715,−0.000343, 2.998287, )T

µ7 = 2.998287

x7 =
y7

µ7
= (0.499857,−0.000114, 1.000000, )T

Iteration No: 8
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y8 = Ax7 = (1.499571,−0.000114, 2.999429, )T

µ8 = 2.999429

x8 =
y8

µ8
= (0.499952,−0.000038, 1.000000, )T

Iteration No: 9

y9 = Ax8 = (1.499857,−0.000038, 2.999809, )T

µ9 = 2.999809

x9 =
y9

µ9
= (0.499984,−0.000013, 1.000000, )T

Iteration No: 10

y10 = Ax9 = (1.499952,−0.000013, 2.999936, )T

µ10 = 2.999936

x10 =
y10

µ10
= (0.499995,−0.000004, 1.000000, )T

Initial Guess 2: Let us take x0 = (0, 0.5, 0.25)T . The power method gives the following:
Iteration No: 1

y1 = Ax0 = (0.000000, 3.500000,−8.750000, )T

µ1 = 8.750000

x1 =
y1

µ1
= (0.000000, 0.400000,−1.000000, )T

Iteration No: 2

y2 = Ax1 = (0.000000, 0.400000,−1.000000, )T

µ2 = 1.000000

x2 =
y2

µ2
= (0.000000, 0.400000,−1.000000, )T

Iteration No: 3

y3 = Ax2 = (0.000000, 0.400000,−1.000000, )T

µ3 = 1.000000

x3 =
y3

µ3
= (0.000000, 0.400000,−1.000000, )T

Iteration No: 4

y4 = Ax3 = (0.000000, 0.400000,−1.000000, )T

µ4 = 1.000000

x4 =
y4

µ4
= (0.000000, 0.400000,−1.000000, )T

Note that in the second initial guess, the first coordinate is zero and therefore, c1 in the power method is
zero. This makes the iteration to converge to λ2, which is the next dominant eigenvalue. ⊓⊔

3.7 Gerschgorin’s Theorem

An important tool in eigenvalue approximation is the ability to localize the eigenvalues, and the most
important tool in eigenvalue localization is Gerschgorin’s theorem.

Theorem 3.23 (Gerschgorin).

Let A ∈ R
n×n be given, and define the quantities
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ri =

n
∑

j=1,j 6=i

|aij |,

Di = {z ∈ C/|z − aii| ≤ ri}.
Then every eigenvalue of A lies in the union of the disks Di, that is,

λk ∈ ∪n
i=1Di

for all k = 1, 2, · · · , n. Moreover, if any collection of p disks is disjoint from the other n− p disks, then
we know that exactly p eigenvalues are contained in the union of the set of p disks, and exactly n − p
eigenvalues are contained in the set of n− p disks.

Example 3.24. Consider the matrix

A =





2 1 0
1 2 1
0 1 2





Center of the disks: a11 = 2, a22 = 2, a33 = 2. The disks are concentric.
Radius of the disks: r1 = 1, r2 = 2, r3 = 1.
The eigenvalues are λ1 = 3.1414, λ2 = 2, λ3 = 0.5859. ⊓⊔

Example 3.25. Consider the matrix

A =





0 2 0
2 7 1
0 1 4





Center of the disks: a11 = 0, a22 = 7, a33 = 4.
Radius of the disks: r1 = 2, r2 = 3, r3 = 1.
The eigenvalues are λ1 = 0.158197, λ2 = 3.39573, λ3 = 7.446072. ⊓⊔
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Exercise 3

I. Direct Methods

1. Given the linear system 2x1 − 6αx2 = 3, 3αx1 − x2 = 3
2 .

(a) Find value(s) of α for which the system has no solution. (b) Find value(s) of α for which the
system has infinitely many solutions. (c) Assuming a unique solution exists for a given α, find the
solution.

2. Use Gaussian elimination method (both with and without pivoting) to find the solution of the
following systems:
(i) 6x1 + 2x2 + 2x3 = −2, 2x1 + 0.6667x2 + 0.3333x3 = 1, x1 + 2x2 − x3 = 0
Answer: x1 = 2.599928, x2 = -3.799904, x3 = -4.999880, Number of Pivoting = 1.
(ii) 0.729x1 + 0.81x2 + 0.9x3 = 0.6867, x1 + x2 + x3 = 0.8338, 1.331x1 + 1.21x2 + 1.1x3 = 1
Answer: x1 = 0.224545, x2 = 0.281364, x3 = 0.327891, Number of Pivoting = 2.
(iii) x1 − x2 + 3x3 = 2, 3x1 − 3x2 + x3 = −1, x1 + x2 = 3.
Answer: x1 = 1.187500, x2 = 1.812500, x3 = 0.875000, Number of Pivoting = 2.

3. Solve the system 0.004x1 + x2 = 1, x1 + x2 = 2 (i) exactly, (ii) by Gaussian elimination using a
two digit rounding calculator, and (iii) interchanging the equations and then solving by Gaussian
elimination using a two digit rounding calculator.

4. Solve the following system by Gaussian elimination, first without row interchanges and then with
row interchanges, using four-digit rounding arithmetic:

x+ 592y = 437, 592x+ 4308y = 2251.

5. Solve the system 0.5x1 − x2 = −9.5, 1.02x1 − 2x2 = −18.8 using Gaussian elimination method.
Solve the same system with a11 modified slightly to 0.52 (instead of 0.5). In both the cases, use
rounding upto 5 digits after decimal point. Obtain the residual error in each case.

6. For an ǫ with absolute value very much smaller than 1, solve the linear system

x1 + x2 + x3 = 6, 3x1 + (3 + ǫ)x2 + 4x3 = 20, 2x1 + x2 + 3x3 = 13

using Gaussian elimination method both with and without partial pivoting. Obtain the residual
error in each case on a computer for which the ǫ is an unit round.

7. In the n× n system of linear equations

a11x1 + · · ·+ a1nxn = b1, · · · , an1x1 + · · ·+ annxn = bn

let aij = 0 whenever i−j ≥ 2. Write out the general form of this system. Use Gaussian elimination
to solve it, taking advantage of the elements that are known to be zero. Do an operations count
in this case.

8. Obtain the LU factorization of the matrix




4 1 1
1 4 −2
3 2 −4





Use this factorization to solve the system with b = (4, 4, 6)T .

9. Show that the following matrix cannot be written in the LU factorization form:





1 2 6
4 8 −1
−2 3 5





10. Show that the matrix




2 2 1
1 1 1
3 2 1





is invertible but has no LU factorization. Do a suitable interchange of rows and/or columns to
get an invertible matrix, which has LU factorization.
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II. Errors and Matrix Norm

11. Use the Gaussian elimination method with rounding upto 5 digits after decimal point to solve the
system 0.52x1 − x2 = −9.5, 1.02x1 − 2x2 = −18.8. Use residual corrector algorithm to improve
the solution till the error vector becomes zero.

12. Solve the system x1 + 1.001x2 = 2.001, x1 + x2 = 2 (i) Compute the residual r = Ay − b for
y = (2, 0)T . (ii) Compute the relative error of y with respect to the exact solution x of the above
system (use Euclidean norm in R

2 defined by ||x|| =
√

x2
1 + x2

2).

13. For any n× n matrices A and B, and x ∈ R
n, show that

i. ‖Ax‖ ≤ ‖A‖‖x‖
ii. ‖AB‖ ≤ ‖A‖‖B‖
where the matrix norm is the induced norm obtained from the corresponding vector norm.

14. Solve the system

5x1 + 7x2 = b1

7x1 + 10x2 = b2

using Gaussian elimination method to obtain the solution x1 when bT = (b1, b2) = (0.7, 1). Also
solve the above system with bA = (b1, b2) = (0.69, 1.01) using the same method to obtain the
solution x2. Show that

‖x1 − x2‖2
‖x1‖2

≤ ‖A‖2‖A−1‖2
‖bT − bA‖2

‖bT ‖2
where A is the 2× 2 coefficient matrix of the above system and the norm in the above inequality
is the Eucledian norm for vector and the corresponding induced norm for the matrix.

15. Show by an example that || · ||M defined by ||A||M = max
1≤i,j≤n

|aij |, does not define an induced

matrix norm.

16. Show that κ(A) ≥ 1 for any n× n non-singular matrix A.

17. For any two n× n non-singular matrices A and B, show that κ(AB) ≤ κ(A)κ(B).

18. Let A(α) =

[

0.1α 0.1α
1.0 2.5

]

. Determine α such that the condition number of A(α) is minimized.

Use the maximum row norm.

19. Estimate the effect of a disturbance on the right hand side vector b by adding (ǫ1, ǫ2)
T to b, where

|ǫ1|, |ǫ2| ≤ 10−4, when the system of equations is given by x1 + 2x2 = 5, 2x1 − x2 = 0 (use
maximum norm for vectors and maximum row norm for matrices).

20. Find a function C(ǫ) > 0 such that C(ǫ) ≤ κ(A) using the maximum row norm, when

A =





1 −1 1
−1 ǫ ǫ
1 ǫ ǫ





III. Iteration Method

21. Find the n× n matrix B and the n-dimensional vector c such that the Gauss-Seidal method can
be written in the form

x(k+1) = Bx(k) + c, k = 1, 2, · · ·

22. Show that the Gauss-Seidal method converges if the coefficient matrix is diagonally dominant.

23. Study the convergence of the Jacobi and the Gauss-Seidel method for the following systems by
starting with x0 = (0, 0, 0)T and performing three iterations:
(i)5x1 + 2x2 + x3 = 0.12, 1.75x1 + 7x2 + 0.5x3 = 0.1, x1 + 0.2x2 + 4.5x3 = 0.5.
(ii)x1 − 2x2 + 2x3 = 1, − x1 + x2 − x3 = 1, − 2x1 − 2x2 + x3 = 1.
(iii)x1 + x2 + 10x3 = −1, 2x1 + 3x2 + 5x3 = −6, 3x1 + 2x2 − 3x3 = 4.
Check the convergence by obtaining the maximum norm of the residual vector.

24. Use Jacobi method to perform 3 iterations with x(0) = (0, 0, 0) to get x(1), x(2) and x(3) for the
system
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−x1 + 5x2 − 2x3 = 3, x1 + x2 − 4x3 = −9, 4x1 − x2 + 2x3 = 8

Compute the maximum norm of the residual error r1, r2 and r3 in x(1), x(2) and x(3), respectively,
obtained above. (Observe that the maximum norm of the residual errors increase. Infact, the
Jacobi iterative sequence diverges in this case). Interchange the rows suitably in the above system
so that the Jacobi iterative sequence converges. Justify your answer without calculating the Jacobi
iterations.

25. Study the convergence of the Jacobi and the Gauss-Seidel method for the following system by
starting with x0 = (0, 0, 0)T and performing 20 iterations (using computer):
x1 + 0.5x2 + 0.5x3 = 1, 0.5x1 + 1x2 + 0.5x3 = 8, 0.5x1 + 0.5x2 + x3 = 1.
Check the convergence by obtaining the maximum norm of the residual vector.

26. For an iterative method x(k) = Bx(k−1)+c with an appropriate choice of x0, show that the error
e(k) has the estimate

‖e(k)‖ ≤ ‖B‖k+1

1− ‖B‖‖c‖.

Use this estimate to find the number of iterations needed to compute the solution of the system

10x1 − x2 + 2x3 − 3x4 = 0, x1 + 10x2 − x3 + 2x4 = 5,

2x2 + 3x2 + 20x3 − x4 = −10, 3x1 + 2x2 + x3 + 20x4 = 15

using Jacobi method with absolute error within 10−4 and x(0) = c (use maximum norm for vectors
and maximum row norm for matrices). Hint: In class, we have proved ‖e(k)‖ ≤ ‖B‖k‖e(0)‖. But
‖e(0)‖ = ‖x− x(0)‖ ≤ ‖x(1) − x(0)‖+ ‖B‖‖x− x(0)‖. In this inequality, solve for ‖x− x(0)‖ and

substitute on the RHS of the first inequality to get ‖e(k)‖ ≤ ‖B‖k
1− ‖B‖‖x

(1) − x(0)‖. Finally, take

x(0) = c to get the desired result.

27. Let x be the solution of the system Ax = b. Show that the following statements are equivalent:

i. the iterative method
x(k+1) = Bx(k) + c, k = 1, 2, · · ·

is convergent (ie., for any x(0), we have x(k) → x as k → ∞.

ii. the spectral radius rσ(B) < 1.

iii. there exists a induced matrix norm ‖ · ‖ such that ‖B‖ < 1.

Hint: Show that (i)⇒(ii)⇒(iii)⇒(i). To prove (i)⇒(ii), first show that B(k)y → 0 as k → ∞,
for an arbitrary vector y. Then replace this arbitrary vector by an eigen vector of B. In proving
(ii)⇒(iii), use the following result (which you don’t need to prove): Let A be a given n×n matrix
and let ǫ > 0. Then there exists an induced matrix norm ‖ · ‖ such that ‖A‖ ≤ rσ(A) + ǫ.

IV. Eigenvalue Problem

28. Let A be an non-singular n× n matrix with the condition that the eigenvalues λi of A satisfy

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|

and has n linearly independent eigenvectors, vi, i = 1, · · · , n. Let the vector x(0) ∈ R
n is such

that

x(0) =

n
∑

j=1

cjvj , c1 6= 0.

Then find a constant C > 0 such that

|λ1 − µk| ≤ C

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

,

where µk is as defined in the power method and k = 1, 2, · · · .
29. The matrix

A =





0.7825 0.8154 − 0.1897
−0.3676 2.2462 − 0.0573
−0.1838 0.1231 1.9714




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has eigenvalues λ1 = 2, λ = 2 and λ3 = 1. Does the power method converge for the above matrix?
Justify your answer. Perform 5 iterations starting from the initial guess x(0) = (1, 3, 6) to verify
your answer.

30. The matrix

A =





2 0 0
2 1 0
3 0 1





has eigenvalues λ1 = 2, λ = 1 and λ3 = 1 and the corresponding eigen vectors may be taken as
v1 = (1, 2, 3)T , v2 = (0, 1, 2)T and v3 = (0, 2, 1)T . Perform 3 iterations to find the eigenvalue and
the corresponding eigen vector to which the power method converge when we start the iteration
with the initial guess x(0) = (0, 0.5, 0.75)T . Without performing the iteration, find the eigenvalue
and the corresponding eigen vector to which the power method converge when we start the
iteration with the initial guess x(0) = (0.001, 0.5, 0.75)T . Justify your answer.

31. The matrix

A =





5.4 0 0
−113.0233 −0.5388 −0.6461
−46.0567 −6.4358 −0.9612





has eigenvalues λ1 = 5.4, λ = 1.3 and λ3 = −2.8 with corresponding eigen vectors v1 =
(0.2,−4.1, 2.7)T , v2 = (0, 1.3,−3.7)T and v3 = (0, 2.6, 9.1)T . To which eigenvalue and the
corresponding eigen vector does the power method converge if we start with the initial guess
x(0) = (0, 1, 1)? Justify your answer.

32. Use Gerschgorin’s theorem to the following matrix and determine the intervals in which the
eigenvalues lie.

A =





0.5 0 0.2
0 3.15 −1

0.57 0 −7.43





Can power method be used for this matrix? Justify your answer. Use Power method to compute
the eigenvalue which is largest in the absolute value and the corresponding eigenvector each of
the above matrix.

V. Computer Program

33. Write a computer program (in any programming language that you know) to compute an eigen-
value and the corresponding eigen vector of a given n× n matrix A.

Use your program for the following matrices. In each case plot a graph with x axis as the number
of iterations and y axis as the eigenvalue obtained in that iteration.

i. A =









1.2357 − 0.5714 0.0024
0.5029 − 0.0557 − 0.0638

0.78 − 1.56 0.88









,x(0) = (1, 1, 1)T . Perform 110 iteration.(Eigen values

are 0.1, 0.95, 1.01 and the corresponding eigenvectors may be taken as (1, 2, 3)T , (2, 1, 0)T

and (5, 2, 6)T .)

ii. A =









0.5029 0.0051 − 0.0130
0.8663 2.0160 − 3.8984
0.5775 1.0107 − 2.0989









,x(0) = (1, 1, 1)T . Perform 50 iteration.(Eigen values are

-0.58, 0.5, 0.5 and the corresponding eigenvectors may be taken as (1, 0.2, 0.3)T , (0.1, 0.2, 0.1)T

and (0.001, 0.3, 0.2)T .)

iii. A =





−0.5088 − 0.0025 0.0038
−2.0425 0.3050 0.4125
−1.3588 0.5375 − 0.2263



 ,x(0) = (1, 1, 1)T . Perform 70 iteration.(Eigen values

are -0.5, -0.51, 0.58 and the corresponding eigenvectors may be taken as (1, 1, 3)T , (1, 2, 1)T

and (0, 3, 2)T .)
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iv. A =





−0.5080 − 0.0040 0.0060
−1.8358 0.0986 0.6186
−1.2212 0.4004 − 0.0896



 ,x(0) = (1, 1, 1)T . Perform as many as iterations as

you wish.(Eigen values are -0.5, -0.51, 0.511 and the corresponding eigenvectors may be taken
as (1, 1, 2)T , (1, 2, 1)T and (0, 3, 2)T .)





4

Nonlinear Equations

One of the most frequently occuring problems in scientific work is to find the roots of equations of the
form

f(x) = 0. (4.1)

In this chapter, we introduce various iterative methods to obtain an approximate solution for the equation
(4.1).

By approximate solution to (4.1) we mean a point x∗ for which the function f(x) is very near to zero,
ie., f(x∗) ≈ 0.

In what follows, we always assume that f(x) is continuously differentiable real-valued function of a
real variable x. We further assume that the equation (4.1) has only isolated roots, that is, for each root
of (4.1) there is a neighbourhood which does not contain any other roots of the equation.

The key idea in approximating the isolated real roots of (4.1) consisting of two steps:

I. Initial guess: Establishing the smallest possible intervals [a, b] constaining one and only one root of
the equation (4.1). Take one point x0 ∈ [a, b] as an approximation to the root of (4.1).

II. Improving the value of the root If this initial guess x0 is not in desired accuracy, then devise a
method to improve the accuracy.

This process of improving the value of the root is called the iterative process and such methods are called
iterative methods. A general form of an iterative method may be written as

xn+1 = T (xn), n = 0, 1, · · · (4.2)

where T is a real-valued function called an iteration function. In the process of iterating a solution, we
obtain a sequence of numbers {xn} which are expected to converge to the root of (4.1).

Definition 4.1 (Convergence).

A sequence of iterates {xn} is said to converge with order p ≥ 1 to a point x∗ if

|xn+1 − x∗| ≤ c|xn − x∗|p, n ≥ 0 (4.3)

for some constant c > 0.

Remark 4.2. If p = 1, the sequence is said to converge linearly to x∗, if p = 2, the sequence is said to
converge quadratically and so on. ⊓⊔

4.1 Fixed-Point Iteration Method

The idea of this method is to rewrite the equation (4.1) in the form

x = g(x) (4.4)

so that any solution of (4.4) ie., any fixed point of g(x) is a solution of (4.1).
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Example 4.3. The equation x2 − x− 2 = 0 can be written as
1. x = x2 − 2
2. x =

√
x+ 2

3. x = 1 + 2
x

and so on. ⊓⊔

The fixed-point iteration method is to set an iterative process of the form (4.2) with iteration function
g(x). Note that for a given nonlinear equation, this iteration function is not unique. Once the iteration
function is chosen, then the method is defined as follows:

Step 1: Choose an initial guess x0.

Step 2: Define the iteration methods as

xn+1 = g(xn), n = 0, 1, · · · (4.5)

The crucial point in this method is to choose a good iteration function g(x). A good iteration function
should satisfy the following properties:

I. For the given starting point x0, the successive approximation xn given by (4.5) can be calculated.

II. The sequence x1, x2, · · · converges to some point ξ.

III. The limit ξ is a fixed point of g(x), ie., ξ = g(ξ).

The first property is the most needed one as illustrated in the following example.

Example 4.4. Consider the equation x2 − x = 0. We can take x = ±√
x and suppose we define g(x) =

−√
x. Since g(x) is defined only for x > 0, we have to choose x0 > 0. For this value of x0, we have

g(x0) < 0 and therefore, x1 cannot be calculated. ⊓⊔

Therefore, the choice of g(x) has to be made carefully so that the sequece of iterates can be calculated.
How to choose such a iteration function g(x)? Since, we expect x = g(x), we have to define g(x) in such
a way that this value should again belong to the domain of g. That is,

Assumption 1: a ≤ g(x) ≤ b for all a ≤ x ≤ b.

It follows that if a ≤ x0 ≤ b, then for all n, xn ∈ [a, b] and therefore xn+1 = g(xn) is defined and belongs
to [a, b].

Let us now discuss about the point 3. This is a natural expectation since the expression x = g(x),
which is the solution of the required equation is precisely the definition of a fixed point. To achieve this,
we need g(x) to be a continuous function. For if xn → x∗ then

x∗ = lim
n→∞

xn = lim
n→∞

g(xn−1) = g( lim
n→∞

xn−1) = g(x∗)

Therefore, we need

Assumption 2: The function g(x) is continuous.

Let us now discuss point 2. This point is well understood geometrically. The figure (a) and (c) il-
lustrated the convergence of the fixed-point iterations whereas the figures (b) and (d) illustrated the
diverging iterations. In this geometrical observation, we see that when g′(x) < 1, we have convergence
and otherwise, we have divergence. Therefore, we make the asspumption

Assumption 3: The iteration function g(x) is differentiable on I = [a, b]. Further, there exists a constant
0 < K < 1 such that

|g′(x)| ≤ K, x ∈ I. (4.6)

Theorem 4.5. Assume that g(x) is continuously differentiable on [a, b], and a ≤ g(x) ≤ b with

λ = max
a≤x≤b

|g′(x)| < 1. (4.7)

Then
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Fig. 4.1. Fixed-point Iteration Procedure.

I. x = g(x) has a unique solution x∗ in I.

II. For any choice of x0 ∈ I, with xn+1 = g(xn), n = 0, 1, · · · ,

lim
n→∞

xn = x∗.

III. We further have

|xn − x∗| ≤ λn|x0 − x∗| ≤ λn

1− λ
|x1 − x0| (4.8)

and

lim
n→∞

x∗ − xn+1

x∗ − xn
= g′(x∗). (4.9)

Proof. Proof for 1 is omitted. To examine the convergence of the iterates xn, we note that

|x∗ − xn+1| = |g(x∗)− g(xn)| ≤ λ|x∗ − xn| (by Mean-value theorem and (4.6))

By induction, we have
|x∗ − xn+1| ≤ λn|x0 − x∗|, n = 0, 1, · · · .

Since, as n → ∞, λn → 0, we have xn → x∗. Further, we have

|x0 − x∗| = |x0 − x1 + x1 − x∗| ≤ |x0 − x1|+ |x1 − x∗| ≤ λ|x0 − x∗|+ |x0 − x1|.

Then solving for |x0 − x∗|, we get (4.8).

Now we will prove the rate of convergence (4.9). From Mean-value theorem

x∗ − xn+1 = g(x∗)− g(xn) = g′(ξn)(x
∗ − xn), n = 0, 1, · · · .

with ξn an unknown point between x∗ and xn. Since xn → x∗, we must have ξn → x∗ and therefore,

lim
n→∞

x∗ − xn+1

x∗ − xn
= lim

n→∞
g′(ξn) = g′(x∗).

This completes the proof. ⊓⊔

Example 4.6. Consider the equation sinx+x2−1 = 0. Take the initial interval as [0, 1]. There are three
possible choices for the iteration function, namely,

I. g1(x) = sin−1(1− x2),

II. g2(x) = −
√
1− sinx,

III. g3(x) =
√
1− sinx,
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Here we have g′1(x) = −2√
2−x2

. We can see that |g′1(x)| > 1. Taking x0 = 0.8 and denoting the absolute

error as ǫ, we have

n g1(x) ǫ
0 0.368268 0.268465
1 1.043914 0.407181
2 -0.089877 0.726610
3 1.443606 0.806873

The sequence of iterations is diverging as expected.

If we take g2(x), clearly the assumption 1 is violated and therefore is not suitable for the iteration
process. Let us take g3(x). Here, we have g′3(x) =

− cosx√
1−sin x

. Therefore,

|g′3(x)| =
√

1− sin2 x

2
√
1− sinx

=

√
1 + sinx

2
≤ 1√

2
< 1.

Taking x0 = 0.8 and denoting the absolute error as ǫ, we have

n g3(x) ǫ
0 0.531643 0.105090
1 0.702175 0.065442
2 0.595080 0.041653
3 0.662891 0.026158

The sequence is converging. ⊓⊔

When to stop the iteration?

Assume a positive number ǫ which is very small. Then, one of the following conditions may be used:

Condition 1: After each iteration check the inequality

|xn − xn−k| < ǫ

for some fixed positive integer k. If this inequality is satisfied, the iteration can be stopped.

Condition 2: Another condition may be to check

|f(xn)| < ǫ.

This error is sometime called the residual error for the equation f(x) = 0.

4.2 Bisection Method

Assume that f(x) is continuous on a given interval [a, b] and that is also satisfies f(a)f(b) < 0 with
f(a) 6= 0 and f(b) 6= 0. Using the intermediate value theorem, we can see that the function f(x) has
atleast one root in [a, b]. We assume that there is only one root for the equation (4.1) in the interval [a, b].
The Bisection includes the following steps:

Step 1: Given an initial interval [a0, b0], set n = 0.
Step 2: Define cn+1 = (an + bn)/2, the midpoint of the interval [an, bn].
Step 3:
If f(an)f(cn+1) = 0, then x∗ = cn+1 is the root.
If f(an)f(cn+1) < 0, then take an+1 = an, bn+1 = cn+1 and the root x∗ ∈ [an+1, bn+1].
If f(an)f(cn+1) > 0, then take an+1 = cn+1, bn+1 = bn and the root x∗ ∈ [an+1, bn+1].
Step 4: If the root is not obtained in step 3, then find the length of the new reduced interval [an+1, bn+1].
If the length of the interval bn+1 − an+1 is less than a prescribed positive number ǫ, then take the mid
point of this interval (x∗ = (bn+1 + an+1)/2) as the approximate root of the equation (4.1), otherwise go
to step 2.

The following theorem gives the convergence and error for the bisection method.
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Theorem 4.7 (Convergence and Error of Bisection Method).

Let [a0, b0] = [a, b] be the initial interval, with f(a)f(b) < 0. Define the approximate root as xn =
(bn−1 + an−1)/2. Then there exists a root x∗ ∈ [a, b] such that

|xn − x∗| ≤
(

1

2

)n

(b − a). (4.10)

Moveover, to achieve accuracy of |xn − x∗| ≤ ǫ, it suffices to take

n ≥ log(b − a)− log ǫ

log 2
. (4.11)

Proof. It is obvious that

bn − an =
1

2
(bn−1 − an−1),

which implies that

bn − an =

(

1

2

)n

(b0 − a0).

Therefore,

|xn − x∗| ≤ 1

2
(bn−1 − an−1) =

1

2

(

1

2

)n−1

(b0 − a0) =

(

1

2

)n

(b0 − a0),

which proves the estimate. To obtain the bound, we observe that

(

1

2

)n

(b− a) ≤ ǫ.

Taking log on both sides, we get the desired bound. ⊓⊔

Example 4.8. Consider the equation sinx+x2− 1 = 0. Take the initial interval as [0, 1]. That is a0 = 0,
b0 = 1. If the permissible absolute error is 0.125, ie. |xn − x∗| ≤ 0.125, then by (4.11), we must perform
atleast

n ≥ log(1)− log(0.125)

log 2
= 3

number of iterations. Let us perform the iterations.

a0 = 0, b0 = 1; c1 = 0.5, f(c1) = −0.27 < 0 ⇒ a1 = 0.5, b1 = 1.

a1 = 0.5, b1 = 1; c2 = 0.75, f(c2) = 0.24 > 0 ⇒ a2 = 0.5, b2 = 0.75.

a2 = 0.5, b2 = 0.75; c3 = 0.625, f(c3) = −0.024 < 0 ⇒ a3 = 0.625, b3 = 0.75.

Since |a1 − b1| = 0.125 and |x3 − x∗| ≤ |a1 − b1| = 0.125, we can stop the iteration here. We may take
the approximate solution for the equation as x∗ ≈ 0.6875. The true value is x∗ ≈ 0.636733. Therefore,
the absolute error is 0.05. ⊓⊔

4.3 Secant Method

Secant method is one of the most efficient method among all regula-falsi methods. Let us first explain
the regula-falsi method and given the modification in this method which leads to secant method.

The regula-falsi method is closely related to the bisection method introduced in section 5.2. Recall the
bisection method is to subdivide the interval [a, b] in which the root lies into two parts, take the part of
the interval which still holds the root and discard the other part of the interval. Although the bisection
method always converges to the solution, the convergence is sometime very slow in the sense that if the
root is very close to one of the boundary points (ie.,. a and b) of the interval. In such a situation, instead
of taking the midpoint of the interval, we take the weighted average of f(x) given by

w =
f(b)a− f(a)b

f(b)− f(a)
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Example 4.9. Consider the equation f(x) := x3 − x− 1 = 0. Clearly, f(1) = −1 < 0 and f(2) = 5 > 0.
Thus, we can take the initial interval for the bisection method as [1, 2]. But here we observe that f(1) is
more close to 0 than f(2). So, it is very likely that the root x∗ of the given equation is closer to x = 1
than x = 2. Rather, the weighted of f(x) is

w =
5× 1 + 1× 2

6
= 1.16666 · · · .

Now f(w) = −0.578703 · · ·< 0 < 5 = f(2). Repeating this process once again, we get

w =
5× (1.1666 · · · ) + (0.578703 · · · )× 2

5.578703 · · · = 1.253112 · · ·

from which we have f(w) = −0.285363 · · ·< 0 < 5 = f(2).

Such an algorithm is called the regula-falsi method. The algorithm is as follows

Step 1: Given an initial interval [a0, b0], set n = 0.
Step 2: Define

wn+1 =
f(bn)an − f(an)bn

f(bn)− f(an)
. (4.12)

Step 3:
If f(an)f(wn+1) = 0, then x∗ = cn+1 is the root.
If f(an)f(wn+1) < 0, then take an+1 = an, bn+1 = wn+1 and the root x∗ ∈ [an+1, bn+1].
If f(an)f(wn+1) > 0, then take an+1 = wn+1, bn+1 = bn and the root x∗ ∈ [an+1, bn+1].
Step 4: If the root is not obtained in step 3, then check the condition

|f(wn+1)| < ǫ

for some pre-assigned positive quantity ǫ. If the condition is satisfied, then take the weight of the next
iteration as the approximate root of the equation (4.1). If this condition is not satisfied, then repeate the
step 2.

Note that the weighted average is the point at which the secant joining the points (a, f(a)) and (b, f(b))
intersects the x-axis. Let us derive this weighted average now. The secant line is given by

s(x) =
f(a)(x− b) + f(b)(a− x)

a− b
=

(f(a)− f(b))x+ f(b)a− f(a)b

a− b
.

The slope of this line is

s′(x) =
f(a)− f(b)

a− b
.

On the other hand, if w is the point of intersection of the secant with x-axis, then the line joining (w, 0)
and (b, f(b)) is given by

l(x) =
f(b)(w − x)

w − b
,

whose slope is

l′(x) =
−f(b)

w − b
.

Equating these slopes, we get

f(a)− f(b)

a− b
=

−f(b)

w − b
⇒ w =

f(b)a− f(a)b

f(b)− f(a)

as expected.

The regula-falsi method can be improved in several ways. The popular one is the secant method.
Given initial values x0 and x1 (not necessarily on the either side of the root) the iteration for secant
method is given by

xn+1 =
f(xn)xn−1 − f(xn−1)xn

f(xn)− f(xn−1)
. (4.13)
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This expression can also be written as

xn+1 = xn − f(xn)
xn − xn−1

f(xn)− f(xn−1)
(4.12a)

Example 4.10. Consider the equation sinx + x2 − 1 = 0. Let x0 = 0, x1 = 1. Then the iterations from
the secant method are given by

n xn ǫ
2 0.543044 0.093689
3 0.626623 0.010110
4 0.637072 0.000339
5 0.636732 0.000001

Recall that the exact solution is x∗ ≈ 0.636733. Obviously, the secant method is much faster than both
bisection and fixed-point iteration methods. ⊓⊔

The order of convergence of secant method is

lim
n→∞

|xn+1 − x∗|
|xn − x∗|r =

∣

∣

∣

∣

f ′′(x∗)

2f ′(x∗)

∣

∣

∣

∣

r−1

. (4.14)

where r = (
√
5 + 1)/2 ≈ 1.62.

4.4 Newton-Raphson Method

If f(x) is differentiable, then on replacing in (4.12a) the slope of the secant by the slope of the tangent
at xn, one gets the iteration formula

xn+1 = xn − f(xn)

f ′(xn)
(4.15)

of Newton-Raphson Method.

Example 4.11. Consider the equation sinx + x2 − 1 = 0. Let x0 = 1. Then the iterations from the
Newton-Raphson method gives

n xn ǫ
1 0.668752 0.032019
2 0.637068 0.000335
3 0.636733 0.000000

Recall that the exact solution is x∗ ≈ 0.636733. Obviously, the Newton-Raphson method is much faster
than both bisection and fixed-point iteration methods. ⊓⊔

Remark 4.12. We will derive analytically the Newton-Raphson method. The Taylor polynomial of degree
n = 1 with remainder is given by

f(x) = f(x0) + f ′(x0)(x− x0) +
(x− x0)

2

2!
f ′′(ξ),

where ξ lies somewhere between x0 and x. Substituting x = x∗ into the above equation, we get

0 = f(x0) + f ′(x0)(x
∗ − x0) +

(x∗ − x0)
2

2!
f ′′(ξ).

When x0 is very close to x∗, then the last term in the above equation is smaller when compared to the
other two terms on the RHS and therefore, can be neglected. The remaining terms read
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f(x0) + f ′(x0)(x
∗ − x0) ≈ 0.

Solving for x∗, and using the notation x1 for this new approximate solution, we get

x1 = x0 −
f(x0)

f ′(x0)
.

When xn−1 is used in place of x0, we get the general formula (4.15). ⊓⊔

Remark 4.13. Let us define

g(x) = x− f(x)

f ′(x)
. (4.16)

Since f(x∗) = 0, it is easy to see that g(x∗) = x∗ and therefore finding root for the equation f(x) = 0
using Newton-Raphson method is equivalent to finding the fixed point of the function g(x). ⊓⊔

Theorem 4.14. Assume that f ∈ C2[a, b] and there exists a number x∗ ∈ [a, b], where f(x∗) = 0. If
f ′(x∗) 6= 0, then there exists a δ > 0 such that the sequence {xn} defined by the iteration (4.15) for
n = 1, 2, · · · will converge to x∗ for any initial approximation x0 ∈ [x∗ − δ, x∗ + δ].

Further, we have

lim
n→∞

|xn+1 − x∗|
|xn − x∗|2 =

|f ′′(x∗)|
2|f ′(x∗)| . (4.17)

Proof. Consider the fixed-point iteration function g(x) defined by (4.16). Now,

g′(x) = 1− f ′(x)f ′(x) − f(x)f ′′(x)

(f ′(x))2
=

f(x)f ′′(x)

(f ′(x))2
.

By hypothesis, f(x∗) = 0 and therefore g′(x∗) = 0. Since g(x) is continuous, it is possible to find a δ > 0
so that |g′(x)| < 1 for all x ∈ (x∗ − δ, x∗ + δ). Therefore, a sufficient condition for the initial guess x0 to
give a convergent sequence is that x0 ∈ (x∗ − δ, x∗ + δ). and that δ be chosen so that

|f(x)f ′′(x)|
|f ′(x)|2 < 1 (4.18)

for all x ∈ (x∗ − δ, x∗ + δ).

By Taylor’s theorem, we have

f(x∗) = f(xn) + (x∗ − xn)f
′(xn) +

(x∗ − xn)
2

2!
f ′′(ξn).

with ξn between x∗ and xn. Note that f(x∗) = 0 by assumption and then divide f ′(xn) to obtain

0 =
f(xn)

f ′(xn)
+ x∗ − xn + (x∗ − xn)

2 f ′′(ξn)

2f ′(xn)

= xn − xn+1 + x∗ − xn + (x∗ − xn)
2 f ′′(ξn)

2f ′(xn)

By taking limit n → ∞, we get the result. ⊓⊔

To examine the order of convergence of the Newton-Raphson method, we need the following definition.

Example 4.15 (Quadratic convergence at an isolated root). Start with x0 = −2.4 and use Newton-
Raphson iteration to find the root x∗ = −2.0 of the polynomial f(x) = x3− 3x+2. The iteration formula
is

xk+1 = g(xk) =
2x3

k − 2

3x2
k − 3

.

Verify that |x∗ − xn+1|/|x∗ − xn|2 ≈ 2/3. ⊓⊔
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Pitfalls:

I. If f ′(xn) = 0 for some n, the method can no longer be applied.

II. If f(x) has no real root, then there is no indication by the method and the iteration may simply
oscillates. For example compute the Newton-Raphson iteration for f(x) = x2 − 4x+ 5.

III. If the equation f(x) = 0 has more than one root and we are specific about capturing a particular
root (say the smallest positive root). Then we have to be careful in choosing the initial guess. If the
initial guess is far away from the expected root, then there is a danger that the iteration converges
to another root of the equation. This usually happens when the slope f ′(x0) is small and the tangent
line to the curve y = f(x) is nearly horizontal.

For example, if f(x) = cosx and we seek the root p = π/2 and start with po = 3, calculation reveals
that x1 = −4.01525, x2 = −4.85266 and so on and the iteration converges to x = −4.71238898 ≈
−3π/2.

IV. Suppose that f(x) is positive and monotone decreasing on an unbounded interval [a,∞) and x0 > a.
Then the sequence might diverge.

Fig. 4.2. Newton-Raphson Method for f(x) = xe−x.

Fig. 4.3. Newton-Raphson Method for f(x) = x3 − x− 3.

For example, if f(x) = xe−x and x0 = 2, then

x1 = 4.0, x2 = 5.333333..., · · · , p15 = 19.72354..., · · · .

and the sequence diverges to +∞. This particular function has another suprising problem. The value
of f(x) goes to zero rapidly as x gets large, for example f(x15) = 0.0000000536, and it is possible
that p15 could be mistaken for a root (as per the residual error).

V. The method can stuck in a cycle. For example f(x) = x3 − x − 3 and the initial approximation is
x0 = 0. Then the sequence is

x1 = −3.00, x2 = −1.961538, x3 = −1.147176, x4 = −0.006579,
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Fig. 4.4. Newton-Raphson Method for f(x) = tan−1(x).

x5 = −3.000389, x6 = −1.961818, x7 = −1.147430, · · ·
and we are stuck in a cycle where xn+4 ≈ xk for k = 0, 1, · · · . But if we start with a value x0

sufficiently close with the root x∗ ≈ 1.6717, then the convergence is obtained (check!!!).

VI. When |g′(x)| ≥ 1 on an interval containing the root x∗, there is a chance of divergent oscillation.

For example, let f(x) = tan−1(x). The funtion g(x) = x−(1+x2) tan−1(x) and g′(x) = −2x tan−1(x).
If we start with the value x0 = 1.45, then

x1 = −1.55− 26, x2 = 1.845932, x3 = −2.88911 · · · .

But if we start with x0 = 0.5, then the iteration converges to the root x = 0.

4.5 System of Nonlinear Equations

Let us present the theory for two equations and the theory for any finite number of equation can be done
in a similar way. Consider the system of two nonlinear equations

f1(x1, x2) = 0, f2(x1, x2) = 0. (4.19)

In vector notation, we write as

f(x) = 0, x = (x1, x2)
T , f(x) = (f1(x1, x2), f2(x1, x2))

T .

We assume that this system admits an isolated root x∗ = (x∗
1, x

∗
2)

T .

For fixed point iteration method, we define the iterative sequence as

x1,n+1 = g1(x1,n, x2,n), x2,n+1 = g2(x1,n, x2,n), (4.20)

where g1 and g2 are iterative functions. In vector notation, we write this as

xn+1 = g(xn), n = 0, 1, · · · .

with xn = (x1,n, x2,n)
T and g(x) = (g1(x1, x2), g2(x1, x2))

T . Convergence of the fixed point iteration
method depends on the choice of the iterative function g.

To analyze the convergence of (4.20) use the following identities

x∗
1 = g1(x

∗
1, x

∗
2), x∗

2 = g∗2(x
∗
1, x

∗
2), (4.21)

where x∗ = (x∗
1, x

∗
2) is an isolated root of (4.19). The Taylor formula gives

gi(x
∗
1, x

∗
2) = gi(x1,n, x2,n) +

∂gi(ξ
(i)
1,n, ξ

(i)
2,n)

∂x1
(x∗

1 − x1,n) +
∂gi(ξ

(i)
1,n, ξ

(i)
2,n)

∂x2
(x∗

2 − x2,n), i = 1, 2,
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where the vector (ξ
(i)
1,n, ξ

(i)
2,n) lie on the line segment joining x∗ and xn. From (4.21) and (4.20), we have

x∗
i − xi,n+1 =

∂gi(ξ
(i)
1,n, ξ

(i)
2,n)

∂x1
(x∗

1 − x1,n) +
∂gi(ξ

(i)
1,n, ξ

(i)
2,n)

∂x2
(x∗

2 − x2,n), i = 1, 2.

In matrix notation, we have

(

x∗
1 − xi,n+1

x∗
2 − xi,n+1

)

=





∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2





(

x∗
1 − xi,n

x∗
2 − xi,n

)

.

We denote the 2× 2 matrix on the RHS of the above equation as

Gn =





∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g1(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x1

∂g2(ξ
(i)
1,n,ξ

(i)
2,n)

∂x2





and recall that this matrix resumbles the Jacobian matrix of the function g = (g1, g2) given by

G(x) =

(

∂g1(x)
∂x1

∂g1(x)
∂x2

∂g2(x)
∂x1

∂g2(x)
∂x2

)

.

In matrix notation, we can write the above equation as

x∗ − xn+1 = Gn(x
∗ − xn).

We state the following convergence theorem without proof.

Theorem 4.16. Let D be a closed, bounded and convex set in the plane (we say D is convex if for any
two points in D, the line segment joining them is also in D). Assume that the components of g(x) are
continuously differentiable at all points of D, and further assume
(a) g(D) ⊂ D,
(b) λ = max

x∈D
‖G(x)‖∞ < 1.

Then

I. x = g(x) has a unique solution x∗ ∈ D.

II. For any initial point x0 ∈ D, the iteration

xn+1 = g(xn)

converges to x∗ ∈ D.

III. ‖x∗ − xn+1‖ ≤ (‖G(x∗)‖∞ + ǫn) ‖x∗ − xn‖∞ with ǫ → 0 as n → ∞.

Proof: Omitted.

We will now see how to choose g for a given system of nonlinear equations (4.19), so as to have a
faster convergence?

Let A be a constant non-singular matrix of order 2×2. We rewrite (4.19) as

x = x+Af(x) =: g(x).

The Jacobian matrix of g(x) is
G(x) = I +AF (x),

where F (x) is the Jacobian matrix of f(x) given by

F (x) =

(

∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

)

.

Choose A such that
‖G(x)‖∞ < 1, x ∈ D.
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Practically this may not be possible. So, for a given x0 choose A such that

‖G(x0)‖∞ < 1.

For rapid convergence, we can choose A such that

‖G(x0)‖∞ = 0,

for sufficiently close x0 to x∗. This is equivalent to taking A as

A = −(F (x0))
−1.

More rapid convergence is obtained when we choose

A = −(F (xn))
−1.

The respective method is the well-known Newton’s method given by

xn+1 = xn − (F (xn))
−1f(xn), n = 0, 1, · · · (4.22)

Example 4.17. Consider solving the system

f1 = 3x2
1 + 4x2

2 − 1 = 0,

f2 = x3
2 − 8x3

1 − 1 = 0.

with x0 = (−0.5, 0.25). The Jacobian of the given system is

F (x) =

(

∂f1(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x1

∂f2(x)
∂x2

)

=

(

6x1 8x2

−24x2
1 3x2

2

)

F−1(x) =
1

192x1 + 18x2

( 3x2

x1
− 8

x1
24x1

x2

6
x2

)

Put x = (x1, x2) = (−0.5, 0.25) =: x0, we get

F−1(x0) =

(

0.0164 −0.1749
0.5246 −0.2623

)

The fixed point iteration is given by

(

x1,n+1

x2,n+1

)

=

(

x1,n

x2,n

)

−
(

0.0164 −0.1749
0.5246 −0.2623

)(

3x2
1,n + 4x2

2,n − 1
x3
2,n − 8x3

1,n − 1

)

For the first iteration, we have

(

x1,1

x2,1

)

=

(

−0.5
0.25

)

−
(

0.0164 −0.1749
0.5246 −0.2623

)(

0
0.0156

)

=

(

−0.4973
0.2541

)

and so on.

4.6 Unconstrained Optimization

Optimization refers to finding the maximum or minimum of a continuous function f(x1, x2, · · · , xn).

A point x∗ is called a strict local minimum of f if f(x) > f(x∗) in a small neighborhood of x∗. We
restrict ourselves in finding local minimum of f(x).

A necessary condition for x∗ to be a strict local minimum is that

∂f(x)

∂xi
= 0, i = 1, 2, · · · , n.
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Thus, the nonlinear system
∂f(x)

∂xi
= 0, i = 1, 2, · · · , n

can be solved and each calculated solution can be checked as to whether it is a local maximum or minimum
or neither.

In the gradiant notation, this system can be written as

∇f(x) = 0. (4.23)

where

∇f(x) =

(

∂f

∂x1
, · · · , ∂f

∂xn

)T

.

To solve the system (4.23), Newton’s method can be used. The Newton’s method leads to

xn+1 = xn −H(xn)
−1∇f(xn), n = 0, 1, 2, · · · ,

where H is the Hessian matrix of f given by

H(x)ij =
∂2f(x)

∂xi∂xj
, 1 ≤ i, j ≤ n. (4.24)

Note that if x∗ is strict local minimum of f , then Taylor formula can be used to show that H(x∗) is
non-singular and therefore H is non-singular in a small neighborhood of x∗.

Example 4.18. Given f(x1, x2) = x3
1 + 4x1x

2
2 + x1 − x2. To find a point at which this function attains

its maximum or minimum, we have to solve the system (4.23). Here

∂f

∂x1
= 3x2

1 + 4x2
2 + 1,

∂f

∂x2
= 8x1x2 − 1.

Therefore, the required system of equations is

3x2
1 + 4x2

2 + 1 = 0 (4.25)

8x1x2 − 1 = 0 (4.26)

To form the Newton’s method for the above system of equations, we need the inverse of the Hessian
matrix of f given by

H(x) =

(

∂2f1(x)
∂2x1

∂2f1(x)
∂x1∂x2

∂2f2(x)
∂x2∂x1

∂2f2(x)
∂2x2

)

=

(

6x1 8x2

8x2 8x1

)

.

Inverse of this matrix is given by

H−1(x) =
1

8(3x2
1 − 4x2

2)

(

4x1 −4x2

−4x2 3x1

)

.

Thus the Newton’s method for finding the maximum or minimum for the given function f takes the form

(

x1,n+1

x2,n+1

)

=

(

x1,n

x2,n

)

− 1

8(3x2
1,n − 4x2

2,n)

(

4x1,n −4x2,n

−4x2,n 3x1,n

)(

3x2
1,n + 4x2

2,n + 1
8x1,nx2,n − 1

)

, n = 0, 1, · · ·

When the initial guess x0 = (x1,0, x2,0)
T is given, the above iteration for n = 0, 1, 2, · · · can be computed.

⊓⊔
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Exercise 4

I. Fixed-Point Iteration Method

1. Let f(x) = 0 be a nonlinear equation for which the sequence {xn}, generated by an appropriate
fixed-point iteration method, converges to a limit x∗. Under what condition on the iteration
function does this limit x∗ be a solution to the nonlinear equation f(x) = 0? Prove it.

2. For each of the following equations, find the correct iteration function that converges to the desired
solution:
(a) x− tanx = 0, (b) e−x − cosx = 0.
Study geometrically how the iterations behave with different iteration functions.

3. Show that g(x) = π + 1
2 sin(x/2) has a unique fixed point on [0, 2π]. Use fixed-point iteration

method with g as the iteration function and x0 = 0 to find an approximate solution for the
equaton 1

2 sin(x/2)− x+ π = 0. Stop the iteration when the residual error is less than 10−4.

4. If α and β be the roots of x2 + ax+ b = 0. If the iterations

xn+1 = −axn + b

xn
and xn+1 = − b

xn + a

converges, then show that they converge to α and β, respectively, if |α| > |β|.
5. Let {xn} ⊂ [a, b] be a sequence generated by a fixed point iteration method with continuous

iteration function g(x). If this sequence converges to x∗, then show that

|xn+1 − x∗| ≤ λ

1− λ
|xn+1 − xn|,

where λ := max
x∈[a,b]

|g′(x)|. (This enables us to use |xn+1 − xn| to decide when to stop iterating.)

6. Give reason for why the sequence xn+1 = 1− 0.9x2
n, with initial guess x0 = 0, does not converge

to any solution of the quadratic equation 0.9x2 + x − 1 = 0? [Hint: Observe what happens after
25 iterations]

7. Let x∗ be the smallest positive root of the equation 20x3 − 20x2 − 25x+ 4 = 0. If the fixed-point
iteration method is used in solving this equation with the iteration function g(x) = x3−x2− x

4 +
1
5

for all x ∈ [0, 1] and x0 = 0, then find the number of iterations n required in such a way that
|x∗ − xn| < 10−3.

II. Bisection Method

7. Find the number of iterations to be performed in the bisection method to obtain a root of the
equation

2x6 − 5x4 + 2 = 0

in the interval [0, 1] with absolute error ǫ ≤ 10−3. Find the approximation solution.

8. Find the approximate solution of the equation x sinx− 1 = 0 (sine is calculated in radians) in the
interval [0, 2] using Bisection method. Obtain the number of iterations to be performed to obtain
a solution whose absolute error is less than 10−3.

9. Find the root of the equation 10x + x − 4 = 0 correct to four significant digits by the bisection
method.

III. Secant and Newton-Raphson Method

10. Let x∗ be the point of intersection of the circle

(x+ 1)2 + (y − 2)2 = 16

and the positive x-axis. Choose a value ξ with 0.5 < ξ < 3, such that the iterative sequence
generated by the secant method (with circle function values taken in the fourth quadrant) fails
to converge to x∗ when started with the initial guess x0 = 0.5 and x1 = ξ. Explain geometrically
why secant method failed to converge with your choice of the initial guess (x0, x1).

11. Given the following equations:
(a) x4 − x− 10 = 0, (b) x− e−x = 0.



4.6 Unconstrained Optimization 65

Determine the initial approximations for finding the smallest positive root. Use these to find the
roots upto a desired accuracy with secant and Newton-Raphson methods.

12. Find the iterative method based on Newton-Raphson method for finding
√
N and N1/3, where

N is a positive real number. Apply the methods to N = 18 to obtain the results correct to two
significan digits.

13. Find the iterative method based on the Newton-Raphson method for approximating the root of
the equation sinx = 0 in the interval (−π/2, π/2).
Let α ∈ (−π/2, π/2) and α 6= 0 be such that if the above iterative process is started with the ini-
tial guess x0 = α, then the iteration becomes a cycle in the sense that xn+2 = xn, for n = 0, 1, · · · .
Find a non-linear equation g(x) = 0 whose solution is α.
Starting with the initial guess x0 = α, write the first five iterations using Newton-Raphson method
for the equation sinx = 0.
Starting with the initial guess x0 = 1, perform five iterations using Newton-Raphson method for
the equation g(x) = 0 to find an approximate value of α.

14. Let {xn}∞n=1 be the iterative sequence generated by the Newton-Raphson method in finding the
root of the equation e−ax = x, where a in the range 0 < a ≤ 1. If x∗ denoted the exact root of
this equation and x0 > 0, then show that

|x∗ − xn+1| ≤
1

2
(x∗ − xn)

2.

15. Consider the equation x sinx − 1 = 0. Choose an initial guess x0 > 1 such that the Newton-
Raphson method converges to the solution x∗ of this equation such that −10 < x∗ < −9. Compute
four iterations and give an approximate value of this x∗. For the same equation, choose another
initial guess x0 > 1 such that the Newton-Raphson method converges to the smallest positive root
of this equation. Compute four iterations and give an approximate value of this smallest positive
root.

16. Give an initial guess x0 for which the Newton-Raphson method fails to obtain the real root for
the equation 1

3x
3 − x2 + x+ 1 = 0. Give reason for why it failed.

17. Can Newton-Raphson method be used to solve f(x) = 0 if
(i) f(x) = x2 − 14x+ 50?
(ii) f(x) = x1/3?
(iii) f(x) = (x− 3)1/2 with x0 = 4?
Give reasons.

18. Consider the distribution function for the random variable X given by

F (x) = 1− e
− x

(x−1)2 , 0 ≤ x ≤ 1.

Use Newton-Raphson method to find a value of 0 ≤ x ≤ 1 such that P (X > x) = sin y, where
y = x2. Here P denotes the probability. (Note: A distribution function F of a random variable X
is defined for any real number x as F (x) = P (X ≤ x). Therefore, the required value of x is pre-
cisely a solution of the nonlinear equation obtained using the fact that P (X > x) = 1−P (X ≤ x).)

IV. System of Nonlinear Equations

19. Using Newton’s method to obtain a root for the following nonlinear systems:
(i) x2

1 + x2
2 − 2x1 − 2x2 + 1 = 0, x1 + x2 − 2x1x2 = 0.

(ii) 4x2
1 + x2

2 − 4 = 0, x1 + x2 − sin(x1 − x2) = 0.

20. Use Newton’s method to find the minimum value of the function f(x) = x4
1 + x1x2 + (1 + x2)

2.
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Interpolation by Polynomials

Suppose that a function f(x) is not defined explicitely, but its value at some finite number of points
{xi, i = 1, 2, · · · , n} is given. The interest is to find the value of f at some point x lying between xj

and xk, for some j, k = 1, 2, · · · , n. This can be obtained by first approximating f by a known function
and then finding the value of this approximate function at the point x. Such a process is called the
interpolation. The interpolating function is usually chosen from a restricted class of functions, namely,
polynomials. In this chapter, we study the methods of interpolating a function. In section 2.1, we introduce
Lagrange interpolation. Section 2.2 introduces the notion of divided difference and Newton divided differ-
ence formula. The error analysis of the interpolation is studied in section 2.3. The advanced interpolation
is presented in the final section.

5.1 Lagrange Interpolation

The basic interpolation problem can be posed in one of two ways:

I. Given a set of nodes {xi/ i = 0, 1, · · · , n} and corresponding data values {yi/ i = 0, 1, · · · , n}, find
the polynomial pn(x) of degree less than or equal to n, such that

pn(xi) = yi, i = 0, 1, · · ·n.

II. Given a set of nodes {xi/ i = 0, 1, · · · , n} and a continuous function f(x), find the polynomial pn(x)
of degree less than or equal to n, such that

pn(xi) = f(xi), i = 0, 1, · · ·n.

Note that in the first problem we are trying to fit a polynomial to the data, and in the second case, we
are trying to approximate a given function with the interpolating polynomial. Note that the first problem
can be viewed as a particular case of the second.

Theorem 5.1 (Lagrange Interpolation Formula).

Let x0, x1, · · · , xn ∈ I = [a, b] be n+ 1 distinct nodes and let f(x) be a continuous real-valued function
defined on I. Then, there exists a unique polynomial pn of degree ≤ n (called Lagrange Formula for
Interpolating Polynomial), given by

pn(x) =

n
∑

k=0

f(xk)lk(x), lk(x) =

n
∏

i=0,i6=k

x− xi

xk − xi
, k = 0, · · · , n (5.1)

such that

pn(xi) = f(xi), i = 0, 1, · · · , n. (5.2)

The function lk(x) is called the Lagrange multiplier.
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Proof: Clearly pn defined by (5.1) is a polynomial of degree ≤ n that satisfies (5.2). All that remains
is to show the uniqueness of the polynomial. To this end, assume that there exists another interpolating
polynomial q(x) of degree ≤ n that satisfies (5.2) and define

r(x) = pn(x) − q(x).

Since both pn and q are polynomials of degree less than or equal to n, so is their difference. However, we
must note that

r(xi) = pn(xi)− q(xi) = f(xi)− f(xi) = 0

for each node point xi, i = 0, 1, · · · , n. Thus, we have a polynomial of degree less than or equal to n that
has n+ 1 roots. The only such polynomial is the zero polynomial, ie., r(x) = 0 or pn(x) = q(x) and thus
pn(x) is unique. ⊓⊔

Example 5.2. Consider the case n = 1 in which case we have two distinct points x0 and x1. Then

l0(x) =
x− x1

x0 − x1
, l1(x) =

x− x0

x1 − x0

and

p1(x) = f(x0)l0(x) + f(x1)l1(x)

= f(x0)
x− x1

x0 − x1
+ f(x1)

x− x0

x1 − x0

=
f(x0)(x− x1)− f(x1)(x − x0)

x0 − x1

= f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0). (5.3)

This is the familiar case of linear interpolation. ⊓⊔

Example 5.3. To obtain an estimate of e0.826 using the function values

e0.82 ≈ 2.270500, e0.83 ≈ 2.293319.

Denote x0 = 0.82, f(x0) = 2.270500, x1 = 0.83 and f(x1) = 2.293319, and apply the the formula (5.3) to
get

p1(x) = 2.270500+
2.293319− 2.270500

0.83− 0.82
(x− 0.82) = 2.2819x+ 0.399342.

In particular, taking x = 0.826, we get

p1(0.826) ≈ 2.2841914.

The true value is
e0.826 ≈ 2.2841638,

to eight significant digits.

Note that if we use quadratic interpolation with an additional node x2 = 0.84 and f(x2) = 2.316367,
then the approximation value is

p2(0.826) ≈ 2.2841639,

which is more accurate than the linear interpolation. ⊓⊔

Remark 5.4. The above example gives us a feeling that if we increase the degree of the interpolating
polynomial, the polynamial approximates the orginal function more accurately. But this is not in general
true as we will see in example 2.12. ⊓⊔

Remark 5.5. Although the Lagrange interpolation formula gives the existence and uniqueness of a poly-
nomial interpolation for a given function, the main disadvantage is that in calculating the polynomial
pk(x), no advantage can be taken of the fact that one already has pk−1(x) available. Thus, it is very expen-
sive to go for Lagrange interpolation when it is not known apriori the minimal degree of the polynomial
to get the best approximation to a given function. ⊓⊔
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5.2 Newton Interpolation and Divide Differences

In the previous section, we have seen that in the Lagrange formula of interpolating polynomial for a
function, if we decide to add a point to the set of nodes to increase the accuracy, we have to completely
recompute all of the li(x) functions. In other words, we cannot express pn+1 in terms of pn, using Lagrange
formula. An alternate form of the polynomial, known as the Newton form, avoids this problem, and allows
us to easily write pn+1 in terms of pn.

The idea behind the Newton formula of the interpolating polynomial is to write pn(x) in the form
(called Newton form)

pn(x) = A0 +A1(x− x0) +A2(x− x0)(x− x1) + · · ·+An(x− x0) · · · (x− xn−1) (5.4)

where the coefficients Ai, i = 0, 1, · · · , n are to be obtained. From the interpolation condition that this
polynomial agrees with the function value at the node points, we get

A0 = pn(x0) = f(x0).

For x = x1, we have

A1 =
pn(x1)−A0

x1 − x0
=

f(x1)− f(x0)

x1 − x0
:= f [x0, x1].

For x = x2, we have

A2 =
pn(x2)− p1(x2)

(x2 − x0)(x2 − x1)
=

f(x2)− p1(x2)

(x2 − x0)(x2 − x1)
:= f [x0, x1, x2].

In this way we can obtain all the coefficients.

The advantage in this form is that if pn is already calculated, then pn+1 can be written as

pn+1(x) = pn(x) +An+1(x− x0) · · · (x− xn).

This also shows that the coefficient An+1 in the Newton form (5.4) for the interpolating polynomial is
the leading coefficient, ie., the coefficient of xn+1, in the polynomial pn+1 of degree ≤ n+ 1 which agree
with f(x) at x0, · · · , xn+1. We summarize this in the following theorem.

Theorem 5.6 (Newton Interpolation Formula).

Let pn be the polynomial that interpolates a continuous function f(x) at (n + 1) distinct nodes xi ∈ I,
for i = 0, 1, · · · , n. Then the polynomial pn+1 that interpolates f at (n + 2) distinct nodes xi ∈ I, for
i = 0, 1, · · · , n+ 1 is given by

pn+1(x) = pn(x) + f [x0, x1, · · · , xn+1]wn(x) (5.5)

where

f [x0, x1, · · · , xn+1] =
f(xn+1)− pn(xn+1)

wn(xn+1)
, f [x0] = f(x0) (5.6)

is called the (n+ 1)th divided difference of f(x) at points x0, x1, · · · , xn+1 with

wn(x) =

n
∏

i=0

(x− xi). (5.7)

The formula (5.5) is called the Newton Formula for Interpolating Polynomial.

Proof. Since we know that the interpolation polynomial is unique, all we have to do is to show that pn+1,
as given in (5.5), satisfies the interpolation conditions by assuming that pn indeed satisfies this condition.

For 0 ≤ k ≤ n, we have wn(xk) = 0 and so we have

pn+1(xk) = pn(xk) + f [x0, x1, · · · , xn+1]wn(xk) = pn(xk) = f(xk).
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Hence, pn+1 interpolates all but the last point. To check for xn+1, we observe

pn+1(xn+1) = pn(xn+1) + f [x0, x1, · · · , xn+1]wn(xn+1)

= pn(xn+1) + f(xn+1)− pn(xn+1)

= f(xn+1).

Thus pn+1 interpolates f(x) at all the nodes. Moreover, it clearly is a polynomial of degree less than or
equal to n+ 1, and so we are done. ⊓⊔

Example 5.7. As a continuation of example 2.2, let us try to contruct the linear interpolating polynomial
of a function f(x) in the Newton form. In this case, the interpolating polynomial is given by

p1(x) = p0(x) + f [x0, x1]w1(x) = f [x0] + f [x0, x1](x− x0),

where

f [x0] = f(x0), f [x0, x1] =
f(x0)− f(x1)

x0 − x1
(5.8)

are the zeroth and first order divided differences, respectively. ⊓⊔

Algorithm 5.8 (Construction of Divided Difference).

input: n,x(i),y(i) (i= 0,1,2, ... ,n)
a(0) = y(0)
for k=1 to n do

p = 0
w = 1
for j = 0 to k-1 do

p = p + a(j) ∗ w
w = w ∗ (x(k) - x(j))

end for
a(k) = (y(k) - p)/w

end for
output: a(k) (k= 0,1,2, ... ,n)

An alternate way of deriving the divided difference coefficients is by means of a divided difference
table.

The divided difference table is constructed by obtaining higher order divided differences recursively
using lower order divided differences. The second order divided difference is given by (using (5.6)
and (5.8))

f [x0, x1, x2] =
f(x2)− p1(x2)

(x2 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
− p(x0)

(x2 − x0)(x2 − x1)
− f [x0, x1]w0(x2)

(x2 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
− f(x0)

(x2 − x0)(x2 − x1)
− f(x1)− f(x0)

(x1 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
+

f(x0)

(x1 − x0)(x2 − x0)
− f(x1)

(x1 − x0)(x2 − x1)

=
f(x2)

(x2 − x0)(x2 − x1)
+

f(x0)

(x1 − x0)(x2 − x0)

−f(x1)

(

1

(x2 − x0)(x2 − x1)
+

1

(x1 − x0)(x2 − x0)

)

=
f(x2)− f(x1)

(x2 − x0)(x2 − x1)
− f(x1)− f(x0)

(x1 − x0)(x2 − x0)
.

Therefore,
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f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
. (5.9)

Similarly, we can derive the third order divided difference

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0
. (5.10)

In general, the nth order divided difference formula, sometime called Newton divided difference
is defined as

f [x0, x1, · · · , xn] =
f [x1, x2, · · · , xn]− f [x0, x1, · · · , xn−1]

xn − x0
(5.11)

A simple way to generate divided difference for Newton interpolation formula (5.5) may be through the
divided difference table shown in table 1.

xi f [·] = f(·) f [·, ·] f [·, ·, ·] f [·, ·, ·, ·] f [·, ·, ·, ·, ·]
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3] f [x0, x1, x2, x3, x4]

f [x2, x3] f [x1, x2, x3, x4]
x3 f [x3] f [x2, x3, x4]

f [x3, x4]
x4 f [x4]

Table 1. Divided-Difference Table

Let the nodes x0, x1, · · · , xn be equally spaces, that is, xi = x0 + ih, i = 0, 1, · · · , n. Define the
difference operator

∆f(xi) = f(xi + h)− f(xi) =: fi+1 − fi (5.12)

Repeated application of the difference operators lead to the followoing higher order differences

∆nf(xi) = ∆n−1fi+1 −∆n−1fi, (5.13)

The Newton divided difference can be written in the above notation as

f [x0, x1] =
f(x1)− f(x0)

h
=

1

h
∆f0

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
=

1
h∆f1 − 1

h∆f0

2h
=

1

2!h2
∆2f0

By induction, we can show that

f [x0, x1, · · · , xn] =
1

n!hn
∆nf0 (5.14)

The Newton’s interpolation formula (5.5) for equally spaced nodes with step size h is thus given by

pn(x) =

n
∑

k=0

1

k!hk
(∆kf0) wk(x) (5.15)

5.3 Error in Polynomial Interpolation

Let f(x) be defined on an interval I = [a, b]. How good a polynomial pn(x) of degree ≤ n interpolates the
function f(x) at n + 1 nodes x0, x1, · · · , xn in I? This question leads to the analysis of interpolation
error en(x) of pn(x) given by

en(x) = f(x)− pn(x). (5.16)

The following theorem provides a formula for the interpolation error.
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Theorem 5.9 (Polynomial Interpolation Error Formula).

Let f ∈ Cn+1([a, b]) and let the distinct nodes x0, x1, · · · , xn be in [a, b]. Then, for each x̄ ∈ I with x̄ 6= xi

(i = 0, 1, · · · , n), there is a ξ ∈ (a, b) such that

en(x̄) =
wn(x̄)

(n+ 1)!
f (n+1)(ξ), (5.17)

where wn(x) is given in (5.7).

Proof. Let pn+1(x) be the polynomial of degree ≤ n + 1 which interpolates f(x) at n + 2 nodes
x0, x1, · · · , xn and x̄. Then pn+1(x̄) = f(x̄). From (5.5), we have

pn+1(x) = pn(x) + f [x0, · · · , xn, x̄]wn(x).

It follows that
f(x̄) = pn+1(x̄) = pn(x̄) + f [x0, · · · , xn, x̄]wn(x̄).

Therefore, we have

en(x̄) = f [x0, · · · , xn, x̄]wn(x̄). (5.18)

For any t ∈ I, t 6= xi (i = 0, 1, · · · , n), define the function

G(x) = en(x) −
wn(x)

wn(t)
en(t).

Then, for i = 0, 1, · · · , n,
G(xi) = en(xi)−

wn(xi)

wn(t)
en(t) = 0

and
G(t) = en(t)− en(t) = 0.

Thus, G has n + 2 distinct zeros in I. Using the mean value theore, G′ has atleast n + 1 distinct zeros.
Inductively, G(j)(x) has n+ 2− j zeros in I, for j = 0, 1, · · · , n+ 1. Let ξ be a zero of G(n+1)(x),

G(n+1)(ξ) = 0.

Since e
(n+1)
n (x) = f (n+1)(x) and w

(n+1)
n (x) = (n+ 1)!, we obtain

G(n+1)(x) = f (n+1)(x) − (n+ 1)!

wn(t)
en(t).

Substituting x = ξ and solving for en(t),

en(t) =
wn(t)

(n+ 1)!
· f (n+1)(ξ).

Taking t = x̄, we get the desired result. ⊓⊔

Definition 5.10 (Infinity Norm).

If f is continuous on a closed interval I = [a, b], then the infinity norm of f denoted as ‖f‖∞,I is
defined as

‖f‖∞,I = max
x∈I

|f(x)|. (5.19)

Example 5.11. Let us find a bound for the error in linear interpolation given in example 2.5. The linear
interpolating polynomial for f(x) at x0 and x1 is given by

p1(x) = p0(x) + f [x0, x1]w1(x) = f(x0) + f [x0, x1](x− x0),

where f [x0, x1] is given by (5.8). Therefore, the error e1(x) is given by (by (5.17))
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e1(x) =
(x− x0)(x − x1)

2
· f ′′(ξ),

where ξ depends on x. If x ∈ I = [x0, x1], then ξ ∈ (x0, x1). Therefore,

|e1(x)| ≤ |(x− x0)(x − x1)|
‖f ′′‖∞,I

2
.

Note that the maximum value of |(x − x0)(x − x1)| for all x ∈ [x0, x1] occurs at x = (x0 + x1)/2 and
therefore, we have

|(x − x0)(x − x1)| ≤
(x1 − x0)

2

4
.

Using this inequality, we get the bound for error e1(x) as

|e1(x)| ≤ (x1 − x0)
2 ‖f ′′‖∞,I

8
,

for all x ∈ [x0, x1], which further implies

‖e1‖∞,I ≤ (x1 − x0)
2 ‖f ′′‖∞,I

8
.

⊓⊔

Quite often, the polynomial interpolation that we compute is based on the function data subjected
to rounding error. Let us denote the approximate value of f(xk) by f̃(xk) for each node point xk,
k = 0, 1, · · · , n. Then the corresonding polynomial interpolation using Lagrange formula gives

p̃n(x) =
n
∑

k=0

f̃(xk)lk(x)

and we want to estimate the total error, which is given by

f(x)− p̃n(x) = (f(x)− pn(x)) + (pn(x) − p̃n(x)), (5.20)

where the first term on the right hand side the error due to polynomial interpolation whose formula is
given by (5.17) and the second term is the error due to rounding.

We now turn our attention to analyze the error due to rounding. Let

f(xk)− f̃(xk) = ǫk and ||ǫ||∞ = max{|ǫk|/k = 0, 1, · · · , n},

then we have

|pn(x)− p̃n(x)| =
∣

∣

∣

∣

∣

n
∑

k=0

(f(xk)− f̃(xk))lk(x)

∣

∣

∣

∣

∣

≤ ||ǫ||∞
n
∑

k=0

||lk||∞

Although the error due to rounding looks bounded, the sum on the right hand side can grow quite large
as n increases, especially, when the nodes are equally spaced as we will study now.

Assume that the nodes are equidistant on the interval [a, b], with x0 = a and xn = b, and xk+1−xj = h
for all k = 0, 1, · · · , n− 1. We write

xk = a+ kh, k = 0, 1, · · · , n, and x = a+ ηh, 0 ≤ η ≤ n.

Therefore,

lk(x) =

n
∏

i=0,i6=k

x− xi

xk − xi
=

n
∏

i=0,i6=k

η − i

i− k
, k = 0, · · · , n

Hence, the Lagrange multipliers are not dependent on the choice of a, b or h. They depend entirely on n,
η (which depends on x) and the distribution of the nodes. The figure 2.1 shows the function
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l(x) =

n
∑

k=0

|lk(x)|

for various values of n and figure 2.2 shows the n in the x-axis and the function

Mn =

n
∑

k=0

||lk||∞

in the y-axis. In fact, this behavior of the Legrange multiplier can also be analyzed theoretically, but this
is outside the scope of the present course.

Fig. 5.1. y =

n∑

k=0

|lk(x)|. Fig. 5.2. y =
n∑

k=0

||lk||∞.

Fig. 5.3. Interpolation polynomial for f(x) = 1/(1 + 25x2) for n = 4, n = 6 and n = 8 respectively.

With this knowledge we now take the equation (5.20) which gives

||f − p̃||∞ ≤ ||f − pn||∞ + ||pn − p̃||∞n ≤ ||f − pn||∞ + ||ǫ||∞Mn. (5.21)

As it is clear from the figure 2.2 that Mn increases exponentially with respect to n, although we have a
very small value for the rounding error ||ǫ||∞, a large enough n can bring in a significantly large error in
the interpolated polynomial as illustrated in the example.

Example 5.12. Consider the function f(x) = 1/(1 + 25x2). The polynomial interpolation with n = 4,
n = 6 and n = 8 are depicted in figure 2.3. ⊓⊔

The above example shows that the polynomial interpolation of higher degree suffers very badly due
to rounding error. However, this is not true for any function as the exponential function gets better
approximation as the degree of polynomial increases. A more deeper analysis is required to understand
the reason behind the behavior of rounding error in polynomial interpolation. But this is outside the
scope of this course and therefore is omitted.
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5.4 Piecewise Linear and Cubic Spline Interpolation

Quite often polynomial interpolation will be unsatisfactory as an approximation tool. This is true if we
insist on letting the order of the polynomial get larger and larger. However, if we keep the order of the
polynomial fixed, and use different polynomial over different intervals, with the length of the intervals
getting smaller and smaller, then interpolation can be very accurate and powerful approximation tool.

Let us start with linear interpolation over an interval I = [a, b] which leads to

p1(x) = f(a) + f [a, b](x− a) = f(a) +
f(b)− f(a)

b− a
(x− a) =

x− b

a− b
f(a) +

x− a

b− a
f(b).

With the nodes x0 = a, x2 = b and x0 < x1 < x2, we can obtain a quadratic interpolation polynomial
as discussed in the previous sections. Instead, we can interpolate the function f(x) as two piece of linear
polynomials, one in [x0, x1] and another one in [x1, x2]. Such polynomials are defined as

p1,1(x) =
x− x1

x0 − x1
f(x0) +

x− x0

x1 − x0
f(x1), p1,2(x) =

x− x2

x1 − x2
f(x1) +

x− x1

x2 − x1
f(x2)

and the interpolating polynomial is given by

P (x) =

{

p1,1(x) , x ∈ [x0, x1]
p1,2(x) , x ∈ [x1, x2].

Note that P (x) is a continuous function in [a, b], which interpolates f(x) and is linear in [a, x1] and [x1, b].
Such a polynomial is called piecewise linear polynomial. Although piecewise linear interpolation is
continuous, it is not differentiable at the nodes and also, it makes a poor approximation to f(x). We wish
to find an interpolation function that is smooth and does a better approximation to f(x). This can be
achieved by spline interpolation.

Definition 5.13 (Spline Function).

A spline function of degree d with nodes xi, i = 0, 1, · · · , n is a function s(x) with the properties

I. On each subinterval [xi−1, xi], i = 1, 2, · · · , n, s(x) is a polynomial of degree ≤ d.

II. The interpolation condition s(xi) = f(xi), i = 0, 1, · · · , n is satisfied.

III. s(x) and its first (d− 1) derivatives are continous on [a, b].

We shall now study how we can obtain the interpolation of a function f(x) as spline functions instead of
polynomials. For the sake of simplicity, we restrict only to cubic splines. The construction of the spline
interpolation s(x) of a function f(x) is as follows:

Step 1: Let us denote by M1, · · · , Mn,

Mi = s′′(xi), i = 0, 1, · · · , n

and first obtain s(x) in terms of Mi’s which are unknowns.

Step 2: Since s(x) is cubic on each [xi−1, xi], the function s′′(x) is linear on the interval such that

s′′(xi−1) = Mi−1, s′′(xi) = Mi.

Therefore, it is given by

s′′(x) =
(xi − x)Mi−1 + (x− xi−1)Mi

xi − xi−1
, xi−1 ≤ x ≤ xi (5.22)

Integrating (5.22) two times with respect to x, we get

s(x) =
(xi − x)3Mi−1

6(xi − xi−1)
+

(x− xi−1)
3Mi

6(xi − xi−1)
+K1x+K2,

where K1 and K2 are integrating constants to be determined by using the conditions s(xi−1) = f(xi−1)
and s(xi) = f(xi). We have
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K1 =
f(xi)− f(xi−1)

xi − xi−1
− (Mi −Mi−1)(xi − xi−1)

6

K2 =
xif(xi−1)− xi−1f(xi)

xi − xi−1
− (Mi−1xi −Mixi−1)(xi − xi−1)

6

Substituting these values in the above equation, we get

s(x) =
(xi − x)3Mi−1 + (x− xi−1)

3Mi

6(xi − xi−1)
+

(xi − x)f(xi−1) + (x− xi−1)f(xi)

xi − xi−1

− 1

6
(xi − xi−1)[(xi − x)Mi−1 + (x − xi−1)Mi], xi−1 ≤ x ≤ xi (5.23)

Formula (5.23) applies to each of the intervals [x1, x2], · · · , [xn−1, xn]. The formulas for adjacent intervals
[xi−1, xi] and [xi, xi+1] will agree at their common point x = xi because of the interpolating condition
s(xi) = f(xi). This implies that s(x) will be continuous over the entire interval [a, b]. Similarly, formula
(5.22) for s′′(x) implies that it is continuous on [a, b].

Step 3: All that remains is to find the values of Mi for all i = 0, 1, · · · , n. This is obtained by ensuring
the continuoity of s′(x) over [a, b], ie., the formula for s′(x) on [xi−1, xi] and [xi, xi+1] are required to give
the same value at their common point x = xi, for i = 1, 2, · · · , n − 1. After simplification (???), we get
the system of linear equations for i = 1, 2, · · ·n− 1

xi − xi−1

6
Mi−1 +

xi+1 − xi−1

3
Mi +

xi+1 − xi

6
Mi+1 =

f(xi+1)− f(xi)

xi+1 − xi
− f(xi)− f(xi−1)

xi − xi−1
. (5.24)

These n− 1 equations together with the assumption that

M0 = Mn = 0 (5.25)

leads to the values of M0, M1, · · · , Mn and hence to the interpolation function s(x).

A spline constructed above is called a natural spline.

Example 5.14. Calculate the natural cubic spline interpolating the data {(1, 1), (2, 12 ), (3, 1
3 ), (4,

1
4 )}. The

number of points is n = 4 and all xi − xi−1 = 1. The system (5.24) together with M0 = M3 = 0 becomes

2

3
M2 +

1

6
M3 =

1

3
,

1

6
M1 +

2

3
M3 =

1

12
,

which gives M2 = 1
2 , M3 = 0. Substituting these values into (5.23), we obtain

s(x) =







1
12x

3 − 1
4x

2 − 1
3x+ 3

2 , 1 ≤ x ≤ 2
− 1

12x
3 + 3

4x
2 − 7

3x+ 17
6 , 2 ≤ x ≤ 3

− 1
12x+ 7

3 , 3 ≤ x ≤ 4

Remark 5.15. There is a relationship between the degree of spline approximation n (say) and the degree
of smoothness, N (say) expected. The degree of the polynomials is related to the number of unknown
coefficients ie., the degrees of freedom Df (say), in the problem, whereas N is related to the number
of constraints Dc (say). We expect that the degrees of freedom and the number of constraints have to
balance in order for the spline to be well-defined.

Let there be m subintervals, each being the domain of definition for a seperate polynomial of degree
n, we have a total of Df = m(n+1) degrees of freedom. On the other hand, there are m+1 interpolation
conditions (ie., s(xi) = f(xi), i = 0, 1, · · · ,m) and m− 1 interior nodes where continuity of s(x) and its
N derivatives are expected to be continuous and thereby, there are N + 1 continuity conditions imposed
on each of m− 1 interior point. Therefore, Dc = m+ 1 + (m− 1)(N + 1) constraints. If we consider the
difference Df −Dc, we get

Df −Dc = m(n+ 1)−m− 1− (m− 1)(N + 1) = mn−m−mN +N = m(n− 1−N) +N.

We can make the first term vanish by setting n − 1 − N = 0. This establishes a relationship between
the polynomial degree of the spline and smoothness degree. For example, if we consider the cubic spline,
we need to have N = 2. However, we will not have the number of constraints equal to the number of
degrees of freedom, since Df − Dc = N . Thus, we need to add N additional constraints, which in the
case of natural cubic spline we have M0 = M3 = 0. Partly for this reason, odd polynomial order splines
are prefered, because if n is odd, then N is even and the additional constraints can be imposed equally
at the two endpoints of the interval. ⊓⊔
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Exercise 5

I. Lagrange Interpolation

1. Obtain Lagrange interpolation formula for equally spaced nodes.

2. Using Lagrange interpolation formula, express the rational function f(x) = 3x2+x+1
(x−1)(x−2)(x−3) as a

sum of partial fractions.

3. Construct the Lagrange interpolation polynomial for the function f(x) = sinπx, choosing the
points x0 = 0, x1 = 1/6, x3 = 1/2. Answer: 7/2x− 3x2

4. Find a cubic polynomial using Lagrange’s formula for the data:
x -2 -1 1 3
f(x) -1 3 -1 19

Answer: p3(x) = x3 − 3x+ 1

5. Use Lagrange interpolation formula to find a quadratic polynomial p2(x) that interpolates the

function f(x) = e−x2

at x0 = −1, x1 = 0 and x2 = 1. Further, find the value of p2(−0.9) with
rounding to six decimal places after decimal point and compare the value with the true value
f(−0.9) of same figure. Find the percentage error in this calculation.
Answer: p2(x) = 1− 0.632121x2, Error ≈ 9.69%

6. Given a table of values of the function f(x)

x 321.0 322.8 324.2 325.0
f(x) 2.50651 2.50893 2.51081 2.51188

Compute the value f(323.5). Answer: 2.50987

7. Let p(x) be a polynomial of degree ≤ n. For n+ 1 distinct nodes xk, k = 0, 1, · · · , n, show that

we can write p(x) =

n
∑

k=0

p(xk)lk(x).

8. The functions lk(x) =

n
∏

i=0,i6=k

x− xi

xk − xi
, k = 0, · · · , n are the weight polynomials of the corresponding

nodes and are often called Lagrange multipliers. Prove that for any n ≥ 1,

n
∑

k=0

lk(t) = 1.

[Hint: Use problem 7 with an appropriate polynomial p]

9. Let xk ∈ [a.b], k = 0, 1, · · · , n be n + 1 distinct nodes and let f(x) be a continuous function
on [a, b]. Show that for x 6= xk, k = 0, 1, · · · , n, the Lagrange interpolating polynomial can be
represented in the form

pn(x) = w(x)

n
∑

k=0

f(xk)

(x− xk)w′(xk)

where w(x) = (x− x0)(x− x1) · · · (x− xn). Verify the interpolation condition.

II. Newton Interpolation and Divided Difference

10. For the function data given in the table below, fit a polynomial using Newton interpolation formula
and find the value of f(2.5).

x -3 -1 0 3 5
f(x) -30 -22 -12 330 3458

Answer: p4(x) = 5x4 + 9x3 − 27x2 − 21x− 12, p4(2.5) = 102.6875.

11. Calculate the nth divided difference of f(x) = 1/x Answer: (−1)n/(x0x1 · · ·xn)
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12. Let x0, x1, · · · , xn be n+1 distinct nodes in the closed interval [a, b] and let f(x) be n+1 times
continuously differentiable function on [a, b]. Then,

i. show that the divided differences are symmetric functions of their arguments, that is, for an
arbitrary permutation π of the indices 0, 1, · · · , i, we have f [x0, · · · , xi] = f [xπ0, · · · , xπi].

ii. show that f [x0, x1, · · · , xi−1, x] = f [x0, x1, · · · , xi−1, xi]+ f [x0, x1, · · · , xi, x](x−xi), for each
i = 1, · · · , n and for all x ∈ [a, b].

iii. show
d

dx
f [x0, · · · , xi−1, x] = f [x0, · · · , xi−1, x, x].

13. Let f(x) be a real-valued function defined on I = [a, b] and k times differentiable in (a, b). If
x0, x1, · · · , xk are k + 1 distinct points in [a, b], then show that there exists ξ ∈ (a, b) such that

f [x0, · · · , xk] =
f(k)(ξ)

k! .

III. Error in Interpolating Polynomials

14. Let x0, x1, · · · , xn be n+ 1 distinct nodes where instead of the function values f(xi), the corre-
sponding approximate values f̃(xi) rounded to 5 decimal digits after decimal point. If the Lagrange
interpolation polynomial obtained from the approximate values f̃(xi) is p̃n(x), then show that
the error at a fixed point x̃ satisfies the inequality

|pn(x̃)− p̃n(x̃)| ≤
1

2
10−5

n
∑

k=0

|lk(x̃)|,

where pn(x̃) is the Lagrange interpolated polynomial for exact values f(xi) (i = 0, 1, · · · , n).
15. Let p1(x) be the linear Newton interpolation polynomial for data (6000, 0.33333) and (6001,

−0.66667). If the calculation is performed with 5 decimal digit rounding, then show that the
process of evaluating p1(x) in the form p1(x) = f(x0) +∆f0(x − x0) at x = 6000 and x = 6001
involves less error than evaluating the same linear polynomial in the form p1(x) = ∆f0x+(f(x0)−
∆f0x0) =: mx+ a at these points. Find the percentage error in each case.

16. Let x0, x1, · · · , xn be distinct real numbers, and let f be a given real-valued function with n+ 1
continuous derivatives on an interval I = [a, b]. Let t ∈ I be such that t 6= xi for i = 0, · · · , n.
Then show that there exists an ξ ∈ (a, b) such that

en(t) := f(t)−
n
∑

k=0

f(xk)lk(t) =
(t− x0) · · · (t− xn)

(n+ 1)!
f (n+1)(ξ),

where lk(t) =
n
∏

i=0,i6=k

t− xi

xk − xi
, k = 0, · · · , n.

17. Given the square of the integers N and N + 1, what is the largest error that occurs if linear
interpolation is used to approximate f(x) = x2 for N ≤ x ≤ N + 1? Answer: 0.25

18. The following table gives the data for f(x) = sinx/x2.

x 0.1 0.2 0.3 0.4 0.5
f(x) 9.9833 4.9667 3.2836 2.4339 1.9177

Calculate f(0.25) as accurately as the number of figures shown in the table
(a) by using the data in the table and using Newton’s interpolation formula
(b) by first tabulating xf(x) with rounding the same number of figures as in the table and then
using Newton’s interpolation formula.
(c) Find the error in each case and explain the difference between the results in (a) and (b).
Answer: (a) 3.8647 (b) 3.9585 (c) 0.0469 for (a) and 0.000005625 for (b) (you may perform this
calculation with more accurace)

19. Determine the spacing h in a table of equally spaced values of the function f(x) =
√
x between

1 and 2, so that interpolation with a second-degree polynomial in this table will yield a desired
accuracy.

IV. Cubic Spline Interpolation

20. Obtain the cubic spline approximation for the function given in the tabular form
x 0 1 2 3
f(x) 1 2 33 244
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Numerical Differentiation and Integration

There are two reasons for approximating derivatives and integrals of a function f(x). One is when the
function is very difficult to differentiate or integrate, or only the tabular values are available for the
function. Another reason is to obtain solution of a differential or integral equation. In this chapter we
introduce some basic methods to approximate derivative and integral of a function either explicitely or
by tabulated values.

In section 1, we obtain numerical methods to find derivatives of a function. Rest of the chapter
introduce various methods for numerical integration.

6.1 Numerical Differentiation

Numerical differentiation methods are obtained using one of the following three techniques:

I. Methods based on Finite Difference Operators

II. Methods based on Interpolation

III. Methods based on Undetermined Coefficients

We now discuss each of the methods in details.

1. Finite Difference

The most simple way to obtain a numerical method to approximate the derivative of f(x) is using the
definition of derivative given by

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

which justifies the usage of the approximation formula

f ′(x) ≈ f(x+ h)− f(x)

h
=: D+

h f(x) (6.1)

for a small value of h. D+
h f(x) is called a forward difference formula for the derivative of f(x) with

step size h.

To find a formula for error, we use Taylor’s theorem

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(c)

for some c between x and x+ h. Substituting in the right side of (6.1), we obtain

Dhf(x) =
1

h

{[

f(x) + hf ′(x) +
h2

2
f ′′(c)

]

− f(x)

}

= f ′(x) +
h

2
f ′′(c)

Therefore, the required error is given by

f ′(x)−Dhf(x) = −h

2
f ′′(c). (6.2)
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If we consider the left hand side of (6.2) as a function of h, ie., if g(h) = f ′(x) − Dhf(x), then we
see that |g(h)/h| = − 1

2 |f ′′(c)|. If we assume f ′′ to be bounded by a constant M > 0, then we see that
|g(h)/h| ≤ M/2, This shows that when f ∈ C2(I) for some closed and bounded interval I, then g = O(h),
which we say that the forward difference formula D+

h f(x) is of order 1 (order of accuracy).

The derivative of a function f can also be defined as

f ′(x) = lim
h→0

f(x)− f(x− h)

h
,

and

f ′(x) = lim
h→0

f(x+ h)− f(x− h)

2h
.

The first definition gives the backward difference formula of order 1 as

f ′(x) ≈ f(x)− f(x− h)

h
=: D−

h f(x). (6.3)

The error for this formula can be obtained similar to that of the forward difference formula. The second
definition gives the central difference formula

f ′(x) ≈ f(x+ h)− f(x− h)

2h
=: D0

hf(x) (6.4)

To obtain the error for the central difference formula, we use the Taylor’s theorem to obtain

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(c1)

where c1 lies between x and x+ h, and

f(x− h) = f(x)− hf ′(x) +
h2

2!
f ′′(x)− h3

3!
f ′′′(c2),

where c2 lies between x− h and x. Therefore, we have

f(x+ h)− f(x− h) = 2hf ′(x) +
h3

3!
(f ′′′(c1) + f ′′′(c2)).

Since f ′′′(x) is continuous, by I.4 of tutorial 1, we see that

f ′′′(c1) + f ′′′(c2) = 2f ′′′(c)

where c ∈ (x − h, x+ h). Therefore, we obtain the error formula as

f ′(x)−D0
h(f(x)) = −h2

6
f ′′′(c) (6.5)

where c lies between x−h and x+h. Clearly, the central difference formula is of second order. Geometrical
interpretation of the three primitive difference formulae is shown in figure 3.1.

. ..
xx−h x+h

Forward
Backward

Central

x

y

y=f(x)

f’

Fig. 6.1. Geometrical interpretation of difference formulae.
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Example 6.1. To find the value of the derivative of the function given by f(x) = sinx at x = 1 with
h = 0.003906, we use the three primitive difference formulas. We have

f(x− h) = f(0.996094) = 0.839354, f(x) = f(1) = 0.841471, f(x+ h) = f(1.003906) = 0.843575.

I. Backward difference: D−
h f(x) =

f(x)−f(x−h)
h = 0.541935.

II. Central Difference: D0
h(f(x)) =

f(x+h)−f(x−h)
2h = 0.540303.

III. Forward Difference: D+
h f(x) =

f(x+h)−f(x)
h = 0.538670.

Note that the exact value is f ′(1) = cos 1 = 0.540302.

2. Interpolation

An alternate way to obtain the same difference formulae as obtained above, we can also use the
polynomial interpolation introduced in chapter 2. Thus, to calculate f ′(x) at some point x = t, we use
the formula

f ′(t) ≈ p′n(t),

where pn(x) denotes the interpolation polynomial of f(x) with degree ≤ n. Many different formulas can
be obtained by varying n and by varying the placement of the nodes x0, · · · , xn relative to the point t of
interest. For instance, if we take n = 1, the linear interpolation polynomial is given by

p1(x) = f(x0) + f [x0, x1](x − x0).

Hence, we may take

f ′(x) ≈ p′1(x) = f [x0, x1]. (6.6)

In particular, if we take x0 = x and x1 = x + h for a small value h, we obtain the forward difference
formula. If we take x0 = x− h and x1 = x for small value h, we obtain the backward difference formula.
Finally, if we take x0 = x− h and x1 = x+ h, we get the central difference formula.

Theorem 6.2 (Error formula for derivative using polynomial interpolation).

Assume f(x) has n + 2 continuous derivatives on an interval [a, b]. Let x0, x1, · · · , xn be n + 1 distinct
nodes in [a, b], and let t be an arbitrary given point in [a, b]. Then

f ′(t)− p′n(t) = wn(t)
f (n+2)(ξ1)

(n+ 2)!
+ w′

n(t)
f (n+1)(ξ2)

(n+ 1)!
(6.7)

with

wn(t) =

n
∏

i=0

(t− xi). (6.8)

and ξ1 and ξ2 are points in between the maximum and minimum of x0, x1 · · · , xn and t.

Proof. By Newton Interpolation formula, we have

f(x) = pn(x) + f [x0, · · · , xn, x]wn(x),

where pn(x) is the polynomial of degree ≤ n which interpolates f(x) at x0, · · · , xn. Taking derivative on
both sides, we get

f ′(x) = p′n(x) + wn(x)
d

dx
f [x0, · · · , xn, x] + w′

n(x)f [x0, · · · , xn, x].

But we know that
d

dx
f [x0, · · · , xn, x] = f [x0, · · · , xn, x, x].

Therefore, we have
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f ′(x) = p′n(x) + wn(x)f [x0, · · · , xn, x, x] + w′
n(x)f [x0, · · · , xn, x].

Further, we know

f [x0, · · · , xn, x] =
f (n+1)(ξ)

(n+ 1)!
, ξ ∈ (a, b).

Therefore, we get

f ′(t)− p′n(t) = wn(t)
f (n+2)(ξ1)

(n+ 2)!
+ w′

n(t)
f (n+1)(ξ2)

(n+ 1)!

which is what we wish to show. ⊓⊔

Higher order differentiation formulas and their error can be obtained similarly.

3. Method of Undetermined Coefficients

Another method to derive formulas for numerical differentiation is called the method of undetermined
coefficients. We will illustrate the method by deriving a formula for f ′′(x).

f ′′(x) ≈ D
(2)
h f(x) := Af(x+ h) +Bf(x) + Cf(x − h) (6.9)

with A, B and C unspecified. Replace f(x+ h) and f(x− h) by the Taylor expansions

f(x± h) = f(x)± hf ′(x) +
h2

2
f ′′(x)± h3

6
f (3)(x) +

h4

24
f (4)(ξ±),

with x− h ≤ ξ− ≤ x ≤ ξ+ ≤ x+ h. Substitute into (6.9) and rearrange into a polynomial in powers of h:

Af(x+ h) +Bf(x) + Cf(x− h) = (A+B + C)f(x) + h(A− C)f ′(x) +
h2

2
(A+ C)f ′′(x)

+
h3

6
(A− C)f ′′′(x) +

h4

24
[Af (4)(ξ+) + Cf (4)(ξ−)].

In order for this is to equal f ′′(x), we set

A+B + C = 0, A− C = 0, A+ C =
2

h2
.

The solution of this system is A = C = 1/h2 and B = −2/h2. This yields the formula

D
(2)
h f(x) =

f(x+ h)− 2f(x) + f(x− h)

h2
(6.10)

The error is given by

f ′′(x)−D
(2)
h f(x) = −h2

24
[f (4)(ξ+) + f (4)(ξ−)].

Using the problem I.4 of tutorial 1, we get

f ′′(x)−D
(2)
h f(x) = −h2

12
f (4)(ξ) (6.11)

for some x− h ≤ ξ ≤ x+ h.

Remark 6.3. The preceding formulas are useful when deriving methods for solving differential equations,
but they can lead to serious errors when applied to function values that are obtained empirically. To
illustrate a method for analyzing the effect of such errors, we consider the second derivative approximation
(6.10)

f ′′(x1) ≈ D
(2)
h f(x1) =

f(x2)− 2f(x1) + f(x0)

h2

with xi = x0 + ih. Instead of using the exact values f(xi), we use the appoximate values fi with
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f(xi) = fi + ǫi, i = 0, 1, 2.

The actual numerical derivative computed is

D̄
(2)
h f(x1) =

f2 − 2f1 + f0
h2

.

The error committed is

f ′′(x1)− D̄
(2)
h f(x1) = f ′′(x1)−

f(x2)− 2f(x1) + f(x0)

h2
+

ǫ2 − 2ǫ1 + ǫ0
h2

= −h2

12
f (4)(ξ) +

ǫ2 − 2ǫ1 + ǫ0
h2

.

Assuming −E ≤ ǫi ≤ E, we have

|f ′′(x1)− D̄
(2)
h f(x1)| ≤

h2

12
|f (4)(ξ)| + 4E

h2
(6.12)

The last bound would be attainable in many situations. As example of such errors would be rounding
errors, with E a bound on their magnitude.

The error bound in (6.12) will initially get smaller as h decreases, but for h sufficiently close to zero,
the error will begin to increase again. There is an optimal value of h to minimize the right side of (6.12).
⊓⊔

Example 6.4. In finding f ′′(π/6) for the function f(x) = cosx, if we use the function values fi by
rounding f(xi) to six significant digits, then

|f(xi)− fi| ≤ 0.5× 10s−6+1

where s is the largest integer such that 10s ≤ |f(xi)|. Although cosine function varies from 0 to 1, here we
assume (as we are interested in the function valued in a neighborhood of x = π/6), |f(xi)| ≥ 0.1. With
this assumption, we have s = −1 and hence we have

|f(xi)− fi| ≤ 0.5× 10−6.

We now use the formula D̄
(2)
h f(x) to approximate f ′′(x) as given in the above remark. Assume that other

than these rounding error, the formula D̄
(2)
h f(x) is calculated exactly. Then the total error bound given

by (6.12) takes the form

|f ′′(π/6)− D̄
(2)
h f(π/6)| ≤ h2

12
|f (4)(ξ)| + 4E

h2
,

where E = 0.5× 10−6 and ξ ≈ π/6. Thus, we have

|f ′′(π/6)− D̄
(2)
h f(π/6)| ≤ h2

12
cos
(π

6

)

+
4

h2
(0.5× 10−6) ≈ 0.0722h2 +

2× 10−6

h2
=: E(h).

The bound E(h) indicates that there is a smallest value of h, call it h∗, below which the error bound will
begin to increase. To find it, let E′(h) = 0, with its root being h∗. This leads to h∗ ≈ 0.0726. ⊓⊔

6.2 Numerical Integration

In this section we derive and analyze numerical methods for evaluating definite integrals. The problem is
to evaluate the number

I(f) =

∫ b

a

f(x)dx. (6.13)

Most such integrals cannot be evaluated explicitly, and with many others, it is faster to integrate nu-
merically than explicitly. The approximation of I(f) is usually referred to as numerical integration or
quadrature.
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The idea behind numerical integration is to approximate the integrand f(x) to a much simpler function
that can be integrated easily. One obvious approximation is the interpolation by polynomials. Thus, we
approximate I(f) by I(pn), where pn(x) is the polynomial of degree ≤ n which agrees with f(x) at the
distinct points x0, · · · , xn. The approximation is written as

I(pn) = A0f(x0) +A1f(x1) + · · ·+Anf(xn).

The weights could be calculated as Ai = I(li), with li(x) the ith Lagrange multiplier.

Assume that the integrand f(x) is sufficiently smooth on some interval [c, d] containing a and b so
that we can write

f(x) = pn(x) + f [x0, · · · , xn, x]φn(x),

where

φn(x) =

n
∏

j=0

(x− xj).

Then the error is given by

E(f) = I(f)− I(pn) =

∫ b

a

f [x0, · · · , xn, x]φn(x)dx. (6.14)

In particular, if φn(x) is of one sign on (a, b), then, by the Mean-value theorem for integrals, we have

∫ b

a

f [x0, · · · , xn, x]φn(x)dx = f [x0, · · · , xn, ξ]

∫ b

a

φn(x)dx, for some ξ ∈ (a, b). (6.15)

If, in addition, f(x) is n+ 1 times continuously differentiable on (c, d), we get

E(f) =
1

(n+ 1)!
f (n+1)(η)

∫ b

a

φn(x)dx, for some η ∈ (c, d). (6.16)

We now consider the case when n = 0. Then

f(x) = f(x0) + f [x0, x](x− x0).

Hence
I(p0) = (b− a)f(x0).

If x0 = a, then this approximation becomes

I(f) ≈ IR(f) := (b− a)f(a) (6.17)

and is called rectangle rule. Since φ0(x) = x− a, this function is of one sign in (a, b) and therefore, the
error ER of the rectangle rule takes the form

ER(f) = f ′(η)

∫ b

a

(x− a)dx =
f ′(η)(b − a)2

2
(6.18)
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Fig. 6.2. Rectangle Rule.
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We now consider the case when n = 1. Then

f(x) = f(x0) + f [x0, x1](x − x0) + f [x0, x1, x]φ1(x).

To get φ1(x) = (x− x0)(x− x1) of one sign on (a, b), we choose x0 = a and x1 = b. Then we have

I(f) =

∫ b

a

{f(a) + f [a, b](x− a)}dx+
1

2
f ′′(η)

∫ b

a

(x− a)(x− b)dx

or

I(f) ≈ IT (f) :=
1

2
(b− a){f(a) + f(b)} (6.19)

with the error

ET (f) = −f ′′(η)(b − a)3

12
some η ∈ (a, b). (6.20)

This rule is called the Trapezoidal Rule.

Example 6.5. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

The true value is I = log(2) ≈ 0.693147. Using the trapezoidal rule (6.19), we get

IT =
1

2
[1 +

1

2
] =

3

4
= 0.75.

Therefore, the error is I − IT ≈ −0.0569. ⊓⊔
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Fig. 6.3. Trapezoidal Rule.

To improve on this approximation, when f(x) is not a nearly linear function on [a, b], break the interval
[a, b] into smaller subintervals and apply the Trepezoidal rule (6.19) on each subinterval. We will derive
a general formula for this. Let us subdivide the interval [a, b] into n equal subintervals of length

h =
b− a

n

with endpoints of the subintervals as

xj = a+ jh, j = 0, 1, · · · , n.

Then break the integral into n subintegrals, we get

I(f) =

∫ b

a

f(x)dx

=

∫ xn

x0

f(x)dx

=

n−1
∑

j=0

∫ xj+1

xj

f(x)dx.
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Approximate each subintegral by Trapezoidal rule (6.19), we get

I(f) ≈ InT (f) = h

[

f(x0) + f(x1)

2

]

+ h

[

f(x1) + f(x2)

2

]

+ · · ·+ h

[

f(xn−1) + f(xn)

2

]

.

The terms on the right can be combined to give the simpler formula

InT (f) := h

[

1

2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(xn)

]

. (6.21)

This rule is called Composite Trapezoidal rule.

Example 6.6. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

As we have seen in example 3.3, the true value is I = log(2) ≈ 0.693147. Now let us use this piecewise
Trapezoidal rule with n = 2. Then we have

I =

∫ 1

0

dx

1 + x
=

∫ 1/2

0

dx

1 + x
dx+

∫ 1

1/2

dx

1 + x
dx.

and therefore we have
I2T (f) ≈ 0.70833.

Thus the error is -0.0152. ⊓⊔

We now calculate I(p2(x)) to obtain the formula for the case when n = 2. Let us choose x0 = a,
x1 = (a+ b)/2 and x2 = b. The quadratic interpolating polynomial can be written as

p2(x) = f(a) + f [a, b](x− a) + f

[

a, b,
a+ b

2

]

(x − a) (x− b)

Then
∫ b

a

p2(x)dx = f(a)(b− a) + f [a, b]
(b− a)2

2
− f

[

a, b,
a+ b

2

]

(b− a)3

6
.

Using the symmetry property of divided difference, we can write

f

[

a, b,
a+ b

2

]

= f

[

a,
a+ b

2
, b

]

.

Therefore, we have

∫ b

a

p2(x)dx = f(a)(b− a) + f [a, b]
(b− a)2

2
− f

[

a,
a+ b

2
, b

]

(b− a)3

6
.

But we have f [a, b](b− a) = f(b)− f(a) and

f

[

a,
a+ b

2
, b

]

(b− a)2 =

(

f

[

a+ b

2
, b

]

− f

[

a,
a+ b

2

])

(b− a) = 2

(

f(b)− 2f

(

a+ b

2

)

− f(a)

)

.

Using these expression, we get

∫ b

a

p2(x)dx = (b− a)

{

f(a) +
f(b)− f(a)

2
− 1

3

(

f(b)− 2f

(

a+ b

2

)

+ f(a)

)}

=
b− a

6

{

f(a) + 4f

(

a+ b

2

)

+ f(b)

}

We thus arrive at the formula

I(f) ≈ Is(f) :=

∫ b

a

p2(x)dx =
b− a

6

{

f(a) + 4f

(

a+ b

2

)

+ f(b)

}

(6.22)

which is the famous Simpson’s Rule.
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Fig. 6.4. Simpson Rule.

Example 6.7. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

The true value is I = log(2) ≈ 0.693147. Using the Simpson’s rule (6.22), we get

Is =
1

6
[1 +

8

3
+

1

2
] =

25

36
≈ 0.694444.

Therefore, the error is I − Is ≈ 0.001297. ⊓⊔

Let us now obtain the error formula for Simpson’s rule. Note that for any distinct nodes x0, x1 and
x2 in (a, b), the function φ2(x) = (x − x0)(x − x1)(x − x2) is not of one sign on (a, b). Therefore, the
idea followed in deriving error formula for Trapezoidal rule cannot be adopted here. Rather, if we choose
x0 = a, x1 = (a+ b)/2, x2 = b, then one can show by direct integration or by symmetry arguments that

∫ b

a

φ2(x)dx =

∫ b

a

(x− a)

(

x− a+ b

2

)

(x− b)dx = 0.

In this special case, if we can choose x3 in such a way that φ3(x) = (x− x3)φ2(x) is of one sign on (a, b)
and f is four times continuously differentiable, then we have

ES(f) = −f (4)(η)[(b − a)/2]5

90
, (6.23)

which follows from the following lemma.

Lemma 6.8. If φn is not of one-sign but

∫ b

a

φn(x)dx = 0.

Further if can choose xn+1 in such a way that φn+1(x) = (x− xn+1)φn(x) is of one-sign on (a, b) and if
f(x) is n+ 2 times continuously differentiable, then

E(f) =
1

(n+ 2)!
f (n+2)(η)

∫ b

a

φn+1(x)dx, for some η ∈ (c, d). (6.24)
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Proof. Since

f [x0, · · · , xn, x] = f [x0, · · · , xn, xn+1] + f [x0, · · · , xn+1, x](x − xn+1),

we have from (6.14)

E(f) =

∫ b

a

f [x0, · · · , xn, xn+1]φn(x)dx +

∫ b

a

f [x0, · · · , xn+1, x](x − xn+1)φn(x)dx

Further since
∫ b

a φn(x)dx = 0, the first term vanishes and we are left with

E(f) =

∫ b

a

f [x0, · · · , xn+1, x](x− xn+1)φn(x)dx.

Thus, if we choose xn+1 in such a way that φn+1(x) = (x−xn+1)φn(x) is of one-sign on (a, b) and if f(x)
is n+ 2 times continuously differentiable, then using Mean-value theorem for integration, we can arrive
at the formula (6.24). ⊓⊔

Let us now derive the composite Simpson rule. Taking a = xi−1, b = xi, xi−1/2 = (xi + xi−1)/2
and xi − xi−1 = h in Simpson rule, we get

∫ xi

xi−1

f(x)dx ≈ h

6

{

f(xi−1) + 4f(xi−1/2) + f(xi)
}

.

Summing for i = 1, · · · , N , we get

∫ b

a

f(x)dx =

N
∑

i=1

∫ xi

xi−1

f(x)dx ≈ h

6

N
∑

i=1

{

f(xi−1) + 4f(xi−1/2) + f(xi)
}

.

Therefore, the composite Simpson’s rule takes the form

Ins (f) =
h

6

[

f(x0) + f(xN ) + 2

N−1
∑

i=1

f(xi) + 4

N
∑

i=1

f(xi−1/2)

]

(6.25)

All the rules so far derived can be written in the form

I(f) =

∫ b

a

f(x)dx ≈ w0f(x0) + w1f(x1) + · · ·+ wnf(xn). (6.26)

Here wi are called weights, which are non-negative constants. The nodes are picked in such a way that
the quadrature rule is exact for polynomials of degree ≤ n. These methods are refered to Newton-Conte
formula of order n. But it is possible to make such a rule exact for polynomials of degree ≤ 2n+ 1 by
choosing the nodes appropriately. This is the basic idea of Gaussian rules.

Let us consider the special case

∫ 1

−1

f(x)dx ≈
n
∑

i=0

wif(xi) (6.27)

The weights wi and the nodes xi (i = 0, · · · , n) are to be chosen in such a way that the error

En(f) =

∫ 1

−1

f(x)dx −
n
∑

i=0

wif(xi) (6.28)

is zero when f(x) is a polynomial of degree ≤ 2n+ 1. To derive equations for the nodes and weights, we
first note that

En(a0 + a1x+ a2x
2 + · · ·+ amxm) = a0En(1) + a1En(x) + · · ·+ anEn(x

m).

Thus, En(f) = 0 for every polynomial of degree ≤ m if and only if En(x
i) = 0 for i = 0, 1, · · · ,m.
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Case 1: n = 0. Since there are two parameters, namely, w0 and x0, we consider the requiring E0(1) =

E0(x) = 0. This gives
∫ 1

−1 1dx− w0 = 0, and
∫ 1

−1 xdx − w0x0 = 0. These gives w0 = 2 and x0 = 0. Thus,
we have the formula

∫ 1

−1

f(x)dx ≈ 2f(0), (6.29)

which is the required Gaussian quadrature for n = 0.

Case 2: n = 1. There are four parameters, w0, w1, x0 and x1 and thus we put four constraints on these
parameters:

E1(x
i) =

∫ 1

−1

xidx− (w0x
i
0 + w1x

i
1) = 0, i = 0, 1, 2, 3.

This gives a system of nonlinear equations

w1 + w2 = 2, w1x1 + w2x2 = 0, w1x
2
1 + w2x

2
2 =

2

3
, w1x

3
1 + w2x

3
2 = 0

The solutions are w1 = w2 = 1 and x1 = −1/
√
3 and x2 = 1/

√
3 which lead to the unique formula

∫ 1

−1

f(x)dx ≈ f

(

− 1√
3

)

+ f

(

1√
3

)

=: IG1(f). (6.30)

Case 3: General. There are 2(n+ 1) free parameters xi and wi for i = 0, 1, · · · , n. The equations to be
solved are En(x

i) = 0, i = 0, 1, · · · , 2n+ 1 or

n
∑

j=0

wjx
i
j =

{

0, i = 1, 3, · · · , 2n+ 1
2

i + 1
, i = 0, 2, · · · , 2n

These are nonlinear equations and their solvability is not at all obvious. But most of the computer
softwares will have programs to produce these nodes and weights or to directly perform the numerical
integration. There is also another approach to the development of the numerical integration formula (6.26)
using the theory of orthogonal polynomials, which is outside the scope of this course.

The formulas constructed above are called the Gaussian numerical integration formula or Gaus-
sian quadrature. Note that this formula is limited to an integral over [−1, 1]. But this limitation can
easily be removed by introducing the linear change of variable

x =
b+ a+ t(b− a)

2
, −1 ≤ t ≤ 1. (6.31)

Thus, an integral

I(f) =

∫ b

a

f(x)dx

can be transferred to

I(f) =
b− a

2

∫ 1

−1

f

(

b + a+ t(b− a)

2

)

dt.

The following theorem provides the error formula for the Gaussian quadrature.

Example 6.9. Approximate the integral

I =

∫ 1

0

dx

1 + x
.

Note that the true value is I = log(2) ≈ 0.693147. To use the Gaussian quadrature, we first need to make
the linear change of variable (6.31) with a = 0 and b = 1 and we get

x =
t

2
, − 1 ≤ t ≤ 1.

Thus the required integration is
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I =

∫ 1

0

dx

1 + x
=

∫ 1

−1

dt

3 + t
.

We need to take f(t) = 1/(3 + t) in the Gaussian quadrature formula (6.30) and we get

∫ 1

0

dx

1 + x
=

∫ 1

−1

dt

3 + t
≈ f

(

− 1√
3

)

+ f

(

1√
3

)

≈ 0.692308 ≈ IG1(f).

Therefore, the error is I − IG1 ≈ 0.000839. ⊓⊔

Definition 6.10 (Degree of Precision).

The degree of precision of a quadrature formula is the positive integer n such that E(pk) = 0 for all
polynomials pk(x) of degree ≤ n, but for which E(pn+1) 6= 0 for some polynomial pn+1(x) of degree n+1.

Example 6.11. Let us determine the degree of precision of Simpson rule. It will suffice to apply the rule
over the interval [0, 2].

∫ 2

0

dx = 2 =
2

6
(1 + 4 + 1),

∫ 2

0

xdx = 2 =
2

6
(0 + 4 + 2),

∫ 2

0

x2dx =
8

3
=

2

6
(0 + 4 + 4)

∫ 2

0

x3dx = 4 =
2

6
(0 + 4 + 8)

∫ 2

0

x4dx =
32

5
6= 2

6
(0 + 4 + 16) =

20

3
.

Therefore, the degree of precision is 3. ⊓⊔
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Exercise 6

I. Numerical Differentiation

1. Find the value of the derivative of the function f(x) = sinx at x = 1 using the three primitive
difference formulae with (i) h = 0.015625 and (ii) h = 0.000015. Perform the calculation with 6
digit rounding at each process.

2. Obtain the central difference formula for f ′(x) using quadratic polynomial approximation.

3. Use the forward, central and backward difference formulas to determine f ′(x0), f
′(x1) and f ′(x2)

respectively for the following tabulated values:

(a)
x 0.5 0.6 0.7
f(x) 0.4794 0.5646 0.6442

(b)
x 0.0 0.2 0.4
f(x) 0.0 0.7414 1.3718

The corresponding functions are (a) f(x) = sinx and (b) f(x) = ex − 2x2 + 3x + 1. Com-
pute the error bounds.

4. Given the values of the function f(x) = log x at x0 = 2.0, x1 = 2.2 and x2 = 2.6, find the approx-
imate value of f ′(2.0) using the methods based on linear and quadratic interpolation. Obtain the
error bounds.

5. Estimate the rounding error behavior of the three primitive numerical differentiation formulae.

6. Find an approximation to the derivative of f(x) evaluated at x, x+h and x+2h with truncation
error of O(h2).

7. Use the method of undetermined coefficients to find a formula for numerical differentiation of
f ′′(x) evaluated at points
(a) x+ 2h, x+ h and x, (b) x+ 3h, x+ 2h x+ h and x
with truncation error as small as possible.

8. Show that the formula

D(2)(x) =
f(x)− 2f(x− h) + f(x− 2h)

h2

gives approximate value for f ′′(x). Find the order of accuracy of this formula.

9. For the method

f ′(x) =
4f(x+ h)− f(x+ 2h)− 3f(x)

2h
+

h2

3
f ′′′(ξ), x < ξ < x+ 2h

determine the optimal value of h for which the total error (which is the sum of the truncation
error and the rounding error) is minimum.

10. In computing f ′(x) using central difference formula find the value of h which minimizes the bound
of the total error.
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II. Numerical Integration

11. Apply Rectangle, Trapezoidal, Simpson and Gaussian methods to evaluate

(a) I =

∫ π/2

0

cosx

1 + cos2 x
dx (exact value ≈ 0.623225)

(b) I =

∫ π

0

dx

5 + 4 cosx
(exact value ≈ 1.047198)

(c) I =

∫ 1

0

e−x2

dx (exact value ≈ 0.746824),

(d) I =

∫ π

0

sin3 x cos4 x dx (exact value ≈ 0.114286)

(e) I =
∫ 1

0 (1 + e−x sin(4x))dx. (exact value ≈ 1.308250)

12. Write down the errors in the approximation of

∫ 1

0

x4dx and

∫ 1

0

x5dx

by the Trapezoidal rule and Simpson’s rule. Hence find the value of the constant C for which the

Trapezoidal rule gives the exact result for the calculation of
∫ 1

0
(x5 − Cx4)dx.

13. Estimate the effect of data inaccuracy on results computed by Trapezoidal and Simpson’s rule.

14. Under what condition does the composite Trapezoidal and composite Simpson rules be conver-
gent? Give reason.

15. Use composite Simpson and composite Trapezoidal rules to obtain an approximate value for the
improper integral

∫ ∞

1

1

x2 + 9
dx, with n = 4.

16. Obtain error formula for the composite trapezoidal and composite Simpson rules.

17. Find the number of subintervals and the step size h so that the error for the composite trapezoidal

rule is less than 5× 10−9 for approximating the integral
∫ 7

2
dx/x.

18. Determine the coefficients in the quadrature formula

∫ 2h

0

x−1/2f(x)dx = (2h)1/2(w0f(0) + w1f(h) + w2f(2h)).

19. Use the two-poind Gaussian quadrature rule to approximate

∫ 1

−1

dx

x+ 2

and compare the result with the trapezoidal and Simpson rules.

20. Assume that xk = x0 + kh are equally spaced nodes. The quadrature formula

∫ x3

x0

f(x)dx ≈ 3h

8
(f(x0) + 3f(x1) + 3f(x2) + f(x3))

is called the Simpson’s 3
8 rule. Determine the degree of precision of Simpson’s 3

8 rule.
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Numerical Ordinary Differential Equations

We consider a first order system of ordinary differential equations of the form

dy

dx
= f(x,y), (7.1)

where y = (y1, y2, · · · , yn) ∈ R
n is an unknown variable, x ∈ R is an independent variable and the

function f : Rn ×R → R
n is given. The objective is to find the solution y(x) in some bounded interval I

for x variable subject to an initial condition

y(x0) = y0, x0 ∈ I. (7.2)

In section 1, we review the exact solvability of (7.1)-(7.2) when n = 1. A basic method called the Euler
method for this initial value problem with n = 1 is introduced in section 2 and showed to be of order
1. Taylor approximation upto higher order can be used to increase the order of accuracy. Doing this will
lead to a family of methods, depending on the order of the Taylor approximation being used. This family
of methods is called Taylor method, which is discussed in section 3. Taylor method is conceptually easy
to work with, but involves higher order derivatives of the unknown function, which is hard to compute
and implement as computer program. An alternate solution for this is the famous Runge-Kutta methods.
These methods avoid higher-order derivatives of the unknown function y and at the same time, achieves
higher order of accuracy. Runge-Kutta method of order 2 is derived in full detail in section 4 and just
presented the formula for the same method of order 4. Section 5 is devoted to Predictor-Corrector method.
The methods discussed so far are in the case when n = 1. In the final section, we have introduced some
methods to compute numerical solution for (7.1)-(7.2) with n > 1.

7.1 Review on Theory

In this section, we review the cases when the initial value problem (7.1)-(7.2) can be solved exactly
without going to a numerical method. Although most of the results stated here holds for any positive
integer n, We stick to the case when n = 1 just for the sake of simplicity.

We consider the initial value problem

y′(x) = f(x, y), y(x0) = y0. (7.3)

where x ∈ R is an independent variable, y ∈ R is the unknown variable and f(x, y) is a given real-valued
function. We always assume that the domain D of f to be a closed rectangle

R = {(x, y)/|x− x0| ≤ hx, |y − y0| ≤ hy}. (7.4)

It is simple to see that when f is continuous on D, then the solution of (7.3) can be written as

y(x) = y0 +

∫ x

x0

f(s, y)ds. (7.5)
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If f is a function of x only, then the integration on the right hand side of (7.10) can be carried explicitely
to get the solution y of (7.3) exactly. But if f depends on y also, then (7.10) is an integral equation which
is not less easier than (7.3). However, if we can put the equation in (7.3) in the form

d

dx
φ(x, y) = 0,

for some C1 function φ, then a direct integration can give an implicit solution for the problem (7.3). This
equation is called the exact form of the equation in (7.3). Even if the given equation cannot be put in
exact form, we can choose an integrating factor with which the equation can be made exact. But in many
cases, it is difficult to obtain an integrating factor as illustrated in the following example.

Example 7.1. The equation
dy

dx
= x2 + y2

is clearly not linear, homogeneous, seperable or exact. It can also be recalled that any of the standard
ways of finding integrating factor will not work for this equation. ⊓⊔

One alternate way to solve this equation is to approximate the solution using some numerical method.
Before doing so, it is important to ensure that the given initial value problem has a unique solution in the
domain D. The following theorem can be used as a tool to check the existence and uniqueness of solution
of a given initial value problem.

Theorem 7.2 (Existence and Uniqueness Theorem).
Hypothesis. Consider the initial value problem (7.3) where

I. The function f is continuous with respect to both x and y in the domain D of the (x, y)-plane, and

II. the partial derivative ∂f/∂y is also a continuous function of x and y in D.

Conclusion There exists a unique solution y = y(x) of the initial value problem (7.3) defined on some
interval |x− x0| ≤ h, where h is sufficiently small.

It is easy to check that the equation in example 4.1 with an initial condition y(x0) = y0 has a unique
solution.

Remark 7.3. The following are some of the important points about the theorem 6.2:

I. The theorem ensures the existence of an unique solution of the initial value problem (7.3) based on
certain conditions on the function f(x, y). However, the theorem does not give an explicit expression
for the solution.

II. The existence and uniqueness is ensured only in a small neighborhood of x = x0, where the initial
condition is prescribed. Thus, the theorem is only a local existence theorem.

III. The theorem does not give any information about those equations for which the function f(x, y)
violates the hypothesis. That is, the theorem does not say that the solution fails to exist if any of
the conditions stated in the hypothesis is not satisfied by f(x, y). In fact, this cannot be ensured as
is clear from the following example. ⊓⊔

Example 7.4. Consider the following initial value problem:

dy

dx
=

y√
x
, y(0) = 2.

Clearly, the function f(x, y) := y/
√
x is not continuous at x = 0, but still the equation possesses the

particular solution y(x) = 2 exp(2
√
x). Thus the above theorem gives only a sufficient condition for

existence and uniqueness of solution for a given initial value problem of the form (7.3). ⊓⊔
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7.2 Discretization

The aim of this chapter is to device numerical methods to obtain an approximate solution of the initial
value problem (7.3) at only a discrete set of point. That is, if we are interested in obtaining solution for
(7.3) in an interval [a, b], then we first discretize the interval as

a = x0 < x1 < · · · < xN = b, (7.6)

where each point xi, i = 0, 1, · · · , N is called a node. Unless otherwise stated, we always assume that
the nodes are equally spaced. That is,

xj = x0 + jh, j = 0, 1, · · ·N (7.7)

for a sufficiently small positive real number h. We use the notation for the approximate solution as

yj = yh(xj) ≈ y(xj), j = 0, 1, · · · , N. (7.8)

7.3 Euler’s Method

Method 7.5. :

Recall the derivative approximation

y′(x) ≈ 1

h
(y(x+ h)− y(x)).

Applying this approximation in the initial value problem (7.3) at x = xj , we get

1

h
(y(xj+1)− y(xj)) ≈ f(xj , y(xj)).

The Euler’s method is defined as

yj+1 = yj + hf(xj , yj), j = 0, 1, · · · (7.9)

For the initial guess, use y0 = y(x0). ⊓⊔

Geometrical Interpretation 7.6. :

Some geometric insight into Euler’s method is given in the following figure.

.

.

.

.

.

$x$

$y$

$x_n$ $x_{n+1}$

$y(x_{n+1})$
$y(x_n)$

$y_{n+1}=y_n+h(f(x_n,y(x_n))$

Fig. 7.1. An illustration of Euler’s method derivation

The tangent line to the graph of z = y(x) at x = xn has slope f(xn, yn). The Euler’s method
approximates the value of y(xn+1) at by the corresponding value of this tangent line at the point x = xn+1.
⊓⊔
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Example 7.7. For the differential equation y′(x) = (cos y(x))2, the Euler’s method takes the form

yj+1 = yj + h(cos yj)
2.

This equation can be used to obtain approximate solution of the given equation with initial condition
y(0) = 0. ⊓⊔

Example 7.8. Consider the initial-value problem

y′ = y, y(0) = 1.

The Euler method (7.15) for this equation takes the form

yj+1 = yj + hyj = (1 + h)yj .

Note that the exact solution for the given initial value problem is y(x) = ex.

On applying Euler method with h = 0.01 and retaining six decimal places after decimal point, we get

y(0.01) ≈ y1 = 1 + 0.01 = 1.01

y(0.02) ≈ y2 = 1.01 + 0.01(1.01) = 1.0201

y(0.03) ≈ y3 = 1.0201 + 0.01(1.0201) = 1.030301

y(0.04) ≈ y4 = 1.030301+ 0.01(1.030301) = 1.040606

Since the exact solution of this equation is y = ex, the correct value at x = 0.04 is 1.0408. It is clear that
to obtain more accuracy with Euler’s method, we must take a considerably smaller value for h.

If we take h = 0.005, we obtain the values

y(0.005) ≈ y1 = 1.0050

y(0.010) ≈ y2 = 1.0100

y(0.015) ≈ y3 = 1.0151

y(0.020) ≈ y4 = 1.0202

y(0.025) ≈ y5 = 1.0253

y(0.030) ≈ y6 = 1.0304

y(0.035) ≈ y7 = 1.0356

y(0.040) ≈ y8 = 1.0408

These results are correct to four decimal places after the decimal point. The numerical results along with
the error is presented in the following table for h = 0.01 and h = 0.005.

h x yh(x) Exact Solution Error Relative Error
0.01 0.00 1.000000 1.000000 0.000000 0.000000
0.01 0.01 1.010000 1.010050 0.000050 0.000050
0.01 0.02 1.020100 1.020201 0.000101 0.000099
0.01 0.03 1.030301 1.030455 0.000154 0.000149
0.01 0.04 1.040604 1.040811 0.000207 0.000199
0.01 0.05 1.051010 1.051271 0.000261 0.000248

h x yh(x) Exact Solution Error Relative Error
0.005 0.00 1.000000 1.000000 0.000000 0.000000
0.005 0.00 1.005000 1.005013 0.000013 0.000012
0.005 0.01 1.010025 1.010050 0.000025 0.000025
0.005 0.01 1.015075 1.015113 0.000038 0.000037
0.005 0.02 1.020151 1.020201 0.000051 0.000050
0.005 0.02 1.025251 1.025315 0.000064 0.000062
0.005 0.03 1.030378 1.030455 0.000077 0.000075
0.005 0.03 1.035529 1.035620 0.000090 0.000087
0.005 0.04 1.040707 1.040811 0.000104 0.000100
0.005 0.04 1.045910 1.046028 0.000117 0.000112
0.005 0.05 1.051140 1.051271 0.000131 0.000125
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From the above numerical experiments, we could see that to obtain more accuracy with
Euler’s method, we must take a considerably smaller value for h. ⊓⊔

Algorithm 7.9. :

Input Variables: x0, h, xN , y0
Output : y1

x = x0

while x ≤ xN

do
print x, y0
y1 = y0 + h× f(x, y0) (replace the function f by the given right hand side of the equation)
y0 = y1
x = x+ h

end while ⊓⊔

Using Taylor’s theorem, write

y(xj+1) = y(xj) + hy′(xj) +
h2

2
y′′(ξj)

for some xj < ξj < xj+1. Using the fact that y(x) satisfies the differential equation, this becomes

y(xj+1) = y(xj) + hf(xj , y(xj)) +
h2

2
y′′(ξj).

Thus, the truncation error in Euler’s method is

Tj+1 =
h2

2
y′′(ξj). (7.10)

Let us now analyze the error in Euler’s method.

y(xj+1)− yj+1 = y(xj)− yj + h(f(xj , y(xj))− f(xj , yj)) +
h2

2
y′′(ξj).

Thus the error in yj+1 consists of two parts, namely, (1) the truncation error h2

2 y′′(ξj) at xj+1th step and
(2) the propagated error y(xj)− yj + h(f(xj , y(xj))− f(xj , yj)). This propagated error can be simplified
by applying the mean value theorem to f(x, z) considering it as a functin of z:

f(xj , y(xj))− f(xj , yj) ≈
∂f(xj , yj)

∂z
[y(xn)− yn].

Using this, we get the error

ej+1 =

[

1 + h
∂f(xj , yj)

∂z

]

ej +
h2

2
y′′(ξj). (7.11)

We now assume that over the interval of interest,

∣

∣

∣

∣

∂f(xj , y(xj))

∂z

∣

∣

∣

∣

< L, |y′′(x)| < Y,

where L and Y are fixed positive constants. On taking absolute values in (7.11), we obtain

|ej+1| ≤ |ej|+ hL|ej|+
h2

2
Y = (1 + hL)|ej|+

h2

2
Y. (7.12)

This estimate can further be used to give a general error estimate for Euler’s method for the intial value
problem. We skip the detail derivation of this estimate and summarize the result in the following theorem.
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Theorem 7.10. Let yn be the approximate solution of (4.10) generated by Euler’s method (4.8). If the
exact solution y(x) of (4.10) has a continuous second derivative on the interval [x0, xn], and if on this
interval the inequalities

∣

∣

∣

∣

∂f(xj , y(xj))

∂z

∣

∣

∣

∣

< L, |y′′(x)| < Y,

are satisfied for fixed positive constants L and Y , the error Ej = y(xn)− yj of Euler’s method at a point
xj = x0 + nh is bounded as follows:

|ej | ≤
hY

2L

(

e(xn−x0)L − 1
)

+ e(xn−x0)L|y0 − fl(y0)| (7.13)

Example 7.11. Consider the initial value problem y′ = y, y(0) = 1 from x = 0 to x = 1. Let us now
find the upper bound for the discretization error of Euler’s method in solving this problem.

Here f(x, y) = y, ∂f/∂y = 1. Hence we can take L = 1.

Since y = ex, y′′ = ex and |y′′(x)| ≤ e for 0 ≤ x ≤ 1. Therefore, we take Y = e.

To find a bound for the error at any x0 = 0 ≤ xj ≤ 1, we have xj − x0 = xj . Therefore, from (7.13),
we have

|ej | ≤
he

2
(exj − 1).

Here, we assume that there is no approximation in the initial condition and therefore the second term in
(7.13) is zero. In particular, if xj = 1, then the corresponding error is |e(1)| < 2.4h.

To see how realistic this bound is, we shall obtain the exact solution of Euler’s method for this problem.
Thus,

yj+1 = yj + hf(xj , yj) = (1 + h)yj .

The solution of this difference equation satisfing y(0) = 1 is

yj = (1 + h)j .

Now, if h = 0.1, n = 10, we have yj = (1.1)10. Therefore, the Euler’s method gives y(1) ≈ y10 = 2.5937.
But the exact value is y(1) = e = 2.71828. The error is 0.12466, whereas the bound obtained from (7.13)
was 0.24. ⊓⊔

Remark 7.12. The error bound (7.13) is valid for a large family of the initial value problem. But, it
usually produces a very poor estimate due to the presence of the exponential terms. For instance, in the
above example, if we take xn to be very large, then the corresponding bound will also be very large. ⊓⊔

The above error analysis assumes that the numbers used are of infinite precision and no floating point
approximation is assumed. When we include the floating point approximation that yn = ỹn + ǫn, then
the bound for total error is given in the following theorem. The proof of this theorem is omitted for this
course.

Theorem 7.13. Let yn be the approximate solution of (4.10) generated by Euler’s method (4.8) and let
ỹn is the floating point approximation to yn in the sense that

yn = ỹn + ǫn.

If the exact solution y(x) of (4.10) has a continuous second derivative on the interval [x0, xn], and if on
this interval the inequalities

∣

∣

∣

∣

∂f(xj , y(xj))

∂z

∣

∣

∣

∣

< L, |y′′(x)| < Y,

are satisfied for fixed positive constants L and Y , the total error Ej = y(xn)− ỹj of Euler’s method at a
point xj = x0 + nh is bounded as follows:

|ej | ≤
1

L

(

hY

2
+

ǫ

h

)

(

e(xn−x0)L − 1
)

+ e(xn−x0)L|ǫ0|, (7.14)

where ǫ := max{ǫi/i = 0, 1, · · · , n}.
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7.4 Runge-Kutta Method

Although Euler’s method is easy to implement, this method is not so efficient in the sense that to get
a better approximation, one need a very small step size. One way to get a better accuracy is to include
the higher order terms in the Taylor expansion in the formula. But the higher order terms involve higher
derivatives of y. The Runge-Kutta methods attempt to obtain greater accuracy and at the same
time avoid the need for higher derivatives, by evaluating the function f(x, y) at selected points on each
subintervals.

We will start with Runge-Kutta method of order 2. Consider the formula of the form

yj+1 = yj + ak1 + bk2 (7.15)

where

k1 = hf(xj , yj), k2 = hf(xj + αh, yj + βk1). (7.16)

Here a, b, α and β are constants to be determined so that (7.15) agrees with the Taylor algorithm of a
possible higher order.

On expanding y(xj+1) in a Taylor series through terms of order h3, we obtain

y(xj+1) = y(xj) + hy′(xj) +
h2

2
y′′(xj) +

h3

6
y′′′(xj) + · · · .

But we have

y′ = f(x, y)

y′′ = f ′ = fx + fyy
′ = fx + fyf

y′′′ = f ′′ = fxx + fxyf + fyxf + fyyf
2 + fyfx + f2

y f = fxx + 2fxyf + fyyf
2 + fyfx + f2

y f

Using these, we get

y(xj+1) = y(xj) + hf(xj , yj) +
h2

2
(fx + ffy)j +

h3

6
(fxx + 2ffxy + f2fyy + fxfy + ff2

y )j +O(h4). (∗)

Here the subscript j indicates that the quantities are evaluated at (xj , yj).

On the other hand, using Taylor’s expansion for functions of two variables, we find that

k2
h

= f(xj + αh, yj + βk1) = f(xj , yj) + αhfx + βk1fy +
α2h2

2
fxx + αhβk1fxy +

β2k21
2

fyy +O(h3),

where all derivatives are evaluated in (xj , yj).

If we now substitute this expression for k2 into (7.15) and note that k1 = hf(xj , yj), we find upon
rearrangement in powers of h that

yj+1 = yj + (a+ b)hf + bh2(αfx + βffy) + bh3

(

α2

2
fxx + αβffxy +

β2

2
f2fyy

)

+O(h4).

On comparing this with (*), we get

a+ b = 1, bα = bβ = 1/2.

There are many solution for this system, the simplest being

a = b = 1/2, α = β = 1.

Algorithm 7.14 (Runge-Kutta Method of Order 2).

For the equation
y′ = f(x, y), y(x0) = y0,

generate approximations yj to y(x0 + jh), for h fixed and j = 0, 1, · · · using the recursion formula

yj+1 = yj +
1

2
(k1 + k2) with k1 = hf(xj , yj), k2 = hf(xj + h, yj + k1). (7.17)
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The local discretization error of (7.17) is of order h3 whereas the Euler’s method is of order h2. We can
therefore expect to be able to use a larger step size with (7.17). The price we pay for this is that we must
evaluate the function f(x, y) twice for each step.

Example 7.15. Consider the initial-value problem

y′ = y, y(0) = 1.

Using Runge-Kutta method, we obtain

x y k1 k2
0.000000 1.000000 0.010000 0.010100
0.010000 1.010050 0.010000 0.010100
0.020000 1.020201 0.010100 0.010202
0.030000 1.030454 0.010202 0.010304
0.040000 1.040810 0.010305 0.010408

Recall the exact solution if y(x) = ex and y(0.04) = 1.0408. ⊓⊔

Formulas for the Runge-Kutta type of any order can be derived by the method used above. However, the
derivations become exceedingly complicated. The most popular and most commonly used formula of this
type is the Runge-Kutta method of order 4 as given in the following algorithm.

Algorithm 7.16 (Runge-Kutta Method of Order 4).

For the equation
y′ = f(x, y), y(x0) = y0,

generate approximations yj to y(x0 + jh), for h fixed and j = 0, 1, · · · using the recursion formula

yj+1 = yj +
1

6
(k1 + 2k2 + 2k3 + k4) (7.18)

where

k1 = hf(xj , yj),

k2 = hf

(

xj +
h

2
, yj +

k1
2

)

,

k3 = hf

(

xj +
h

2
, yj +

k2
2

)

,

k4 = hf(xj + h, yj + k3) (7.19)

The local discretization error for 4th order Runge-Kutta Method is O(h5).

7.5 An Implicit Methods

Using the integral form of the initial value problem (7.10) in the interval [xn, xn+1], we get

y(xn+1) = y(xn) +

∫ xn+1

xn

f(s, y)ds.

Using the trapezoidal rule for the integration, we get
∫ xn+1

xn

f(s, y)ds ≈ h

2
(f(xn, y(xn)) + f(xn+1, y(xn+1))).

Using this formula for the integral on the right hand side, we obtain the implicit method called trape-
zoidal method for obtaining the approximate solution of the initial value problem as

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1)). (7.20)

The Euler and Runge-Kutta methods are explicit methods as they use the value of the solution y at the
known node points where as the trapezoidal rule is called the implicit method as it uses the value of the
function y at the point where the solution is supposed to be computed.
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Example 7.17. To obtain the appoximate solution for the initial value problem y′ = xy, y(0) = 1 using
the trapezoidal rule with h = 0.2. We have y0 = 1 and

y1 = y0 +
h

2
(x0y0 + x1y1) = 1 + 0.1(0 + 0.2y1),

which gives (1− 0.02)y1 = 1, and this implies y1 ≈ 1.0204. Similarly,

y2 = y1 +
h

2
(x1y1 + x2y2) = 1.0204 + 0.1(0.2× 1.0204 + 0.4y2),

and

y(0.4) ≈ y2 =
1.0408

1− 0.04)
≈ 1.0842.

⊓⊔

Example 7.18. To obtain the appoximate solution for the initial value problem y′ = e−y, y(0) = 1
using the trapezoidal rule with h = 0.2. We have,

y1 = y0 +
h

2
(e−y0 + e−y1) = 1 + 0.1(e−1 + e−y1),

which gives the nonlinear equation

g(y1) = y1 − 0.1e−y1 − (1 + 0.1e−1) = 0,

and the solution of this equation is the approximate value of the solution of the given initial value problem.
⊓⊔

7.6 Multistep Methods: Predictor and Corrector

Unlike the single step methods, multi-step methods use more than one previous steps to calculate the
next value of y. A general form of the multi-step method is

yn+m + am−1yn+m−1+ · · · +a0yn =

h(bmf(xn+m, yn+m) + bm−1f(xn+m−1, yn+m−1) + · · ·+ b0f(xn, yn)),(7.21)

where aj , (j = 0, 1, · · · ,m− 1) and bi (i = 0, 1, · · · ,m) are constants to be determined.

Example 7.19. m = 1, a0 = −1, b0 = 1 and b1 = 0 gives Euler method.

Similarly, m = 1, a0 = −1, b0 = 1/2 and b1 = 1/2 gives the trapezoidal method. ⊓⊔

When bm = 0, the method is called the explicit method and when bm 6= 0, the method is called the
implicit method. The explicit methods are generally called as the Adams-Bashforth methods and
the implicit methods are called the Adams-Moulton methods.

In the previous section, we have seen that the implicit methods lead to solving a nonlinear equation
to get an approximate value for the solution of the initial value problem. In practice, implicit multi-step
methods are more used to improve approximations obtained by explicit methods. The procedure is to
first obtain an approximation yn+m for the solution at xn+m using an explicit method which is called
the predictor step and then this value is used further in the implicit method iteratively to improve
the approximation, which is called the corrector step. The resulting method is called the predictor-
corrector method

Let us begin to explain a single step predictor-corrector method. For the predictor step, we use the
Euler method

y
(0)
n+1 = yn + hf(xn, yn),

which gives the value of yn+1 that apprximate the solution y(xn+1) of the given initial value problem.

We consider this value as the first term in the sequence {y(k)n+1}, k = 0, 1, · · · and generate the rest of the
terms of the sequence using the implicit trapezoidal rule as
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y
(k+1)
n+1 = yn +

h

2

(

f(xn, yn) + f(xn+1, y
(k)
n+1)

)

, k = 0, 1, · · · .

We now show that the sequence generated by the single step predictor-corrector method converges to
yn+1 obtained by the trapezoidal method (7.20). The absolute error is given by

|y(xn+1)− y
(k+1)
n+1 | = h

2

∣

∣

∣f(xn+1, yn+1)− f(xn+1, y
(k)
n+1)

∣

∣

∣

≈ h

2

∣

∣

∣

∣

∂f(xn+1, yn+1)

∂y

∣

∣

∣

∣

|yn+1 − y
(k)
n+1|

Thus, when
∣

∣

∣

∣

∂f(xn+1, yn+1)

∂y

∣

∣

∣

∣

< 1,

this sequence converges.

For multi-step predictor-corrector method, we need to find the coefficients bm on the right hand side
of (7.21). For this, we integrate the equation y′ = f(x, y) over the interval [xn, xn+1] where xn+1 = xn+h
to get

y(xn+1)− f(xn) =

∫ xn+1

xn

f(x, y(x))dx.

The idea of a general mutistep method is to replace f(x, y(x)) by an interpolation polynomial p(x) and
then integrate. This gives approximations yn+1 of y(xn+1) and yn of y(xn),

yn+1 = yn +

∫ xn+1

xn

p(x)dx.

Different choices of p(x) will produce different methods.

Let us now proceed to derive the three-step predictor-corrector method. Let p2(x) denote the quadratic
polynomial that interpolates f(x, y(x)) = g(x) at xn, xn−1 and xn−2. Then use

∫ xn+1

xn

g(x)dx ≈
∫ xn+1

xn

p2(x)dx.

The final expression together with truncation error is

∫ xn+1

xn

g(x)dx =
h

12
[23g(xn)− 16g(xn−1) + 5g(xn−2)] +

3

8
h4g′′′(ξn),

where xn−2 < ξn < xn+1. For the predictor step (Adams-Bashforth method), we use

yn+1 = yn +
h

12
[23fn − 16fn−1 + 5fn−2], n ≥ 2,

where fn = f(xn, yn). The corrector step (Adams-Moulton method) is obtained by replacing the function
f(x, y(x)) = g(x) by the quadratic interpolation p2(x) at xn+1, xn and xn−1. The resulting method is

yn+1 = yn +
h

12
[5fn+1 + 8fn − fn−1], n ≥ 1,

where fn = f(xn, yn).
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Exercise 7

I. Explicit Methods

1. Consider the initial value problem y(x) = f(x, y), y(x0) = y0, with

∂f(x, y)

∂y
≤ 0,

for all x0 ≤ x ≤ xn and y. Show that there exist a h > 0 such that

|en| ≤ nY h2 + |e0|,

where en = y(xn)− yn with yn obtained using Euler method and Y = 1
2 max
x0≤x≤xn

|y′′(x)|.

2. The solution of
y′(x) = λy(x) + cosx− λ sinx, y(0) = 0

is y(x) = sinx. Find the approximate value of y(3) using Euler method with h = 0.5 and λ = −20.
Obtain the error bound using the formula in problem 1 and compare it with the actual error.
Give reason for why the actual error exceeds the error bound in this case.

3. Write the Euler method for finding the approximate value of y(xn) for some xn < 0, where y
satisfies the initial value problem y(x) = f(x, y), y(0) = y0.

4. Consider the initial value problem y′ = xy, y(0) = 1. Estimate the error at x = 1 when Euler
method is used with infinite precision, to find the approximate solution to this problem with step
size h = 0.01.

5. Find the upper bound for the propagated error in Euler method (with infinite precision) with
h = 0.1 for solving the initial value problem y′ = y, y(0) = 1, in the interval (i) [0,1] and (ii)
[0,5].

6. Write down the Euler method for the solution of the initial value problem y′ = y, y(0) = 1 on
some interval [0, 1] with step size h = 1/n. Denoting by yn(x) the resulting approximation to
y(x), x ∈ [0, 1], show using limiting argument (without using the error bound) that yn(1) → y(1)
as n → ∞.

7. Consider the initial value problem y′ = −2y, 0 ≤ x ≤ 1, y(0) = 1;

i. Find an upper bound on the error in Euler method at x = 1 in terms of the step size h.

ii. Solve the difference equation which results from Euler’s method.

iii. Compare the bound obtained from (i) with the actual error as obtained from (ii) at x = 1 for
h = 0.1 and h = 0.01.

iv. How small a step size h would have to be taken to produce six significant digits of accuracy
at x = 1, using Euler’s method?

8. In each of the following initial value problems, use Euler method, Runge-Kutta method of order
2 and 4 to find the solution at the specified point with specified step size h:

i. y′ = x + y; y(0) = 1. Find y(0.2) (For Euler method take h = 0.1 and for other methods,
take h = 0.2) Exact Solution: y(x) = −1− x+ 2ex.

ii. y′ = 2 cosx−y, y(0) = 1. Find y(0.6) (For Euler method take h = 0.1 and for other methods,
take h = 0.2) Exact Solution: y(x) = sinx+ cosx.

9. Use Euler, Range-Kutta of order 2 and 4 methods to solve the IVP y′ = 0.5(x−y) for all x ∈ [0, 3]
with initial condition y(0) = 1. Compare the solutions for h = 1, 0.5, 0.25, 0.125 along with the
exact solution y(x) = 3e−x/2 + x− 2.

10. Show that the Euler and Runge-Kutta methods fails to determine an approximation to the non-
trivial solution of the initial-value problem y′ = yα, α < 1, y(0) = 0, although the exact (non-
trivial) solution exists.
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II. Multi-Step Methods

11. The single-step predictor-corrector method reads

y
(0)
n+1 = yn + hf(xn, yn), y

(k+1)
n+1 = yn +

h

2

(

f(xn, yn) + f(xn+1, y
(k)
n+1)

)

, k = 0, 1, · · · .

Find the values of h for which corrector sequence converges when used for the initial value problem
y′ = −y, y(0) = 1.

12. For equally spaced nodes {x0, x1, · · · , xn, · · · , xN}, derive Simpson’s implicit method for the initial
value problem y′ = f(x, y), y(x0) = y0 by applying Simpson’s rule to the integral

y(xn+1)− y(xn−1) =

∫ xn+1

xn−1

f(x, y(x))dx

for n ≥ 1.

13. Consider the formula

yk+1 = yk +

∫ xk+1

xk

p1(x)dx,

with linear polynomial p1(x) interpolating f(x, y(x)) =: g(x) at nodes {xk, xk+1}, for solving the
initial value problem y′ = f(x, y), y(x0) = y0. Choose an appropriate approximation to g(xn+1)
that leads to the Runge-Kutta method of order 2.

14. Find the Adams-Bashforth method with linear interpolation at nodes {xn−1, xn} and also find
the truncation error.

15. Derive the two-step predictor corrector method for solving the initial value problem y′ =
f(x, y), y(x0) = y0. Show that the truncation error is of O(h3).
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I. Continuity of a Function

1. Explain why each of the following functions is continuous or discontinuous.
(a) The temperature at a specific location as a function of time.
(b) The temperature at a specific time as a function of the distance from a fixed point.

2. Study the continuity of f in each of the following cases:

(a) f(x) =

{

x2 if x < 1√
x if x ≥ 1

, (b) f(x) =

{

−x if x < 1
x if x ≥ 1

, (c) f(x) =

{

0 if x is rational
1 if x is irrational

,

3. Let f : [0,∞) → R be given by

f(x) =







1, if x = 0,
1/q, if x = p/qwherep, q ∈ N and p, q have no common factor,
0, if x is irrational.

Show that f is discontinuous at each rational in [0,∞) and it is continuous at each irrational in
[0,∞). [Note: This function is known as Thomae’s function.]

4. Let P and Q be polynomials. Find

lim
x→∞

P (x)

Q(x)
and lim

x→0

P (x)

Q(x)

if the degree of P is (a) less than the degree of Q and (b) greater than the degree of Q.

5. Let f be defined on an interval (a, b) and suppose that f is continuous at some c ∈ (a, b) and
f(c) 6= 0. Then, show that there exist a δ > 0 such that f has the same sign as f(c) in the interval
(c− δ, c+ δ).

6. Show that the equation
sinx+ x2 = 1

has at least one solution in the interval [0, 1].

7. Show that f(x) = (x− a)2(x− b)2 + x takes on the value (a+ b)/2 for some x ∈ (a, b).

8. Let f(x) be continuous on [a, b], let x1, · · · , xn be points in [a, b], and let g1, · · · , gn be real
numbers all of same sign. Then show that

n
∑

i=1

f(xi)gi = f(ξ)

n
∑

i=1

gi, for some ξ ∈ [a, b].

9. Show that the equation f(x) = x, where

f(x) = sin

(

πx+ 1

2

)

, x ∈ [−1, 1]

has at least one solution in [−1, 1].

10. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous function from I onto I. Prove
that f(x) = x for at least one x ∈ I. [Note: A solution of this equation is called the fixed point
of the function f ]

II. Differentiation of a Function

11. Let c ∈ (a, b) and f : (a, b) → R is differentiable at c. If c is a local extremum (maximum or
minimum) of f , then show that f ′(c) = 0.



12. Let f(x) = 1 − x2/3. Show that f(1) = f(−1) = 0, but that f ′(x) is never zero in the interval
[−1, 1]. Explain how this is possible, in view of Rolle’s theorem.

13. Show that the function f(x) = cosx for all x ∈ R is continuous by choosing an appropriate δ > 0
for a given ǫ > 0 as in the definition 1.1.

14. Suppose f is differentiable in an open interval (a, b). Prove that following statements
(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is non-decreasing.
(b) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.
(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is non-increasing.

15. For f(x) = x2, find the point ξ specified by the mean-value theorem for derivatives. Verify that
this point lies in the interval (a, b).

16. Cauchy’s Mean-Value Theorem: If f(x) and g(x) are continuous on [a, b] and differentiable
on (a, b), then show that there exists a point c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c).

III. Integration of a Function

17. In the mean-value theorem for integrals, let f(x) = ex, g(x) = x, [a, b] = [0, 1]. Find the point ξ
specified by the theorem and verify that this point lies in the interval (0, 1).

18. Assuming g ∈ C[0, 1] (means g : [0, 1] → R is a continuous function), show that

∫ 1

0

x2(1− x)2g(x)dx =
1

30
g(ξ), for some ξ ∈ [0, 1].

19. Is the following statement true? Justify.

The integral
∫ 4π

2π
(sin t)/tdt = 0 because, by theorem 1.9, for some c ∈ (2π, 4π) we have

∫ 4π

2π

sin t

t
dt =

1

c

∫ 4π

2π

sin tdt =
cos(2π)− cos(4π)

c
= 0.

20. If n is a positive integer, show that

∫

√
(n+1)π

√
nπ

sin(t2)dt =
(−1)n

c
,

where
√
nπ ≤ c ≤

√

(n+ 1)π.

IV. Taylor’s Formula

21. Show that the remainder Rn+1(x) in the Taylor’s expansion of a n+1 continuously differentiable
function f can be written as

Rn+1(x) =
(x− c)n+1

(n+ 1)!
f (n+1)(ξ),

where ξ ∈ (c, x).

22. Find the Taylor’s expansion for f(x) =
√
x+ 1 upto n = 2 (ie. the Taylor’s polynomial of order

2) with remainder R3(x) about c = 0.

23. Use Taylor’s formula about c = 0 to evaluate approximately the value of the function f(x) = ex

at x = 0.5 using three terms (ie., n = 2) in the formula. Find the value of the remainder R3(0.5).
Add these two values and compare with the exact value.

24. Prove the theorem 1.12

25. Obtain the Taylor’s expansion of ex sin y about (a, b) = (0, 0). Find the expression for R2(x, y) and
determine its maximum value in the region D := {0 ≤ x ≤ π/2, 0 ≤ y ≤ π/2}.
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I. Floating-Point Representation

1. Write the storage scheme for the IEEE double precision floating-point representation of a real
number with the precision of 53 binary digits. Find the overflow limit (in binary numbers) in this
case.

2. In a binary representation, if 2 bytes (ie., 2 × 8 = 16 bits) are used to represent a floating-point
number with 8 bits used for the exponent. Then, as of IEEE 754 storage format, find the largest
binary number that can be represented.

II. Errors

3. The machine epsilon (also called unit round) of a computer is the smallest positive floating-

point number δ such that fl(1 + δ) > 1. Thus, for any floating-point number δ̂ < δ, we have

fl(1 + δ̂) = 1, and 1 + δ̂ and 1 are identical within the computer’s arithmetic.

For rounded arithmetic on a binary machine, show that δ = 2−n is the machine epsilon, where n
is the number of digits in the mantissa.

4. If fl(x) is the machine approximated number of a real number x and ǫ is the corresponding relative
error, then show that fl(x) = (1− ǫ)x.

5. Let x, y and z are the given machine approximated numbers. Show that the relative error in
computing x(y + z) is ǫ1 + ǫ2 − ǫ1ǫ2, where ǫ1 = Er(fl(y + z)) and ǫ2 = Er(fl(xfl(y + z))).

6. If the relative error of fl(x) is ǫ, then show that

|ǫ| ≤ β−n+1 (for chopped fl(x)), |ǫ| ≤ 1

2
β−n+1 (for rounded fl(x)),

where β is the radix and n is the number of digits in the machine approximated number.

7. Consider evaluating the integral In =

∫ 1

0

xn

x+ 5
dx for n = 0, 1, · · · , 20. This can be carried out

in two iterative process, namely, (i) In = 1
n − 5In−1, I0 = ln(6/5) (called forward iteration) and

(ii) In−1 = 1
5n − 1

5In, I20 = 7.997522840 × 10−3 (called backward iteration). Compute In for
n = 0, 1, 2, · · · , 20 using both iterative and show that backward iteration gives correct results,
whereas forward iteration tends to increase error and gives entirely wrong results. Give reason for
why this happens.

8. Find the truncation error around x = 0 for the following functions
(a) f(x) = sinx, (b) f(x) = cosx.

9. Let xA = 3.14 and yA = 2.651 be correctly rounded from xT and yT , to the number of decimal
digits shown. Find the smallest interval that contains
(i) xT , (ii) yT , (iii) xT + yT , (iv) xT − yT , (v) xT × yT and (vi) xT /yT .

10. A missile leaves the ground with an initial velocity v forming an angle φ with the vertical. The
maximum desired altitude is αR where R is the radius of the earth. The laws of mechanics can
be used to deduce the relation between the maximum altitude α and the initial angle φ, which is
given by

sinφ = (1 + α)

√

1− α

1 + α

( |ve|
|v|

)2

,

where ve = the escape velocity of the missile. It is desired to fire the missile with an angle φ and
|ve|/|v| = 2 so that the maximum altitude reached by the missile is 0.25R (ie., α = 0.25). If the
maximum altitude reached is within an accuracy of ±2%, then determine the range of values of
φ. [Hint: Treat sinφ as a function of α and use mean-value theorem]



III. Loss of Significant Digits and Propagation of Error

11. For the following numbers x and their corresponding approximations xA, find the number of
significant digits in xA with respect to x. (a) x = 451.01, xA = 451.023,
(b) x = −0.04518, xA = −0.045113, (c) x = 23.4604, xA = 23.4213.

12. Show that the function f(x) =
1− cosx

x2
leads to unstable computation when x ≈ 0. Rewrite

this function to avoid loss-of-significance when x ≈ 0. Further check the stablity of f(x) in the
equivalent definition of this function in avoiding loss-of-significance error.

13. Let xA and yA, the approximation to x and y, respectively, be such that the relative errors Er(x)
and Er(y) are very much smaller than 1. Then show that (i) Er(xy) ≈ Er(x) + Er(y) and (ii)
Er(x/y) ≈ Er(x) − Er(y). (This shows that relative errors propagate slowly with multiplication
and division).

14. The ideal gas law is given by PV = nRT , where R is a gas constant given (in MKS system) by
R = 8.3143 + ǫ, with |ǫ| ≤ 0.12× 10−2. By taking P = V = n = 1, find a bound for the relative
error in computing the temperature T .

15. Find the condition number for the following functions (a) f(x) = x2, (b) f(x) = πx, (c) f(x) = bx.

16. Given a value of xA = 2.5 with an error of 0.01. Estimate the resulting error in the function
f(x) = x3.

17. Compute and interpret (find whether the funtions are well or ill-conditioned) the condition number
for (i) f(x) = tanx, at x = π

2 + 0.1
(

π
2

)

. (ii) f(x) = tanx, at x = π
2 + 0.01

(

π
2

)

.

18. Let f(x) = (x−1)(x−2) · · · (x−8). Estimate f(1+10−4) using mean-value theorem with xT = 1
and xA = 1 + 10−4.

IV. Miscellaneous

19. Big-oh: If f(h) and g(h) are two functions of h, then we say that

f(h) = O(g(h)), as h → 0

if there is some constant C such that
∣

∣

∣

∣

f(h)

g(h)

∣

∣

∣

∣

< C

for all h sufficiently small, or equivalently, if we can bound

|f(h)| < C|g(h)|

for all h sufficiently small. Intuitively, this means that f(h) decays to zero at least as fast as the
function g(h).

Little-oh: We say that

f(h) = o(g(h)), as h → 0 if

∣

∣

∣

∣

f(h)

g(h)

∣

∣

∣

∣

→ 0, as h → 0.

Note that this definition is stronger than the ”big-oh” statement and means that f(h) decays to
zero faster than g(h).
(a) If f(h) = o(g(h)), then show that f(h) = O(g(h)).
(b) Give an example to show that the converse is not true.
(c) What is meant by f(h) = o(1) and f(h) = O(1)?
(d) Give an example of f(h) and g(h) such that f(h) is much bigger than g(h), but still

f(h) = O(g(h)) as h → 0.

20. Assume that f(h) = p(h) +O(hn) and g(h) = q(h) +O(hm), for some positive integers n and m.
Find the order of approximation of their sum, ie., find the largest integer r such that

f(h) + g(h) = p(h) + q(h) +O(hr).



INDIAN INSTITUTE OF TECHNOLOGY BOMBAY
Department of Mathematics

SI 507 Numerical Analysis Tutorial Sheet No. 3
Autumn 2010 S. Baskar

I. Direct Methods

1. Given the linear system 2x1 − 6αx2 = 3, 3αx1 − x2 = 3
2 .

(a) Find value(s) of α for which the system has no solution. (b) Find value(s) of α for which the
system has infinitely many solutions. (c) Assuming a unique solution exists for a given α, find the
solution.

2. Use Gaussian elimination method (both with and without pivoting) to find the solution of the
following systems:
(i) 6x1 + 2x2 + 2x3 = −2, 2x1 + 0.6667x2 + 0.3333x3 = 1, x1 + 2x2 − x3 = 0
Answer: x1 = 2.599928, x2 = -3.799904, x3 = -4.999880, Number of Pivoting = 1.
(ii) 0.729x1 + 0.81x2 + 0.9x3 = 0.6867, x1 + x2 + x3 = 0.8338, 1.331x1 + 1.21x2 + 1.1x3 = 1
Answer: x1 = 0.224545, x2 = 0.281364, x3 = 0.327891, Number of Pivoting = 2.
(iii) x1 − x2 + 3x3 = 2, 3x1 − 3x2 + x3 = −1, x1 + x2 = 3.
Answer: x1 = 1.187500, x2 = 1.812500, x3 = 0.875000, Number of Pivoting = 2.

3. Solve the system 0.004x1 + x2 = 1, x1 + x2 = 2 (i) exactly, (ii) by Gaussian elimination using a
two digit rounding calculator, and (iii) interchanging the equations and then solving by Gaussian
elimination using a two digit rounding calculator.

4. Solve the following system by Gaussian elimination, first without row interchanges and then with
row interchanges, using four-digit rounding arithmetic:

x+ 592y = 437, 592x+ 4308y = 2251.

5. Solve the system 0.5x1 − x2 = −9.5, 1.02x1 − 2x2 = −18.8 using Gaussian elimination method.
Solve the same system with a11 modified slightly to 0.52 (instead of 0.5). In both the cases, use
rounding upto 5 digits after decimal point. Obtain the residual error in each case.

6. For an ǫ with absolute value very much smaller than 1, solve the linear system

x1 + x2 + x3 = 6, 3x1 + (3 + ǫ)x2 + 4x3 = 20, 2x1 + x2 + 3x3 = 13

using Gaussian elimination method both with and without partial pivoting. Obtain the residual
error in each case on a computer for which the ǫ is an unit round.

7. In the n× n system of linear equations

a11x1 + · · ·+ a1nxn = b1, · · · , an1x1 + · · ·+ annxn = bn

let aij = 0 whenever i−j ≥ 2. Write out the general form of this system. Use Gaussian elimination
to solve it, taking advantage of the elements that are known to be zero. Do an operations count
in this case.

8. Obtain the LU factorization of the matrix




4 1 1
1 4 −2
3 2 −4





Use this factorization to solve the system with b = (4, 4, 6)T .

9. Show that the following matrix cannot be written in the LU factorization form:





1 2 6
4 8 −1
−2 3 5







10. Show that the matrix




2 2 1
1 1 1
3 2 1





is invertible but has no LU factorization. Do a suitable interchange of rows and/or columns to
get an invertible matrix, which has LU factorization.

II. Errors and Matrix Norm

11. Use the Gaussian elimination method with rounding upto 5 digits after decimal point to solve the
system 0.52x1 − x2 = −9.5, 1.02x1 − 2x2 = −18.8. Use residual corrector algorithm to improve
the solution till the error vector becomes zero.

12. Solve the system x1 + 1.001x2 = 2.001, x1 + x2 = 2 (i) Compute the residual r = Ay − b for
y = (2, 0)T . (ii) Compute the relative error of y with respect to the exact solution x of the above
system (use Euclidean norm in R

2 defined by ||x|| =
√

x2
1 + x2

2).

13. For any n× n matrices A and B, and x ∈ R
n, show that

i. ‖Ax‖ ≤ ‖A‖‖x‖
ii. ‖AB‖ ≤ ‖A‖‖B‖
where the matrix norm is the induced norm obtained from the corresponding vector norm.

14. Solve the system

5x1 + 7x2 = b1

7x1 + 10x2 = b2

using Gaussian elimination method to obtain the solution x1 when bT = (b1, b2) = (0.7, 1). Also
solve the above system with bA = (b1, b2) = (0.69, 1.01) using the same method to obtain the
solution x2. Show that

‖x1 − x2‖2
‖x1‖2

≤ ‖A‖2‖A−1‖2
‖bT − bA‖2

‖bT ‖2

where A is the 2× 2 coefficient matrix of the above system and the norm in the above inequality
is the Eucledian norm for vector and the corresponding induced norm for the matrix.

15. Show by an example that || · ||M defined by ||A||M = max
1≤i,j≤n

|aij |, does not define an induced

matrix norm.

16. Show that κ(A) ≥ 1 for any n× n non-singular matrix A.

17. For any two n× n non-singular matrices A and B, show that κ(AB) ≤ κ(A)κ(B).

18. Let A(α) =

[

0.1α 0.1α
1.0 2.5

]

. Determine α such that the condition number of A(α) is minimized.

Use the maximum row norm.

19. Estimate the effect of a disturbance on the right hand side vector b by adding (ǫ1, ǫ2)
T to b, where

|ǫ1|, |ǫ2| ≤ 10−4, when the system of equations is given by x1 + 2x2 = 5, 2x1 − x2 = 0 (use
maximum norm for vectors and maximum row norm for matrices).

20. Find a function C(ǫ) > 0 such that C(ǫ) ≤ κ(A) using the maximum row norm, when

A =





1 −1 1
−1 ǫ ǫ
1 ǫ ǫ




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I. Iteration Method

1. Find the n× n matrix B and the n-dimensional vector c such that the Gauss-Seidal method can
be written in the form

x(k+1) = Bx(k) + c, k = 1, 2, · · ·

2. Show that the Gauss-Seidal method converges if the coefficient matrix is diagonally dominant.

3. Study the convergence of the Jacobi and the Gauss-Seidel method for the following systems by
starting with x0 = (0, 0, 0)T and performing three iterations:
(i)5x1 + 2x2 + x3 = 0.12, 1.75x1 + 7x2 + 0.5x3 = 0.1, x1 + 0.2x2 + 4.5x3 = 0.5.
(ii)x1 − 2x2 + 2x3 = 1, − x1 + x2 − x3 = 1, − 2x1 − 2x2 + x3 = 1.
(iii)x1 + x2 + 10x3 = −1, 2x1 + 3x2 + 5x3 = −6, 3x1 + 2x2 − 3x3 = 4.
Check the convergence by obtaining the maximum norm of the residual vector.

4. Use Jacobi method to perform 3 iterations with x(0) = (0, 0, 0) to get x(1), x(2) and x(3) for the
system

−x1 + 5x2 − 2x3 = 3, x1 + x2 − 4x3 = −9, 4x1 − x2 + 2x3 = 8

Compute the maximum norm of the residual error r1, r2 and r3 in x(1), x(2) and x(3), respectively,
obtained above. (Observe that the maximum norm of the residual errors increase. Infact, the
Jacobi iterative sequence diverges in this case). Interchange the rows suitably in the above system
so that the Jacobi iterative sequence converges. Justify your answer without calculating the Jacobi
iterations.

5. Study the convergence of the Jacobi and the Gauss-Seidel method for the following system by
starting with x0 = (0, 0, 0)T and performing 20 iterations (using computer):
x1 + 0.5x2 + 0.5x3 = 1, 0.5x1 + 1x2 + 0.5x3 = 8, 0.5x1 + 0.5x2 + x3 = 1.
Check the convergence by obtaining the maximum norm of the residual vector.

6. For an iterative method x(k) = Bx(k−1)+c with an appropriate choice of x0, show that the error
e(k) has the estimate

‖e(k)‖ ≤ ‖B‖k+1

1− ‖B‖‖c‖.

Use this estimate to find the number of iterations needed to compute the solution of the system

10x1 − x2 + 2x3 − 3x4 = 0, x1 + 10x2 − x3 + 2x4 = 5,

2x2 + 3x2 + 20x3 − x4 = −10, 3x1 + 2x2 + x3 + 20x4 = 15

using Jacobi method with absolute error within 10−4 and x(0) = c (use maximum norm for vectors
and maximum row norm for matrices). Hint: In class, we have proved ‖e(k)‖ ≤ ‖B‖k‖e(0)‖. But
‖e(0)‖ = ‖x− x(0)‖ ≤ ‖x(1) − x(0)‖+ ‖B‖‖x− x(0)‖. In this inequality, solve for ‖x− x(0)‖ and

substitute on the RHS of the first inequality to get ‖e(k)‖ ≤ ‖B‖k
1− ‖B‖‖x

(1) − x(0)‖. Finally, take

x(0) = c to get the desired result.

7. Let x be the solution of the system Ax = b. Show that the following statements are equivalent:

i. the iterative method
x(k+1) = Bx(k) + c, k = 1, 2, · · ·

is convergent (ie., for any x(0), we have x(k) → x as k → ∞.

ii. the spectral radius rσ(B) < 1.

iii. there exists a induced matrix norm ‖ · ‖ such that ‖B‖ < 1.



Hint: Show that (i)⇒(ii)⇒(iii)⇒(i). To prove (i)⇒(ii), first show that B(k)y → 0 as k → ∞,
for an arbitrary vector y. Then replace this arbitrary vector by an eigen vector of B. In proving
(ii)⇒(iii), use the following result (which you don’t need to prove): Let A be a given n×n matrix
and let ǫ > 0. Then there exists an induced matrix norm ‖ · ‖ such that ‖A‖ ≤ rσ(A) + ǫ.

II. Eigenvalue Problem

8. Let A be an non-singular n× n matrix with the condition that the eigenvalues λi of A satisfy

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|

and has n linearly independent eigenvectors, vi, i = 1, · · · , n. Let the vector x(0) ∈ R
n is such

that

x(0) =

n
∑

j=1

cjvj , c1 6= 0.

Then find a constant C > 0 such that

|λ1 − µk| ≤ C

∣

∣

∣

∣

λ2

λ1

∣

∣

∣

∣

k

,

where µk is as defined in the power method and k = 1, 2, · · · .
9. The matrix

A =





0.7825 0.8154 − 0.1897
−0.3676 2.2462 − 0.0573
−0.1838 0.1231 1.9714





has eigenvalues λ1 = 2, λ = 2 and λ3 = 1. Does the power method converge for the above matrix?
Justify your answer. Perform 5 iterations starting from the initial guess x(0) = (1, 3, 6) to verify
your answer.

10. The matrix

A =





2 0 0
2 1 0
3 0 1





has eigenvalues λ1 = 2, λ = 1 and λ3 = 1 and the corresponding eigen vectors may be taken as
v1 = (1, 2, 3)T , v2 = (0, 1, 2)T and v3 = (0, 2, 1)T . Perform 3 iterations to find the eigenvalue and
the corresponding eigen vector to which the power method converge when we start the iteration
with the initial guess x(0) = (0, 0.5, 0.75)T . Without performing the iteration, find the eigenvalue
and the corresponding eigen vector to which the power method converge when we start the
iteration with the initial guess x(0) = (0.001, 0.5, 0.75)T . Justify your answer.

11. The matrix

A =





5.4 0 0
−113.0233 −0.5388 −0.6461
−46.0567 −6.4358 −0.9612





has eigenvalues λ1 = 5.4, λ = 1.3 and λ3 = −2.8 with corresponding eigen vectors v1 =
(0.2,−4.1, 2.7)T , v2 = (0, 1.3,−3.7)T and v3 = (0, 2.6, 9.1)T . To which eigenvalue and the
corresponding eigen vector does the power method converge if we start with the initial guess
x(0) = (0, 1, 1)? Justify your answer.

12. Use Gerschgorin’s theorem to the following matrix and determine the intervals in which the
eigenvalues lie.

A =





0.5 0 0.2
0 3.15 −1

0.57 0 −7.43





Can power method be used for this matrix? Justify your answer. Use Power method to compute
the eigenvalue which is largest in the absolute value and the corresponding eigenvector each of
the above matrix.
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A lab assignment based on this program may be given at the end of this semester.

1. Write a computer program (in any programming language that you know) to compute an eigen-
value and the corresponding eigen vector of a given n× n matrix A.

Use your program for the following matrices. In each case plot a graph with x axis as the number
of iterations and y axis as the eigenvalue obtained in that iteration.

i. A =





1.2357 − 0.5714 0.0024
0.5029 − 0.0557 − 0.0638
0.78 − 1.56 0.88



 ,x(0) = (1, 1, 1)T .

Perform 110 iteration.(Eigen values are 0.1, 0.95, 1.01 and the corresponding eigenvectors
may be taken as (1, 2, 3)T , (2, 1, 0)T and (5, 2, 6)T .)

ii. A =





0.5029 0.0051 − 0.0130
0.8663 2.0160 − 3.8984
0.5775 1.0107 − 2.0989



 ,x(0) = (1, 1, 1)T .

Perform 50 iteration.(Eigen values are -0.58, 0.5, 0.5 and the corresponding eigenvectors may
be taken as (1, 0.2, 0.3)T , (0.1, 0.2, 0.1)T and (0.001, 0.3, 0.2)T .)

iii. A =





−0.5088 − 0.0025 0.0038
−2.0425 0.3050 0.4125
−1.3588 0.5375 − 0.2263



 ,x(0) = (1, 1, 1)T .

Perform 70 iteration.(Eigen values are -0.5, -0.51, 0.58 and the corresponding eigenvectors
may be taken as (1, 1, 3)T , (1, 2, 1)T and (0, 3, 2)T .)

iv. A =





−0.5080 − 0.0040 0.0060
−1.8358 0.0986 0.6186
−1.2212 0.4004 − 0.0896



 ,x(0) = (1, 1, 1)T .

Perform as many iterations as you wish.(Eigen values are -0.5, -0.51, 0.511 and the corre-
sponding eigenvectors may be taken as (1, 1, 2)T , (1, 2, 1)T and (0, 3, 2)T .)
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Nonlinear Equations

I. Fixed-Point Iteration Method

1. For each of the following equations, find the correct iteration function that converges to the desired
solution:
(a) x− tanx = 0, (b) e−x − cosx = 0.
Study geometrically how the iterations behave with different iteration functions.

2. Show that g(x) = π + 1
2 sin(x/2) has a unique fixed point on [0, 2π]. Use fixed-point iteration

method with g as the iteration function and x0 = 0 to find an approximate solution for the
equaton 1

2 sin(x/2)− x+ π = 0. Stop the iteration when the residual error is less than 10−4.

3. If α and β be the roots of x2 + ax+ b = 0. If the iterations

xn+1 = −axn + b

xn
and xn+1 = − b

xn + a

converges, then show that they converge to α and β, respectively, if |α| > |β|.
4. Let {xn} ⊂ [a, b] be a sequence generated by a fixed point iteration method with continuous

iteration function g(x). If this sequence converges to x∗, then show that

|xn+1 − x∗| ≤ λ

1− λ
|xn+1 − xn|,

where λ := max
x∈[a,b]

|g′(x)|. (This enables us to use |xn+1 − xn| to decide when to stop iterating.)

5. Give reason for why the sequence xn+1 = 1− 0.9x2
n, with initial guess x0 = 0, does not converge

to any solution of the quadratic equation 0.9x2 + x − 1 = 0? [Hint: Observe what happens after
25 iterations]

6. Let x∗ be the smallest positive root of the equation 20x3 − 20x2 − 25x+ 4 = 0. If the fixed-point
iteration method is used in solving this equation with the iteration function g(x) = x3−x2− x

4 +
1
5

for all x ∈ [0, 1] and x0 = 0, then find the number of iterations n required in such a way that
|x∗ − xn| < 10−3.

II. Bisection Method

7. Find the number of iterations to be performed in the bisection method to obtain a root of the
equation

2x6 − 5x4 + 2 = 0

in the interval [0, 1] with absolute error ǫ ≤ 10−3. Find the approximation solution.

8. Find the approximate solution of the equation x sinx− 1 = 0 (sine is calculated in radians) in the
interval [0, 2] using Bisection method. Obtain the number of iterations to be performed to obtain
a solution whose absolute error is less than 10−3.

9. Find the root of the equation 10x + x − 4 = 0 correct to four significant digits by the bisection
method.

III. Secant and Newton-Raphson Method

10. Let x∗ be the point of intersection of the circle

(x+ 1)2 + (y − 2)2 = 16

and the positive x-axis. Choose a value ξ with 0.5 < ξ < 3, such that the iterative sequence
generated by the secant method (with circle function values taken in the fourth quadrant) fails
to converge to x∗ when started with the initial guess x0 = 0.5 and x1 = ξ. Explain geometrically
why secant method failed to converge with your choice of the initial guess (x0, x1).



11. Given the following equations:
(a) x4 − x− 10 = 0, (b) x− e−x = 0.
Determine the initial approximations for finding the smallest positive root. Use these to find the
roots upto a desired accuracy with secant and Newton-Raphson methods.

12. Find the iterative method based on Newton-Raphson method for finding
√
N and N1/3, where

N is a positive real number. Apply the methods to N = 18 to obtain the results correct to two
significan digits.

13. Find the iterative method based on the Newton-Raphson method for approximating the root of
the equation sinx = 0 in the interval (−π/2, π/2).
Let α ∈ (−π/2, π/2) and α 6= 0 be such that if the above iterative process is started with the ini-
tial guess x0 = α, then the iteration becomes a cycle in the sense that xn+2 = xn, for n = 0, 1, · · · .
Find a non-linear equation g(x) = 0 whose solution is α.
Starting with the initial guess x0 = α, write the first five iterations using Newton-Raphson method
for the equation sinx = 0.
Starting with the initial guess x0 = 1, perform five iterations using Newton-Raphson method for
the equation g(x) = 0 to find an approximate value of α.

14. Let {xn}∞n=1 be the iterative sequence generated by the Newton-Raphson method in finding the
root of the equation e−ax = x, where a in the range 0 < a ≤ 1. If x∗ denoted the exact root of
this equation and x0 > 0, then show that

|x∗ − xn+1| ≤
1

2
(x∗ − xn)

2.

15. Consider the equation x sinx − 1 = 0. Choose an initial guess x0 > 1 such that the Newton-
Raphson method converges to the solution x∗ of this equation such that −10 < x∗ < −9. Compute
four iterations and give an approximate value of this x∗. For the same equation, choose another
initial guess x0 > 1 such that the Newton-Raphson method converges to the smallest positive root
of this equation. Compute four iterations and give an approximate value of this smallest positive
root.

16. Give an initial guess x0 for which the Newton-Raphson method fails to obtain the real root for
the equation 1

3x
3 − x2 + x+ 1 = 0. Give reason for why it failed.

17. Can Newton-Raphson method be used to solve f(x) = 0 if
(i) f(x) = x2 − 14x+ 50?
(ii) f(x) = x1/3?
(iii) f(x) = (x− 3)1/2 with x0 = 4?
Give reasons.

18. Consider the distribution function for the random variable X given by

F (x) = 1− e
− x

(x−1)2 , 0 ≤ x ≤ 1.

Use Newton-Raphson method to find a value of 0 ≤ x ≤ 1 such that P (X > x) = sin y, where
y = x2. Here P denotes the probability. (Note: A distribution function F of a random variable X
is defined for any real number x as F (x) = P (X ≤ x). Therefore, the required value of x is pre-
cisely a solution of the nonlinear equation obtained using the fact that P (X > x) = 1−P (X ≤ x).)

IV. System of Nonlinear Equations

19. Using Newton’s method to obtain a root for the following nonlinear systems:
(i) x2

1 + x2
2 − 2x1 − 2x2 + 1 = 0, x1 + x2 − 2x1x2 = 0.

(ii) 4x2
1 + x2

2 − 4 = 0, x1 + x2 − sin(x1 − x2) = 0.

20. Use Newton’s method to find the minimum value of the function f(x) = x4
1 + x1x2 + (1 + x2)

2.
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I. Lagrange Interpolation

1. Obtain Lagrange interpolation formula for equally spaced nodes.

2. Using Lagrange interpolation formula, express the rational function f(x) = 3x2+x+1
(x−1)(x−2)(x−3) as a

sum of partial fractions.

3. Construct the Lagrange interpolation polynomial for the function f(x) = sinπx, choosing the
points x0 = 0, x1 = 1/6, x3 = 1/2. Answer: 7/2x− 3x2

4. Find a cubic polynomial using Lagrange’s formula for the data:
x -2 -1 1 3
f(x) -1 3 -1 19

Answer: p3(x) = x3 − 3x+ 1

5. Use Lagrange interpolation formula to find a quadratic polynomial p2(x) that interpolates the

function f(x) = e−x2

at x0 = −1, x1 = 0 and x2 = 1. Further, find the value of p2(−0.9) with
rounding to six decimal places after decimal point and compare the value with the true value
f(−0.9) of same figure. Find the percentage error in this calculation.
Answer: p2(x) = 1− 0.632121x2, Error ≈ 9.69%

6. Given a table of values of the function f(x)

x 321.0 322.8 324.2 325.0
f(x) 2.50651 2.50893 2.51081 2.51188

Compute the value f(323.5). Answer: 2.50987

7. Let p(x) be a polynomial of degree ≤ n. For n+ 1 distinct nodes xk, k = 0, 1, · · · , n, show that

we can write p(x) =

n
∑

k=0

p(xk)lk(x).

8. The functions lk(x) =

n
∏

i=0,i6=k

x− xi

xk − xi
, k = 0, · · · , n are the weight polynomials of the corresponding

nodes and are often called Lagrange multipliers. Prove that for any n ≥ 1,

n
∑

k=0

lk(t) = 1.

[Hint: Use problem 7 with an appropriate polynomial p]

9. Let xk ∈ [a.b], k = 0, 1, · · · , n be n + 1 distinct nodes and let f(x) be a continuous function
on [a, b]. Show that for x 6= xk, k = 0, 1, · · · , n, the Lagrange interpolating polynomial can be
represented in the form

pn(x) = w(x)

n
∑

k=0

f(xk)

(x− xk)w′(xk)

where w(x) = (x− x0)(x− x1) · · · (x− xn). Verify the interpolation condition.

II. Newton Interpolation and Divided Difference

10. For the function data given in the table below, fit a polynomial using Newton interpolation formula
and find the value of f(2.5).

x -3 -1 0 3 5
f(x) -30 -22 -12 330 3458

Answer: p4(x) = 5x4 + 9x3 − 27x2 − 21x− 12, p4(2.5) = 102.6875.

11. Calculate the nth divided difference of f(x) = 1/x Answer: (−1)n/(x0x1 · · ·xn)



12. Let x0, x1, · · · , xn be n+1 distinct nodes in the closed interval [a, b] and let f(x) be n+1 times
continuously differentiable function on [a, b]. Then,

i. show that the divided differences are symmetric functions of their arguments, that is, for an
arbitrary permutation π of the indices 0, 1, · · · , i, we have f [x0, · · · , xi] = f [xπ0, · · · , xπi].

ii. show that f [x0, x1, · · · , xi−1, x] = f [x0, x1, · · · , xi−1, xi]+ f [x0, x1, · · · , xi, x](x−xi), for each
i = 1, · · · , n and for all x ∈ [a, b].

iii. show
d

dx
f [x0, · · · , xi−1, x] = f [x0, · · · , xi−1, x, x].

13. Let f(x) be a real-valued function defined on I = [a, b] and k times differentiable in (a, b). If
x0, x1, · · · , xk are k + 1 distinct points in [a, b], then show that there exists ξ ∈ (a, b) such that

f [x0, · · · , xk] =
f(k)(ξ)

k! .

III. Error in Interpolating Polynomials

14. Let x0, x1, · · · , xn be n+ 1 distinct nodes where instead of the function values f(xi), the corre-
sponding approximate values f̃(xi) rounded to 5 decimal digits after decimal point. If the Lagrange
interpolation polynomial obtained from the approximate values f̃(xi) is p̃n(x), then show that
the error at a fixed point x̃ satisfies the inequality

|pn(x̃)− p̃n(x̃)| ≤
1

2
10−5

n
∑

k=0

|lk(x̃)|,

where pn(x̃) is the Lagrange interpolated polynomial for exact values f(xi) (i = 0, 1, · · · , n).
15. Let p1(x) be the linear Newton interpolation polynomial for data (6000, 0.33333) and (6001,

−0.66667). If the calculation is performed with 5 decimal digit rounding, then show that the
process of evaluating p1(x) in the form p1(x) = f(x0) +∆f0(x − x0) at x = 6000 and x = 6001
involves less error than evaluating the same linear polynomial in the form p1(x) = ∆f0x+(f(x0)−
∆f0x0) =: mx+ a at these points. Find the percentage error in each case.

16. Let x0, x1, · · · , xn be distinct real numbers, and let f be a given real-valued function with n+ 1
continuous derivatives on an interval I = [a, b]. Let t ∈ I be such that t 6= xi for i = 0, · · · , n.
Then show that there exists an ξ ∈ (a, b) such that

en(t) := f(t)−
n
∑

k=0

f(xk)lk(t) =
(t− x0) · · · (t− xn)

(n+ 1)!
f (n+1)(ξ),

where lk(t) =
n
∏

i=0,i6=k

t− xi

xk − xi
, k = 0, · · · , n.

17. Given the square of the integers N and N + 1, what is the largest error that occurs if linear
interpolation is used to approximate f(x) = x2 for N ≤ x ≤ N + 1? Answer: 0.25

18. The following table gives the data for f(x) = sinx/x2.

x 0.1 0.2 0.3 0.4 0.5
f(x) 9.9833 4.9667 3.2836 2.4339 1.9177

Calculate f(0.25) as accurately as the number of figures shown in the table
(a) by using the data in the table and using Newton’s interpolation formula
(b) by first tabulating xf(x) with rounding the same number of figures as in the table and then
using Newton’s interpolation formula.
(c) Find the error in each case and explain the difference between the results in (a) and (b).
Answer: (a) 3.8647 (b) 3.9585 (c) 0.0469 for (a) and 0.000005625 for (b) (you may perform this
calculation with more accurace)

19. Determine the spacing h in a table of equally spaced values of the function f(x) =
√
x between

1 and 2, so that interpolation with a second-degree polynomial in this table will yield a desired
accuracy.

IV. Cubic Spline Interpolation

20. Obtain the cubic spline approximation for the function given in the tabular form
x 0 1 2 3
f(x) 1 2 33 244
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Numerical Differentiation and Integration

I. Numerical Differentiation

1. Find the value of the derivative of the function f(x) = sinx at x = 1 using the three primitive
difference formulae with (i) h = 0.015625 and (ii) h = 0.000015. Perform the calculation with 6
digit rounding at each process.

2. Obtain the central difference formula for f ′(x) using quadratic polynomial approximation.

3. Use the forward, central and backward difference formulas to determine f ′(x0), f
′(x1) and f ′(x2)

respectively for the following tabulated values:

(a)
x 0.5 0.6 0.7
f(x) 0.4794 0.5646 0.6442

(b)
x 0.0 0.2 0.4
f(x) 0.0 0.7414 1.3718

The corresponding functions are (a) f(x) = sinx and (b) f(x) = ex − 2x2 + 3x + 1. Com-
pute the error bounds.

4. Given the values of the function f(x) = log x at x0 = 2.0, x1 = 2.2 and x2 = 2.6, find the approx-
imate value of f ′(2.0) using the methods based on linear and quadratic interpolation. Obtain the
error bounds.

5. Estimate the rounding error behavior of the three primitive numerical differentiation formulae.

6. Find an approximation to the derivative of f(x) evaluated at x, x+h and x+2h with truncation
error of O(h2).

7. Use the method of undetermined coefficients to find a formula for numerical differentiation of
f ′′(x) evaluated at points
(a) x+ 2h, x+ h and x, (b) x+ 3h, x+ 2h x+ h and x
with truncation error as small as possible.

8. Show that the formula

D(2)(x) =
f(x)− 2f(x− h) + f(x− 2h)

h2

gives approximate value for f ′′(x). Find the order of accuracy of this formula.

9. For the method

f ′(x) =
4f(x+ h)− f(x+ 2h)− 3f(x)

2h
+

h2

3
f ′′′(ξ), x < ξ < x+ 2h

determine the optimal value of h for which the total error (which is the sum of the truncation
error and the rounding error) is minimum.

10. In computing f ′(x) using central difference formula find the value of h which minimizes the bound
of the total error.



II. Numerical Integration

11. Apply Rectangle, Trapezoidal, Simpson and Gaussian methods to evaluate

(a) I =

∫ π/2

0

cosx

1 + cos2 x
dx (exact value ≈ 0.623225)

(b) I =

∫ π

0

dx

5 + 4 cosx
(exact value ≈ 1.047198)

(c) I =

∫ 1

0

e−x2

dx (exact value ≈ 0.746824),

(d) I =

∫ π

0

sin3 x cos4 x dx (exact value ≈ 0.114286)

(e) I =
∫ 1

0 (1 + e−x sin(4x))dx. (exact value ≈ 1.308250)

12. Write down the errors in the approximation of

∫ 1

0

x4dx and

∫ 1

0

x5dx

by the Trapezoidal rule and Simpson’s rule. Hence find the value of the constant C for which the

Trapezoidal rule gives the exact result for the calculation of
∫ 1

0
(x5 − Cx4)dx.

13. Estimate the effect of data inaccuracy on results computed by Trapezoidal and Simpson’s rule.

14. Under what condition does the composite Trapezoidal and composite Simpson rules be conver-
gent? Give reason.

15. Use composite Simpson and composite Trapezoidal rules to obtain an approximate value for the
improper integral

∫ ∞

1

1

x2 + 9
dx, with n = 4.

16. Obtain error formula for the composite trapezoidal and composite Simpson rules.

17. Find the number of subintervals and the step size h so that the error for the composite trapezoidal

rule is less than 5× 10−9 for approximating the integral
∫ 7

2
dx/x.

18. Determine the coefficients in the quadrature formula

∫ 2h

0

x−1/2f(x)dx = (2h)1/2(w0f(0) + w1f(h) + w2f(2h)).

19. Use the two-poind Gaussian quadrature rule to approximate

∫ 1

−1

dx

x+ 2

and compare the result with the trapezoidal and Simpson rules.

20. Assume that xk = x0 + kh are equally spaced nodes. The quadrature formula

∫ x3

x0

f(x)dx ≈ 3h

8
(f(x0) + 3f(x1) + 3f(x2) + f(x3))

is called the Simpson’s 3
8 rule. Determine the degree of precision of Simpson’s 3

8 rule.
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Numerical Ordinary Differential Equations

1. Consider the initial value problem y(x) = f(x, y), y(x0) = y0, with

∂f(x, y)

∂y
≤ 0,

for all x0 ≤ x ≤ xn and y. Show that there exist a h > 0 such that

|en| ≤ nY h2 + |e0|,
where en = y(xn)− yn with yn obtained using Euler method and Y = 1

2 max
x0≤x≤xn

|y′′(x)|.

2. The solution of
y′(x) = λy(x) + cosx− λ sinx, y(0) = 0

is y(x) = sinx. Find the approximate value of y(3) using Euler method with h = 0.5 and λ = −20.
Obtain the error bound using the formula in problem 1 and compare it with the actual error. Give
reason for why the actual error exceeds the error bound in this case.

3. Write the Euler method for finding the approximate value of y(xn) for some xn < 0, where y satisfies
the initial value problem y(x) = f(x, y), y(0) = y0.

4. Consider the initial value problem y′ = xy, y(0) = 1. Estimate the error at x = 1 when Euler method
is used with infinite precision, to find the approximate solution to this problem with step size h = 0.01.

5. Find the upper bound for the propagated error in Euler method (with infinite precision) with h = 0.1
for solving the initial value problem y′ = y, y(0) = 1, in the interval (i) [0,1] and (ii) [0,5].

6. Write down the Euler method for the solution of the initial value problem y′ = y, y(0) = 1 on some
interval [0, 1] with step size h = 1/n. Denoting by yn(x) the resulting approximation to y(x), x ∈ [0, 1],
show using limiting argument (without using the error bound) that yn(1) → y(1) as n → ∞.

7. Consider the initial value problem y′ = −2y, 0 ≤ x ≤ 1, y(0) = 1;

i. Find an upper bound on the error in Euler method at x = 1 in terms of the step size h.

ii. Solve the difference equation which results from Euler’s method.

iii. Compare the bound obtained from (i) with the actual error as obtained from (ii) at x = 1 for
h = 0.1 and h = 0.01.

iv. How small a step size h would have to be taken to produce six significant digits of accuracy at
x = 1, using Euler’s method?

8. In each of the following initial value problems, use Euler method, Runge-Kutta method of order 2
and 4 to find the solution at the specified point with specified step size h:

i. y′ = x + y; y(0) = 1. Find y(0.2) (For Euler method take h = 0.1 and for other methods, take
h = 0.2) Exact Solution: y(x) = −1− x+ 2ex.

ii. y′ = 2 cosx − y, y(0) = 1. Find y(0.6) (For Euler method take h = 0.1 and for other methods,
take h = 0.2) Exact Solution: y(x) = sinx+ cosx.

9. Use Euler, Range-Kutta of order 2 and 4 methods to solve the IVP y′ = 0.5(x− y) for all x ∈ [0, 3]
with initial condition y(0) = 1. Compare the solutions for h = 1, 0.5, 0.25, 0.125 along with the exact
solution y(x) = 3e−x/2 + x− 2.

10. Show that the Euler and Runge-Kutta methods fails to determine an approximation to the non-
trivial solution of the initial-value problem y′ = yα, α < 1, y(0) = 0, although the exact (non-trivial)
solution exists.



SI 507 - Numerical Analysis
Quiz 1 (Autumn 2010 - 2011)

Department of Mathematics, IIT Bombay

Max. Marks: 10 • Time: 5:00 to 6:00 PM • Date: 31/08/2010

Instructions:

1. Write your Name and Roll Number clearly on your answer book as well as every supplement you may
use.

2. Number the pages of your answer book and make a question-page index on the front page.

3. The answer to each question should start on a new page. If the answer for a question is split into two
parts and written in two different places, the first part alone will be corrected.

4. Students are not allowed to have mobile phones with them during exam hours.

5. Only scientific calculators are allowed. Any kind of programming device is not allowed.

6. Formulas used in the solution need not be proved but needs to be stated clearly. Partial marks
may be awarded for the statement.

7. The question paper contains 5 questions each carries 2 marks. Answer all the questions.

1. Let f be a continuous function on the closed interval [0, 1]. Show that there exists a
ξ ∈ [0, 1] such that

f(0.5) = 2f(ξ)− f(0.9).

2. Instead of using the true values xT = 0.71456371 and yT = 0.71456238 in calculating
zT = xT − yT (= 0.133 × 10−5), if we use the approximate values xA = 0.71456414
and yA = 0.71456103, and calculate zA = xA − yA(= 0.311× 10−5), then find the loss
of significant digits in the process of calculating zA when compared to the significant
digits in xA.

3. Is the process of computing the function f(x) =
ex − 1

x
stable or unstable as x → 0?

Justify your answer.

4. Show that the matrix





2 2 1
1 1 1
3 2 1



 cannot be made LU factorization as per Doolittle’s

method. Do a suitable row interchange to the given matrix in such a way that the
resulting new matrix has LU factorization as per the same method.

5. Let the system Ax1 = b1 has a unique solution x1 where

A =

[

1 2
3 ǫ

]

, b1 = (1, 0.5)T ,

for a given 0 < ǫ < 12. Let x2 be the unique solution to the perturbed system Ax2 = b2
with b2 = (1.005, 0.51)T . Find a value of ǫ such that the relative error

‖x1 − x2‖∞
‖x1‖∞

≤ 10−1,

where ‖ · ‖∞ denotes the maximum norm.
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Mid-Semester Examination (Autumn 2010 - 2011)
Department of Mathematics, IIT Bombay

Max. Marks: 30 • Time: 9:30 to 11:30 PM • Date: 13/09/2010

Instructions:

1. Write your Name and Roll Number clearly on your answer book as well as every supplement you may
use.

2. Number the pages of your answer book and make a question-page index on the front page.

3. The answer to each question should start on a new page. If the answer for a question is split into two
parts and written in two different places, the first part alone will be corrected.

4. Students are not allowed to have mobile phones with them during exam hours.

5. Only scientific calculators are allowed. Any kind of programming device is not allowed.

6. Formulas used in the solution need not be proved but needs to be stated clearly. Partial marks
may be awarded for the statement.

7. The question paper contains 5 questions each carries 6 marks. Answer all the questions.

1. (i) State Gerschgorin’s theorem.

(ii) Use Gerschgorin’s theorem to the following matrix and determine the intervals in
which the eigenvalues lie.

A =





0.5 0 0.2
0 3.15 −1

0.57 0 −7.43





(iii) Can power method be used for the matrix A? Justify your answer.

(iv) Use Power method to compute approximately, the eigenvalue which is largest in
the absolute value and the corresponding eigenvector of the matrix A. Start with
the vector x(0) = (1, 1, 1)T and perform two iterations and obtain the approximate
value of the eigen value and the corresponding eigenvector.

2. (i) Let x∗ be the exact solution of the 2× 2 system Ax = b for a given b and a given
non-singular matrix A. If xA = (0.72,−0.02)T be an approximation to x∗ when
‖b‖∞ ≤ 0.5 and ‖A‖∞ ≤ 6, then find the value of K > 0 such that ‖r‖∞ ≤ K,
where r is the corresponding residual vector. (Hint: Use the triangular inequality
that can be stated as: when p and q are any two vectors of same dimension, then
for any given vector norm ‖ · ‖, we have ‖p− q‖ ≤ ‖p‖+ ‖q‖.)

(ii) In the above problem 2(i), if

A =

[

0.5 −1.4
2.1 3.6

]

and the residual error satisfies ‖r‖∞ ≥ 0.2 for xA as in the problem 2(i), then find
the value of L > 0 such that ‖e‖∞ ≥ L, where e = x∗ − xA is the error vector.

(iii) In the above two subsections 2(i) and 2(ii), find the value of U such that ‖e‖∞ ≤ U ,
where e = x∗ − xA is the error vector.



3. (i) Define Gauss-Seidal method for solving the linear system Ax = b, where A is a
3× 3 matrix.

(ii) For the matrix

A =





3 −1 1
2 6 3
1 3 7





and the vector b = (1, 1, 1)T perform 3 Gauss-Seidal iterations with x(0) = (0, 0, 0)T .

(iii) Let x be the exact solution of the system Ax = b where A is the matrix as given in
3(ii) and b is any given vector. Let x(k+1) be the approximate solution of the same
system obtained at the (k + 1)-th iteration using the Gauss-Seidal method for any
initial guess x(0). Find the value of the constant η > 0 such that

‖e(k+1)‖∞ ≤ η‖e(k)‖∞,

where e(k+1) = x− x(k+1) is the error vector.

(iv) For the matrix A as given in 3(ii), does the iterative sequence generated by the
Gauss-Seidal method converge to the solution of the system Ax = b for any given
vector b and any initial guess x(0)? Justify your answer.

(v) For the matrix A as given in 3(ii), any given vector b and any initial guess x(0),
which of the two iterative methods, Gauss-Seidal and Jacobi, converge faster than
the other? Justify your answer.

4. (i) Define the number of significant digits in a real number xA when compared to
another real number xT .

(ii) The numbers pA = 0.5462 and qA = 0.5460 are obtained from p and q by rounding
to 4 digits respectively. If the number zA = pA − qA has only one significant digit
with respect to z = p−q when q = 0.54604 and p−pA < 0, then find the value of p.

5. (i) State the Taylor’s formula with the remainder in the integral form.

(ii) Show that the remainder Rn+1(x) in the Taylor’s expansion of a n+1 continuously
differentiable function f can be written as

Rn+1(x) =
(x− c)n+1

(n + 1)!
f (n+1)(ξ),

where ξ lies between x and c.

(iii) Use Taylor’s formula to find a cubic polynomial that is approximately equal to the
function f(x) = sin x in a small neighborhood of x = 0. Find the truncation error
in this approximation.



SI 507 - Numerical Analysis
Quiz 2 (Autumn 2010 - 2011)

Department of Mathematics, IIT Bombay

Max. Marks: 10 • Time: 6:30 to 7:30 PM • Date: 30/10/2010

Instructions:

1. Write your Name and Roll Number clearly on your answer book as well as every
supplement you may use.

2. Number the pages of your answer book and make a question-page index on the front
page.

3. The answer to each question should start on a new page. If the answer for a question
is split into two parts and written in two different places, the first part alone will be
corrected.

4. Students are not allowed to have mobile phones with them during exam hours.

5. Only scientific calculators are allowed. Any kind of programming device is not allowed.

6. Formulas used in the solution need not be proved but needs to be stated clearly.
Partial marks may be awarded for the statement.

7. The question paper contains 5 questions each carries 2 marks.
Answer all the questions.

1. Which of the following two iterative functions give a fixed-point iteration method that
converges to an isolated root of the equation x−

√
x3 − 1 = 0 in the interval (1, 2):

(i) g1(x) =
√
x3 − 1,

(ii) g2(x) = (x2 + 1)1/3.
Justify your answer.
(Hint: g′′1(x) = 0 has unique solution x ≈ 1.58 in the interval (1, 2) and g′′2(x) = 0 has
unique solution x ≈ 1.73 in the interval (1, 2).)

2. Find the iterative method based on Newton-Raphson method for finding the value of
2a for any given real number a. Apply the method to a = 1.5 and perform one iteration
with x0 = 2.

3. Find the iterative method based on the Newton’s method to find the point x = (x1, x2)
at which a local maximum or a local minimum of the function

f(x) = x2
1 + x2 sin(x1) + ex2

is obtained.

4. For the given real numbers x0, x1 and x2, define the divided difference f [x0, x1, x2] of
a real valued function f(x). Find the value of f [1, 0.5, 1] when f(x) = sin(x).

5. Obtain the linear interpolating polynomial p1(x) for all x ∈ [0, 1] of the function
f(x) = sin(x) with nodes x0 = 0 and x1 = 1. Find the constant K > 0 such that the
infinite norm of the error e1 in this interpolation satisfies ‖e1‖∞,[0,1] ≤ K.


