
Chapter 3
Ring Theory

In the first section below, a ring will be defined as an abstract structure with
a commutative addition, and a multiplication which may or may not be com-
mutative. This distinction yields two quite different theories: the theory of
respectively commutative or non-commutative rings. These notes are mainly
concerned about commutative rings.

Non-commutative rings have been an object of systematic study only quite
recently, during the 20th century. Commutative rings on the contrary have
appeared though in a hidden way much before, and as many theories, it all goes
back to Fermat’s Last Theorem.

In 1847, the mathematician Lamé announced a solution of Fermat’s Last
Theorem, but Liouville noticed that the proof depended on a unique decompo-
sition into primes, which he thought was unlikely to be true. Though Cauchy
supported Lamé, Kummer was the one who finally published an example in
1844 (in an obscure journal, rediscovered in 1847) to show that the uniqueness
of prime decompositions failed. Two years later, he restored the uniqueness by
introducing what he called “ideal complex numbers” (today, simply “ideals”)
and used it to prove Fermat’s Last Theorem for all n < 100 except n = 37, 59,
67 and 74.

It is Dedekind who extracted the important properties of “ideal numbers”,
defined an “ideal” by its modern properties: namely that of being a subgroup
which is closed under multiplication by any ring element. He further introduced
prime ideals as a generalization of prime numbers. Note that today we still
use the terminology “Dedekind rings” to describe rings which have in particu-
lar a good behavior with respect to factorization of prime ideals. In 1882, an
important paper by Dedekind and Weber developed the theory of rings of poly-
nomials. At this stage, both rings of polynomials and rings of numbers (rings
appearing in the context of Fermat’s Last Theorem, such as what we call now
the Gaussian integers) were being studied. But it was separately, and no one
made connection between these two topics. Dedekind also introduced the term
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98 CHAPTER 3. RING THEORY

“field” (Körper) for a commutative ring in which every non-zero element has a
multiplicative inverse but the word “ring” is due to Hilbert, who, motivated by
studying invariant theory, studied ideals in polynomial rings proving his famous
“Basis Theorem” in 1893.

It will take another 30 years and the work of Emmy Noether and Krull to see
the development of axioms for rings. Emmy Noether, about 1921, is the one who
made the important step of bringing the two theories of rings of polynomials
and rings of numbers under a single theory of abstract commutative rings.

In contrast to commutative ring theory, which grew from number theory,
non-commutative ring theory developed from an idea of Hamilton, who at-
tempted to generalize the complex numbers as a two dimensional algebra over
the reals to a three dimensional algebra. Hamilton, who introduced the idea of
a vector space, found inspiration in 1843, when he understood that the gener-
alization was not to three dimensions but to four dimensions and that the price
to pay was to give up the commutativity of multiplication. The quaternion
algebra, as Hamilton called it, launched non-commutative ring theory.

Other natural non-commutative objects that arise are matrices. They were
introduced by Cayley in 1850, together with their laws of addition and multi-
plication and, in 1870, Pierce noted that the now familiar ring axioms held for
square matrices.

An early contributor to the theory of non-commutative rings was the Scottish
mathematician Wedderburn, who in 1905, proved “Wedderburn’s Theorem”,
namely that every finite division ring is commutative and so is a field.

It is only around the 1930’s that the theories of commutative and non-
commutative rings came together and that their ideas began to influence each
other.

3.1 Rings, ideals and homomorphisms

Definition 3.1. A ring R is an abelian group with a multiplication operation

(a, b) 7→ ab

which is associative, and satisfies the distributive laws

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc

with identity element 1.

There is a group structure with the addition operation, but not necessarily
with the multiplication operation. Thus an element of a ring may or may not be
invertible with respect to the multiplication operation. Here is the terminology
used.

Definition 3.2. Let a, b be in a ring R. If a 6= 0 and b 6= 0 but ab = 0, then
we say that a and b are zero divisors. If ab = ba = 1, we say that a is a unit or
that a is invertible.
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While the addition operation is commutative, it may or not be the case with
the multiplication operation.

Definition 3.3. Let R be ring. If ab = ba for any a, b in R, then R is said to
be commutative.

Here are the definitions of two particular kinds of rings where the multipli-
cation operation behaves well.

Definition 3.4. An integral domain is a commutative ring with no zero divisor.
A division ring or skew field is a ring in which every non-zero element a has an
inverse a−1. A field is a commutative ring in which every non-zero element is
invertible.

Let us give two more definitions and then we will discuss several examples.

Definition 3.5. The characteristic of a ring R, denoted by charR, is the small-
est positive integer such that

n · 1 = 1 + 1 + . . .+ 1
︸ ︷︷ ︸

ntimes

= 0.

If there is no such positive integer, we say that the ring has characteristic 0.

We can also extract smaller rings from a given ring.

Definition 3.6. A subring of a ring R is a subset S of R that forms a ring
under the operations of addition and multiplication defined in R.

Examples 3.1. 1. Z is an integral domain but not a field.

2. The integers modulo n form a commutative ring, which is an integral
domain if and only if n is prime.

3. For n ≥ 2, the n × n matrices Mn(R) with coefficients in R are a non-
commutative ring, but not an integral domain.

4. The set

Z[i] = {a+ bi, a, b ∈ Z}, i2 = −1,

is a commutative ring. It is also an integral domain, but not a field.

5. Let us construct the smallest and also most famous example of division
ring. Take 1, i, j, k to be basis vectors for a 4-dimensional vector space
over R, and define multiplication by

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −ij, kj = −jk, ik = −ki.

Then

H = {a+ bi+ cj + dk, a, b, c, d ∈ R}
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commutative non-commutative
has zero divisor integers mod n, n not a prime matrices over a field
has no zero divisor Z {a+ bi+ cj + dk, a, b, c, d ∈ Z}
non-zero element invertible R H

forms a division ring, called the Hamilton’s quaternions. So far, we have
only seen the ring structure. Let us now discuss the fact that every non-
zero element is invertible. Define the conjugate of an element h = a+ bi+
cj + dk ∈ H to be h̄ = a− bi− cj− dk (yes, exactly the same way you did
it for complex numbers). It is an easy computation (and a good exercise
if you are not used to the non-commutative world) to check that

qq̄ = a2 + b2 + c2 + d2.

Now take q−1 to be

q−1 =
q̄

qq̄
.

Clearly qq−1 = q−1q = 1 and the denominator cannot possibly be 0, but
if a = b = c = d = 0.

6. If R is a ring, then the set R[X] of polynomials with coefficients in R is a
ring.

Similarly to what we did with groups, we now define a map from a ring to
another which has the property of carrying one ring structure to the other.

Definition 3.7. Let R,S be two rings. A map f : R→ S satisfying

1. f(a+ b) = f(a) + f(b) (this is thus a group homomorphism)

2. f(ab) = f(a)f(b)

3. f(1R) = 1S

for a, b ∈ R is called ring homomorphism.

We do need to mention that f(1R) = 1S , otherwise, since a ring is not
a group under multiplication, strange things can happen. For example, if Z6

denotes the integers mod 6, the map f : Z6 → Z6, n 7→ 3n satisfies that
f(m + n) = 3(m + n) = 3m + 3n = f(m) + f(n), and f(n)f(m) = 3m3n =
3mn = f(mn) but f(1) 6= 1 and f is not a ring homomorphism. Notice the
difference with group homomorphism: from f(a+ b) = f(a) + f(b), we deduce
that f(a + 0) = f(a) + f(0), that is f(a) = f(a) + f(0). Now because f(a) is
invertible, it must be that f(0) = 0! Once we reach f(a) = f(a)f(1), because
f(a) does not have to be invertible, we cannot conclude!

The notion of “ideal number” was introduced by the mathematician Kum-
mer, as being some special “numbers” (well, nowadays we call them groups)
having the property of unique factorization, even when considered over more
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general rings than Z (a bit of algebraic number theory would be good to make
this more precise). Today only the name “ideal” is left, and here is what it gives
in modern terminology:

Definition 3.8. Let I be a subset of a ring R. Then an additive subgroup of
R having the property that

ra ∈ I for a ∈ I, r ∈ R

is called a left ideal of R. If instead we have

ar ∈ I for a ∈ I, r ∈ R

we say that we have a right ideal of R. If an ideal happens to be both a right
and a left ideal, then we call it a two-sided ideal of R, or simply an ideal of R.

Example 3.2. The even integers 2Z = {2n, n ∈ Z} form an ideal of Z. The
set of polynomials in R[X] with constant coefficient zero form an ideal of R[X].

Of course, for any ring R, both R and {0} are ideals. We thus introduce
some terminology to precise whether we consider these two trivial ideals.

Definition 3.9. We say that an ideal I of R is proper if I 6= R. We say that
is it non-trivial if I 6= R and I 6= 0.

If f : R→ S is a ring homomorphism, we define the kernel of f in the most
natural way:

Kerf = {r ∈ R, f(r) = 0}.
Since a ring homomorphism is in particular a group homomorphism, we already
know that f is injective if and only if Kerf = {0}. It is easy to check that Kerf
is a proper two-sided ideal:

• Kerf is an additive subgroup of R.

• Take a ∈ Kerf and r ∈ R. Then

f(ra) = f(r)f(a) = 0 and f(ar) = f(a)f(r) = 0

showing that ra and ar are in Kerf .

• Then Kerf has to be proper (that is, Kerf 6= R), since f(1) = 1 by
definition.

We can thus deduce the following (extremely useful) result.

Lemma 3.1. Suppose f : R → S is a ring homomorphism and the only two-
sided ideals of R are {0} and R. Then f is injective.

Proof. Since Kerf is a two-sided ideal ofR, then either Kerf = {0} or Kerf = R.
But Kerf 6= R since f(1) = 1 by definition (in words, Kerf is a proper ideal).
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At this point, it may be worth already noticing the analogy between on the
one hand rings and their two-sided ideals, and on the other hand groups and
their normal subgroups.

• Two-sided ideals are stable when the ring acts on them by multiplication,
either on the right or on the left, and thus

rar−1 ∈ I, a ∈ I, r ∈ R,

while normal subgroups are stable when the groups on them by conjuga-
tion

ghg−1 ∈ H, h ∈ H, g ∈ G (H ≤ G).

• Groups with only trivial normal subgroups are called simple. We will not
see it formally here, but rings with only trivial two-sided ideals as in the
above lemma are called simple rings.

• The kernel of a group homomorphism is a normal subgroup, while the
kernel of a ring homomorphism is an ideal.

• Normal subgroups allowed us to define quotient groups. We will see now
that two-sided ideals will allow to define quotient rings.

3.2 Quotient rings

Let I be a proper two-sided ideal of R. Since I is an additive subgroup of R
by definition, it makes sense to speak of cosets r+ I of I, r ∈ R. Furthermore,
a ring has a structure of abelian group for addition, so I satisfies the definition
of a normal subgroup. From group theory, we thus know that it makes sense to
speak of the quotient group

R/I = {r + I, r ∈ R},

group which is actually abelian (inherited from R being an abelian group for
the addition).

We now endow R/I with a multiplication operation as follows. Define

(r + I)(s+ I) = rs+ I.

Let us make sure that this is well-defined, namely that it does not depend on
the choice of the representative in each coset. Suppose that

r + I = r′ + I, s+ I = s′ + I,

so that a = r′ − r ∈ I and b = s′ − s ∈ I. Now

r′s′ = (a+ r)(b+ s) = ab+ as+ rb+ rs ∈ rs+ I
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since ab, as and rb belongs to I using that a, b ∈ I and the definition of ideal.
This tells us r′s′ is also in the coset rs + I and thus multiplication does not
depend on the choice of representatives. Note though that this is true only
because we assumed a two-sided ideal I, otherwise we could not have concluded,
since we had to deduce that both as and rb are in I.

Definition 3.10. The set of cosets of the two-sided ideal I given by

R/I = {r + I, r ∈ R}

is a ring with identity 1R + I and zero element 0R + I called a quotient ring.

Note that we need the assumption that I is a proper ideal of R to claim that
R/I contains both an identity and a zero element (if R = I, then R/I has only
one element).

Example 3.3. Consider the ring of matrices M2(F2[i]), where F2 denotes the
integers modulo 2, and i is such that i2 = −1 ≡ 1 mod 2. This is thus the ring
of 2× 2 matrices with coefficients in

F2[i] = {a+ ib, a, b ∈ {0, 1}}.

Let I be the subset of matrices with coefficients taking values 0 and 1 + i only.
It is a two-sided ideal of M2(F2[i]). Indeed, take a matrix U ∈ I, a matrix
M ∈ M2(F2[i]), and compute UM andMU . An immediate computation shows
that all coefficients are of the form a(1+ i) with a ∈ F2[i], that is all coefficients
are in {0, 1 + i}. Clearly I is an additive group.

We then have a quotient ring

M2(F2[i])/I.

We have seen that Kerf is a proper two-sided ideal when f is a ring homo-
morphism. We now prove the converse.

Proposition 3.2. Every proper two-sided ideal I is the kernel of a ring homo-
morphism.

Proof. Consider the canonical projection π that we know from group theory.
Namely

π : R→ R/I, r 7→ π(r) = r + I.
We already know that π is group homomorphism, and that its kernel is I. We
are only left to prove that π is a ring homomorphism:

• since I is two-sided, then R/I is a ring.

• π(rs) = rs+ I = (r + I)(s+ I) = π(r)π(s).

• π(1R) = 1R + I which is indeed the identity element of R/I.
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We are now ready to state a factor theorem and a 1st isomorphism theorem
for rings, the same way we did for groups. It may help to keep in mind the
analogy between two-sided ideals and normal subgroups mentioned above.

Assume that we have a ring R which contains a proper two-sided ideal I,
another ring S, and f : R → S a ring homomorphism. Let π be the canonical
projection from R to the quotient group R/I:

R S

R/I
?

π

-f

�
���
f̄

We would like to find a ring homomorphism f̄ : R/I → S that makes the
diagram commute, namely

f(a) = f̄(π(a))

for all a ∈ R.

Theorem 3.3. (Factor Theorem for Rings). Any ring homomorphism f
whose kernel K contains I can be factored through R/I. In other words, there
is a unique ring homomorphism f̄ : R/I → S such that f̄ ◦ π = f . Furthermore

1. f̄ is an epimorphism if and only if f is.

2. f̄ is a monomorphism if and only if K = I.

3. f̄ is an isomorphism if and only if f is an epimorphism and K = I.
Proof. Since we have already done the proof for groups with many details, here
we will just mention a few important points in the proof.

Let a+ I ∈ R/I such that π(a) = a+ I for a ∈ R. We define

f̄(a+ I) = f(a).

This is the most natural way to do it, however, we need to make sure that this
is indeed well-defined, in the sense that it should not depend on the choice of
the representative taken in the coset. Let us thus take another representative,
say b ∈ a+ I. Since a and b are in the same coset, they satisfy a− b ∈ I ⊂ K,
where K = Ker(f) by assumption. Since a− b ∈ K, we have f(a− b) = 0 and
thus f(a) = f(b).

Now that f̄ is well defined, it is an easy computation to check that f̄ inherits
the property of ring homomorphism from f .

The rest of the proof works exactly the same as for groups.

The first isomorphism theorem for rings is similar to the one for groups.

Theorem 3.4. (1st Isomorphism Theorem for Rings). If f : R→ S is a
ring homomorphism with kernel K, then the image of f is isomorphic to R/K:

Im(f) ≃ R/Ker(f).
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Proof. We know from the Factor Theorem that

f̄ : R/Ker(f) → S

is an isomorphism if and only if f is an epimorphism, and clearly f is an epi-
morphism on its image, which concludes the proof.

Example 3.4. Let us finish Example 3.3. We showed there that M2(F2[i])/I
is a quotient ring, where I is the ideal formed of matrices with coefficients in
{0, 1 + i}. Consider the ring homomorphism:

f : M2(F2[i]) → M2(F2),M = (mk,l) 7→ f(M) = (mk,l mod 1 + i)

that is f looks at the coefficients of M mod 1 + i. Its kernel is I and it is
surjective. By the first isomorphism for rings, we have

M2(F2[i])/I ≃ M2(F2).

Example 3.5. A less exotic example, which we will study in more details later
on, is the following. Consider the map f : R[X] → C, f(p(X)) = p(i), that is,
f takes a polynomial p(X) with real coefficients, and evaluate this polynomial
in i (i2 = −1). This map is surjective (take the polynomial p(X) = X +(z− i),
z ∈ C) and its kernel is formed by polynomials which, when evaluated in i,
are giving 0, meaning that i is a root of the polynomial, or equivalently that
(X2+1) is a factor of the polynomial. Thus Ker(f) = (X2+1)R[X] = {p(X) =
(X2 + 1)q(X), q(X) ∈ R[X]}. Using the first isomorphism for rings, we have

R[X]/(X2 + 1)R[X] ≃ C.

3.3 The Chinese Remainder Theorem

The name “Chinese Remainder Theorem” supposely comes from the following
question: How many soldiers were part of Han Xing’s army if, sorted by 3
columns, 2 soldiers were left, sorted by 5 columns, 3 soldiers were left, and
sorted by 7 columns, 2 soldiers were left.

The Chinese Remained Theorem is attributed to Sun Zi (in the 3rd century),
and was later published by Qin Jiushao (around 1247).

We will prove a “general” Chinese Remainder Theorem, rephrased in terms
of rings and ideals.

For that let us start by introducing some new definitions about ideals, that
will collect some of the manipulations one can do on ideals. Let us start with
the sum.

Definition 3.11. Let I and J be two ideals of a ring R. The sum of I and J
is the ideal

I + J = {x+ y, x ∈ I, y ∈ J }.
If I and J are right (resp. left) ideals, so is their sum.
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Note that the intersection I ∩ J of two (resp. right, left, two-sided) ideals
of R is again a (resp. right, left, two-sided) ideal of R.

Definition 3.12. The product of two left (resp. right) ideals I and J is the
left (resp. right) ideal

IJ = {
n∑

i=1

xiyi, xi ∈ I, yi ∈ J }.

Example 3.6. Take I = 2Z and J = 3Z which are both two-sided ideals of Z.
We have

I + J = {2x+ 3y, x, y ∈ Z} = Z,

using Bezout identity (since gcd(2, 3) = 1). Also

I ∩ J = 6Z, IJ = {
n∑

i=1

2xi3yi, x, y ∈ Z} = 6Z.

We can define a notion of being co-prime for ideals as follows.

Definition 3.13. The two-sided ideals I and J of a ring R are relatively prime
if

I + J = R.

In a sense, this definition generalizes Bezout identity for rings.
Notice that for a commutative ring, if I and J are relatively prime then

IJ = I ∩ J .

(This is also illustrated in the above example.) Indeed, we clearly have that

IJ ⊂ I ∩ J

since IJ contains by definition sums of elements xy, x ∈ I, y ∈ J , with xy ∈ I
and xy ∈ J by definition of two-sided ideal. Conversely

I ∩ J ⊂ IJ

since there exist x ∈ I, y ∈ J such that x + y = 1 by definition of relatively
prime, and for every element a ∈ I ∩ J , we have that

a = a(x+ y) = ax+ ay = xa+ ay ∈ IJ .

For R a non-commutative ring, where I,J are two-sided and co-prime, all we
can say is that

I ∩ J = IJ + J I.
Indeed, a(x+ y) = ax+ ay ∈ J I + IJ since ax 6= xa.

Finally, let us extend the notion of “modulo” to ideals.
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Definition 3.14. If a, b ∈ R and I is an ideal of R, we say that a is congruent
to b modulo I if

a− b ∈ I.

A last definition this time about rings is needed before we can state the
theorem.

Definition 3.15. If R1, . . . , Rn are rings, the direct product of R1, . . . , Rn,
denoted by

∏n
i=1Ri, is defined as the ring of n-tuples (a1, . . . , an), ai ∈ Ri,

with componentwise addition and multiplication. The zero element is (0, . . . , 0)
and the identity is (1, . . . , 1) where 1 means 1Ri

for each i.

This definition is an immediate generalization of the direct product we stud-
ied for groups.

Theorem 3.5. (Chinese Remainder Theorem). Let R be a commutative
ring, and let I1, . . . , In be ideals in R, such that

Ii + Ij = R, i 6= j.

1. If a1, . . . , an are elements of R, there exists an element a ∈ R such that

a ≡ ai mod Ii, i = 1, . . . , n.

2. If b is another element of R such that b ≡ ai mod Ii, i = 1, . . . , n, then

b ≡ a mod ∩n
i=1 Ii.

Conversely, if b satisfies the above congruence, then b ≡ ai mod Ii, i =
1, . . . , n.

3. We have that

R/ ∩n
i=1 Ii ≃

n∏

i=1

R/Ii.

Proof. 1. For j > 1, we have by assumption that I1+Ij = R, and thus there
exist bj ∈ I1 and dj ∈ Ij such that

bj + dj = 1, j = 2, . . . , n.

This yields that
n∏

j=2

(bj + dj) = 1. (3.1)

Now if we look at the left hand side of the above equation, we have

(b2 + d2)(b3 + d3) · · · (bn + dn) = (b2b3 + b2d3 + d2b3
︸ ︷︷ ︸

∈I1

+d2d3) · · · (bn + dn)
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and all the terms actually belong to I1, but c1 :=
∏n

j=2 dj ∈
∏n

j=2 Ij .
Thus

c1 ≡ 1 mod I1
from (3.1). On the other hand, we also have

c1 ≡ 0 mod Ij
for j > 1 since c1 ∈

∏n
j=2 Ij .

More generally, for all i, we can find ci with

ci ≡ 1 mod Ii, ci ≡ 0 mod Ij , j 6= i.

Now take arbitrary elements a1, . . . , an ∈ R, and set

a = a1c1 + . . .+ ancn.

Let us check that a is the solution we are looking for. Since cj ≡ 0 mod Ij
,j 6= i, we have for a given i that

a ≡ aici ≡ ai mod Ii
using that ci ≡ 1 mod Ii.

2. We have just shown the existence of a solution amodulo Ii for i = 1, . . . , n.
We now discuss the question of unicity, and show that the solution is
actually not unique, but any other solution than a is actually congruent
to a mod ∩n

i=1 Ii.
We have for all i = 1, . . . , n that

b ≡ ai mod Ii ⇐⇒ b ≡ a mod Ii ⇐⇒ b− a ≡ 0 mod Ii
which finally is equivalent to

b− a ∈ ∩n
i=1Ii.

3. Define the ring homomorphism f : R→ ∏n
i=1R/Ii, sending

a 7→ f(a) = (a+ I1, . . . , a+ In).
• This map is surjective: take any (a1 + I1, . . . , an + In) ∈

∏n
i=1R/Ii,

then we must find an a ∈ R such that f(a) = (a1 + I1, . . . , an + In),
that is a+ Ii = ai + Ii, or equivalently ai ≡ a mod Ii, which is true
by the first point.

• Its kernel is given by

Kerf = {a ∈ R, f(a) = (I1, . . . , In)}
= {a ∈ R, a ∈ Ii, i = 1, . . . , n}

=

n∏

i=1

Ii.

We conclude using the first isomorphism Theorem for rings.
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Example 3.7. If R = Z, the Chinese Remainder Theorem simplifies to say
that if n =

∏

i ni where the ni are coprime, then

Z/nZ ≃
∏

i

Z/niZ.

In the particular case of Example 3.6, we have

Z/6Z ≃ Z/2Z× Z/3Z.

This version of the Chinese remainder Theorem does not hold in the non-
commutative case, because the property that IJ = I ∩ J does not hold any-
more, as pointed out earlier. There is though a commutative version if all the
co-prime ideals are assumed to be two-sided.

3.4 Maximal and prime ideals

Here are a few special ideals.

Definition 3.16. The ideal generated by the non-empty set X of R is the
smallest ideal of R that contains X. It is denoted by 〈X〉. It is the collection
of all finite sums of the form

∑

i rixisi.

Definition 3.17. An ideal generated by a single element a is called a principal
ideal, denoted by 〈a〉.

Definition 3.18. A maximal ideal in the ring R is a proper ideal that is not
contained in any strictly larger proper ideal.

One can prove that every proper ideal is contained in a maximal ideal, and
that consequently every ring has at least one maximal ideal. We skip the proof
here, since it heavily relies on set theory, requires many new definitions and the
use of Zorn’s lemma.

Instead, let us mention that a correspondence Theorem exists for rings, the
same way it exists for groups, since we will need it for characterizing maximal
ideals.

Theorem 3.6. (Correspondence Theorem for rings). If I is a two-sided
ideal of a ring R, then the canonical map

π : R→ R/I

sets up a one-to-one correspondence between

• the set of all subrings of R containing I and the set of all subrings of R/I,

• the set of all ideals of R containing I and the set of all ideals of R/I.
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Here is a characterization of maximal ideals in commutative rings.

Theorem 3.7. Let M be an ideal in the commutative ring R. We have

M maximal ⇐⇒ R/M is a field.

Proof. Let us start by assuming that M is maximal. Since R/M is a ring, we
need to find the multiplicative inverse of a+M ∈ R/M assuming that a+M 6= 0
in R/M , that is a 6∈ M . Since M is maximal, the ideal Ra +M has to be R
itself, since M ⊂ Ra+M . Thus 1 ∈ Ra+M = R, that is

1 = ra+m, r ∈ R, m ∈M.

Then
(r +M)(a+M) = ra+M = (1−m) +M = 1 +M

proving that r +M is (a+M)−1.
Conversely, let us assume that R/M is a field. First we notice that M must

be a proper ideal of R, since if M = R, then R/M contains only one element
and 1 = 0.

Let N be an ideal of R such that M ⊂ N ⊂ R and N 6= R. We have to
prove that M = N to conclude that M is maximal.

By the correspondence Theorem for rings, we have a one-to-one correspon-
dence between the set of ideals of R containingM , and the set of ideals of R/M .
Since N is such an ideal, its image π(N) ∈ R/M must be an ideal of R/M , and
thus must be either {0} or R/M (since R/M is a field). The latter yields that
N = R, which is a contradiction, letting as only possibility that π(N) = {0},
and thus N =M , which completes the proof.

Definition 3.19. A prime ideal in a commutative ring R is a proper ideal P
of R such that for any a, b ∈ R, we have that

ab ∈ P ⇒ a ∈ P or b ∈ P.

Here is again a characterization of a prime ideal P of R in terms of its
quotient ring R/P .

Theorem 3.8. If P is an ideal in the commutative ring R

P is a prime ideal ⇐⇒ R/P is an integral domain.

Proof. Let us start by assuming that P is prime. It is thus proper by definition,
and R/P is a ring. We must show that the definition of integral domain holds,
namely that

(a+ P )(b+ P ) = 0 + P ⇒ a+ P = P or b+ P = P.

Since
(a+ P )(b+ P ) = ab+ P = 0 + P,
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we must have ab ∈ P , and thus since P is prime, either a ∈ P or b ∈ P , implying
respectively that either a+ P = P or b+ P = P.

Conversely, if R/P is an integral domain, then P must be proper (otherwise
1 = 0). We now need to check the definition of a prime ideal. Let us thus
consider ab ∈ P , implying that

(a+ P )(b+ P ) = ab+ P = 0 + P.

Since R/P is an integral domain, either a+ P = P or b+ P = P , that is

a ∈ P or b ∈ P,

which concludes the proof.

Corollary 3.9. In a commutative ring, a maximal ideal is prime.

Proof. If M is maximal, then R/M is a field, and thus an integral domain, so
that M is prime.

Corollary 3.10. Let f : R→ S be an epimorphism of commutative rings.

1. If S is a field, then Kerf is a maximal ideal of R.

2. If S is an integral domain, then Kerf is a prime ideal of R.

Proof. By the first isomorphism theorem for rings, we have that

S ≃ R/Kerf.

Example 3.8. Consider the ring Z[X] of polynomials with coefficients in Z, and
the ideal generated by the indeterminate X, that is 〈X〉 is the set of polynomials
with constant coefficient 0. Clearly 〈X〉 is a proper ideal. To show that it is
prime, consider the following ring homomorphism:

ϕ : Z[X] → Z, f(X) 7→ ϕ(f(X)) = f(0).

We have that 〈X〉 = Kerϕ which is prime by the above corollary.

3.5 Polynomial rings

For this section, we assume that R is a commutative ring. Set R[X] to be the
set of polynomials in the indeterminate X with coefficients in R. It is easy to
see that R[X] inherits the properties of ring from R.

We define the evaluation map Ex, which evaluates a polynomial f(X) ∈
R[X] in x ∈ R, as

Ex : R[X] → R, f(X) 7→ f(X)|X=x = f(x).
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We can check that Ex is a ring homomorphism.
The degree of a polynomial is defined as usual, that is, if p(X) = a0+a1X+

. . . + anX
n with an 6= 0, then deg(p(X)) = deg p = n. By convention, we set

deg(0) = −∞.
Euclidean division will play an important role in what will follow. Let us

start by noticing that there exists a polynomial division algorithm over R[X],
namely: if f, g ∈ R[X], with g monic, then there exist unique polynomials q
and r in R[X] such that

f = qg + r, deg r < deg g.

The requirement that g is monic comes from R being a ring and not necessarily
a field. If R is a field, g does not have to be monic, since one can always multiply
g by the inverse of the leading coefficient, which is not possible if R is not a
field.

Example 3.9. Take f(X) = X2 − 2 and g(X) = 2X − 1. It is not possible to
divide f(X) by g(X) in Z[X]. If it were, then

f(X) = X2 − 2 = (q0 + q1X)(2X − 1) + r0

and the coefficient of X2 is 1 on the left hand side, and 2q1 on the right hand
side. Now in Z, there is no solution to the equation 2q1 = 1. Of course, this is
possible in Q, by taking q1 = 1/2!

This gives the following:

Theorem 3.11. (Remainder Theorem). If f ∈ R[X], a ∈ R, then there
exists a unique polynomial q(X) ∈ R[X] such that

f(X) = q(X)(X − a) + f(a).

Hence f(a) = 0 ⇐⇒ X − a | f(X).

Proof. Since (X − a) is monic, we can do the division

f(X) = q(X)(X − a) + r(X).

But now since deg r < deg(X − a), r(X) must be a constant polynomial, which
implies that

f(a) = r(X)

and thus
f(X) = q(X)(X − a) + f(a)

as claimed. Furthermore, we clearly have that

f(a) = 0 ⇐⇒ X − a | f(X).
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The following result sounds well known, care should be taken not to gener-
alize it to rings which are not integral domain!

Theorem 3.12. If R is an integral domain, then a non-zero polynomial f in
R[X] of degree n has at most n roots in R, counting multiplicity.

Proof. If f has no root in R[X], then we are done. Let us thus assume that f
has a root a1 in R, that is f(a1) = 0. Then

X − a1 | f(X)

by the remainder Theorem above, meaning that

f(X) = q1(X)(X − a1)
n1

where q1(a1) 6= 0 and deg q1 = n − n1 since R is an integral domain. Now if
a1 is the only root of f in R, then n1 ≤ n and we are done. If not, consider
similarly a2 6= a1 another root of f , so that

0 = f(a2) = q1(a2)(a2 − a1)
n1 .

Since R is an integral domain, we must have that q1(a2) = 0, and thus a2 is a
root of q1(X). We can repeat the process with q1(X) instead of f(X): since a2
is a root of q1(X), we have

q1(X) = q2(X)(X − a2)
n2

with q2(a2) 6= 0 and deg q2 = n − n1 − n2. By going on iterating the process,
we obtain

f(X) = q1(X)(X − a1)
n1

= q2(X)(X − a2)
n2(X − a1)

n1

= . . .

= (X − a1)
n1(X − a2)

n2 · · · (X − ak)
nk · c(X)

where c(X) is a polynomial with no root in R, possibly constant, and

n ≥ n1 + n2 + · · ·+ nk.

Since R is an integral domain, the only possible roots of f are a1, . . . , ak, k ≤ n,
and the number of roots counting multiplicity is less than n.

Example 3.10. Take R = Z8 the ring of integers modulo 8. Consider the
polynomial

f(X) = X3.

It is easy to check that is has 4 roots: 0, 2, 4, 6. This comes from the fact that
Z8 is not an integral domain.
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3.6 Unique factorization and Euclidean division

In this section, all rings are assumed to be integral domains.
Let us start by defining formally the notions of irreducible and prime. The

elements a, b, c, u in the definitions below all belong to an integral domain R.

Definition 3.20. The elements a, b are called associate if a = ub for some unit
u.

Definition 3.21. Let a be a non-zero element which is not a unit. Then a is
said to be irreducible if a = bc implies that either b or c must be a unit.

Definition 3.22. Let a be a non-zero element which is not a unit. Then a is
called prime if whenever a | bc, then a | b or a | c.

Between prime and irreducible, which notion is the stronger? The answer is
in the proposition below.

Proposition 3.13. If a is prime, then a is irreducible.

Proof. Suppose that a is prime, and that a = bc. We want to prove that either
b or c is a unit. By definition of prime, we must have that a divides either b or
c. Let us say that a divides b. Thus

b = ad⇒ b = bcd⇒ b(1− cd) = 0 ⇒ cd = 1

using that R is an integral domain, and thus c is a unit. The same argument
works if we assume that a divides c, and we conclude that a is irreducible.

Example 3.11. Consider the ring

R = Z[
√
−3] = {a+ ib

√
3, a, b ∈ Z}.

We want to see that 2 is irreducible but not prime.

• Let us first check that 2 is indeed irreducible. Suppose that

2 = (a+ ib
√
3)(c+ id

√
3).

Since 2 is real, it is equal to its conjugate, and thus

22̄ = (a+ ib
√
3)(c+ id

√
3)(a− ib

√
3)(c− id

√
3)

implies that
4 = (a2 + 3b2)(c2 + 3d2).

We deduce that a2 +3b2 must divide 4, and it cannot possibly be 2, since
we have a sum of squares in Z. If a2 + 3b2 = 4, then c2 + 3d2 = 1 and
d = 0, c = ±1. Vice versa if c2 + 3d2 = 4 then a2 + 3b2 = 1, and b = 0,
a = ±1. In both cases we get that one of the factors of 2 is unit, namely
±1.
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• We now have to see that 2 is not a prime. Clearly

2 | (1 + i
√
3)(1− i

√
3) = 4.

But 2 divides neither 1 + i
√
3 nor 1− i

√
3.

We can see from the above example that the problem which arises is the lack
of unique factorization.

Definition 3.23. A unique factorization domain (UFD) is an integral domain
R satisfying that

1. every element 0 6= a ∈ R can be written as a product of irreducible factors
p1, . . . pn up to a unit u, namely:

a = up1 . . . pn.

2. The above factorization is unique, that is, if

a = up1 . . . pn = vq1 . . . qm

are two factorizations into irreducible factors pi and qj with units u, v,
then n = m and pi and qi are associate for all i.

We now prove that the distinction between irreducible and prime disappear
in a unique factorization domain.

Proposition 3.14. In a unique factorization domain R, we have that a is
irreducible if and only if a is prime.

Proof. We already know that prime implies irreducible. Let us show that now,
we also have irreducible implies prime.

Take a to be irreducible and assume that a | bc. This means that bc = ad
for some d ∈ R. Using the property of unique factorization, we decompose d, b
and c into products of irreducible terms (resp. di, bi, ci up to units u, v, w):

a · ud1 · · · dr = vb1 · · · bs · wc1 . . . ct.

Since the factorization is unique, a must be associate to some either bi or ci,
implying that a divides b or c, which concludes the proof.

We now want to connect the property of unique factorization to ideals.

Definition 3.24. Let a1, a2, . . . be elements of an integral domain R. If the
sequence of principal ideals

(a1) ⊆ (a2) ⊆ (a3) ⊆ . . .

stabilizes, i.e., we have
(an) = (an+1) = . . .

for some n, then we say that R satisfies the ascending chain condition on prin-
cipal ideals.

If the same condition holds but for general ideals, not necessarily principal,
we call R a Noetherian ring, in honor of the mathematician Emmy Noether.
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Figure 3.1: Amalie Emmy Noether (1882-1935)

Examples 3.12. 1. Consider the polynomial ring in infinitely many inde-
terminates X1, X2, . . . over R. The chain

(X1) ⊂ (X1, X2) ⊂ (X1, X2, X3) ⊂ . . .

of non-principal ideals is ascending and does not terminate. The ideal
generated by all indeterminates is maximal.

2. Consider the polynomial ring Z+XQ[X] of all rational polynomials with
integral constant term. The chain

(X) ⊂ (X/2) ⊂ (X/4) ⊂ . . .

of principal ideals is ascending and does not terminate.

Theorem 3.15. Let R be an integral domain.

1. If R is a UFD, then R satisfies the ascending chain condition on principal
ideals.

2. If R satisfies the ascending chain condition on principal ideals, then every
non-zero element of R can be factored into irreducible (this says nothing
about the unicity of the factorization).

3. If R is such that every non-zero element of R can be factored into irre-
ducible, and in addition every irreducible element is prime, then R is a
UFD.

Thus R is a UFD if and only if it satisfies the ascending chain condition on
principal ideals and every irreducible element of R is prime.
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Proof. 1. Recall that in a UFD, prime and irreducible are equivalent. Con-
sider an ascending chain of principal ideals

(a1) ⊆ (a2) ⊆ (a3) ⊆ . . .

We have that ai+1 | ai for all i. Thus the prime factors of ai+1 consist of
some (possibly all) prime factors of ai. Since a1 has a unique factorization
into finitely many prime factors, the prime factors will end up being the
same, and the chain will stabilize.

2. Take 0 6= a1 ∈ R. If a1 is irreducible, we are done. Let us thus assume
that a1 is not irreducible, that is

a1 = a2b2

where a2 and b2 are not unit. Since a2 | a1, we have (a1) ⊆ (a2), and
actually

(a1) ( (a2).

Indeed, if (a1) = (a2), then a2 would be a multiple of a1, namely a2 = ca1
and thus

a1 = a2b2 ⇒ a1 = ca1b2 ⇒ a1(1− cb2) = 0

implying that cb2 = 1 and thus b2 is a unit. This contradicts the as-
sumption that a1 is not irreducible. This computation has shown us that
whenever we get a factor which is not irreducible, we can add a new princi-
pal ideal to the chain of ideals. Thus, if a2b2 is a product of irreducible, we
are done. Otherwise, we have that say a2 is not irreducible, and a2 = a3b3,
yielding

(a1) ( (a2) ( (a3).

Since R satisfies the ascending chain condition on principal ideals, this
process cannot go on and must stop, showing that we have a factorization
into irreducible.

3. We now know that R allows a factorization into irreducible. We want to
prove that this factorization is unique, under the assumption that every
irreducible is prime. Suppose thus that

a = up1p2 · · · pn = vq1q2 · · · qm

where u, v are units and pi, qj are irreducible. p1 is an irreducible but also
a prime by assumption, thus it must divide one of the qj , say q1, and we
have q1 = p1d. Since q1 is irreducible, d must be a unit, and q1 and p1 are
associate. We can iterated the process to find that qi and pi are associate
for all i.

We now introduce a notion stronger than being a unique factorization do-
main.



118 CHAPTER 3. RING THEORY

Definition 3.25. A principal ideal domain (PID) is an integral domain in which
every ideal is principal.

Theorem 3.16. A principal ideal domain R is a unique factorization domain.

Proof. What we will prove is that if R is a principal ideal domain, then

• R satisfies the ascending chain condition on principal ideals.

• every irreducible in R is also prime.

Having proved these two claims, we can conclude using the above theorem.

Let us first prove that R satisfies the ascending chain condition on principle
ideals. Consider the following sequence of principal ideals

(a1) ⊆ (a2) ⊆ (a3) . . .

and let I = ∪∞
i=1(ai). Note that I is an ideal of R (be careful, a union of ideals

is not an ideal in general!). Indeed, we have that I is closed under addition:
take a, b ∈ I, then there are ideals (aj) and (ak) in the chain with a ∈ (aj) and
b ∈ (ak). If m ≥ max(j, k), then both a, b ∈ (am) and so do a+ b. To check that
I is closed under multiplication by an element of R, take again a ∈ I. Then
a ∈ (aj) for some j. If r ∈ R, then ra ∈ (aj) implying that ra ∈ I.

Now by assumption, I is a principal ideal, generated by, say b: I = (b).
Since b belongs to ∪∞

i=1(ai), it must belongs to some (an). Thus I = (b) ⊆ (an).
For j ≥ n, we have

(aj) ⊆ I ⊆ (an) ⊆ (aj)

which proves that the chain of ideal stabilizes.

We are left to prove that every irreducible element is also prime. Let thus
a be an irreducible element. Consider the principal ideal (a) generated by a.
Note that (a) is a proper ideal: if (a) = R, then 1 ∈ (a) and thus a is a unit,
which is a contradiction.

We have that (a) is included in a maximal ideal I (this can be deduced from
either the ascending chain condition or from the theorem (Krull’s theorem) that
proves that every ideal is contained in a maximal ideal). Since R is a principal
ideal domain, we have that I = (b). Thus

(a) ⊆ (b) ⇒ b | a⇒ a = bd

where a is irreducible, b cannot be a unit (since I is by definition of maximal
ideal a proper ideal), and thus d has to be a unit of R. In other words, a and b
are associate. Thus

(a) = I = (b).

Since I is a maximal ideal, it is prime implying that a is prime, which concludes
the proof.
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Determining whether a ring is a principal ideal domain is in general quite
a tough question. It is still an open conjecture (called Gauss’s conjecture) to
decide whether there are infinitely many real quadratic fields which are principal
(we use the terminology “principal” for quadratic fields by abuse of notation, it
actually refers to their ring of integers, that is rings of the form either Z[

√
d] if

d ≡ 2 or 3 mod 4 or Z[ 1+
√
d

2 ] else).
One way mathematicians have found to approach this question is to actually

prove a stronger property, namely whether a ring R is Euclidean.

Definition 3.26. Let R be an integral domain. We say that R is a Euclidean
domain if there is a function Ψ from R\{0} to the non-negative integers such
that

a = bq + r, a, b ∈ R, b 6= 0, q, r ∈ R

where either r = 0 or Ψ(r) < Ψ(b).

When the division is performed with natural numbers, it is clear what it
means that r < b. When we work with polynomials instead, we can say that
deg r < deg b. The function Ψ generalizes these notions.

Theorem 3.17. If R is a Euclidean domain, then R is a principal ideal domain.

Proof. Let I be an ideal of R. If I = {0}, it is principal and we are done. Let
us thus take I 6= {0}. Consider the set

{Ψ(b), b ∈ I, b 6= 0}.

It is included in the non-negative integers by definition of Ψ, thus it contains a
smallest element, say n. Let 0 6= b ∈ I such that Ψ(b) = n.

We will now prove that I = (b). Indeed, take a ∈ I, and compute

a = bq + r

where r = 0 or Ψ(r) < Ψ(b). This yields

r = a− bq ∈ I

and Ψ(r) < Ψ(b) cannot possibly happen by minimality of n, forcing r to be
zero. This concludes the proof.

Example 3.13. Consider the ring

Z[
√
d] = {a+ b

√
d, a, b ∈ Z}

with
Ψ(a+ b

√
d) = |a2 − b2d|.

We will show that we have a Euclidean domain for d = −2,−1, 2.
Note that Z[

√
d] is an integral domain. Take α, β 6= 0 in Z[

√
d]. Now we

would like to perform the division of α by β to get something of the form

α = βq + r, q, r ∈ Z[
√
d].
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Since Z[
√
d] is not a field, there is no reason for this division to give a result in

Z[
√
d] (that is, q, r ∈ Z[

√
d]), however, we can compute the division in Q(

√
d):

α/β = q′,

with q′ = x +
√
dy with x, y rational. Let us now approximate x, y by integers

x0, y0, namely take x0, y0 such that

|x− x0| ≤ 1/2, |y − y0| ≤ 1/2.

Take

q = x0 + y0
√
d, r = β((x− x0) + (y − y0)

√
d),

where clearly q ∈ Z[
√
d], then

βq + r = β(x0 + y0
√
d) + β((x− x0) + (y − y0)

√
d)

= β(x+ y
√
d) = βq′ = α,

which at the same time shows that r ∈ Z[
√
d]. We are left to show that Ψ(r) <

Ψ(β). We have

Ψ(r) = Ψ(β)Ψ((x− x0) + (y − y0)
√
d)

= Ψ(β)|(x− x0)
2 − d(y − y0)

2|
≤ Ψ(β)[|x− x0|2 + |d||y − y0|2]

≤ Ψ(β)

(
1

4
+ |d|1

4

)

showing that Z[
√
d] is indeed a Euclidean domain for d = −2,−1, 2.

Below is a summary of the ring hierarchy (recall that PID and UFD stand
respectively for principal ideal domain and unique factorization domain):

integral domains ⊃ UFD ⊃ PID ⊃ Euclidean domains

Note that though the Euclidean division may sound like an elementary con-
cept, as soon as the ring we consider is fancier than Z, it becomes quickly
a difficult problem. We can see that from the fact that being Euclidean is
stronger than being a principal ideal domain. All the inclusions are strict, since
one may check that Z[

√
−3] is an integral domain but is not a UFD, Z[X] is a

UFD which is not PID, while Z[(1+ i
√
19)/2] is a PID which is not a Euclidean

domain.
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ring ED PID UFD ID
Z yes yes yes yes
F [X], F a field yes yes yes yes
Z[i] yes yes yes yes
Z[
√
±2] yes yes yes yes

Z[
√
3] yes yes yes yes

Z[(1 + i
√
19)/2] no yes yes yes

Z[X] no no yes yes

Z[
√
−3] no no no yes

Table 3.1: Examples of rings we saw: that Z[
√
3] is a Euclidean domain is

done in the exercises, that Z[X] is not a principal ideal domain is also shown in
the exercises, it is enough to show that the ideal 〈2, X〉 is not principal. Finally
Z[
√
−3] is not a unique factorization domain because we saw that 2 is irreducible

but not prime.

3.7 Irreducible polynomials

Recall the definition of irreducible that we have seen: a non-zero element a
which is not a unit is said to be irreducible if a = bc implies that either b or c
is a unit. Let us focus on the case where the ring is a ring of polynomials R[X]
and R is an integral domain.

Definition 3.27. If R is an integral domain, then an irreducible element of
R[X] is called an irreducible polynomial.

In the case of a field F , then units of F [X] are non-zero elements of F .
Then we get the more familiar definition that an irreducible element of F [X] is
a polynomial of degree at least 1, that cannot be factored into two polynomials
of lower degree.

Let us now consider the more general case where R is an integral domain
(thus not necessarily a field, it may not even be a unique factorization domain).
To study when polynomials over an integral domain R are irreducible, it is
often more convenient to place oneselves in a suitable field that contains R,
since division in R can be problematic. To do so, we will now introduce the
field of fractions, also called quotient field, of R. Since there is not much more
difficulty in treating the general case, that is, when R is a commutative ring,
we present this construction.

Let S be a subset of R which is closed under multiplication, contains 1 and
does not contain 0. This definition includes the set of all non-zero elements of
an integral domain, or the set of all non-zero elements of a commutative ring
that are not zero divisors. We define the following equivalence relation on R×S:

(a, b) ∼ (c, d) ⇐⇒ s(ad− bc) = 0 for some s ∈ S.

It is clearly reflexive and symmetric. Let us check the transitivity. Suppose that
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(a, b) ∼ (c, d) and (c, d) ∼ (e, f). Then

s(ad− bc) = 0 and t(cf − de) = 0

for some s, t ∈ S. We can now multiply the first equation by tf , the second by
sb and add them

stf(ad− bc) + tsb(cf − de) = 0

to get

sdt(fa− be) = 0

which proves the transitivity.
What we are trying to do here is to mimic the way we deal with Z. If we take

non-zero a, b, c, d ∈ Z, we can write down a/b = c/d, or equivalently ad = bc,
which is also what (a, b) ∼ (c, d) satisfies by definition if we take R to be an
integral domain. In a sense, (a, b) is some approximation of a/b.

Formally, if a ∈ R and b ∈ S, we define the fraction a/b to be the equivalence
class of the pair (a, b). The set of all equivalence classes is denoted by S−1R.
To make it into a ring, we define the following laws in a natural way:

• addition:
a

b
+
c

d
=
ad+ bc

bd
.

• multiplication:
a

b

c

d
=
ac

bd
.

• additive identity:
0

1
=

0

s
, s ∈ S.

• additive inverse:

−a
b
=

−a
b
.

• multiplicative identity:
1

1
=
s

s
, s ∈ S.

To prove that we really obtain a ring, we need to check that all these laws
are well-defined.

Theorem 3.18. With the above definitions, the set of equivalence classes S−1R
is a commutative ring.

1. If R is an integral domain, so is S−1R.

2. If R is an integral domain, and S = R\{0}, then S−1R is a field.
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Proof. Addition is well-defined. If a1/b1 = c1/d1 and a2/b2 = c2/d2, then
for some s, t ∈ S, we have

s(a1d1 − b1c1) = 0 and t(a2d2 − b2c2) = 0.

We can now multiply the first equation by tb2d2 and the second by sb1d1 to get

tb2d2s(a1d1 − b1c1) = 0 and sb1d1t(a2d2 − b2c2) = 0,

and adding them yields

st[d2d1(b2a1 + b1a2)− b2b1(d2c1 + d1c2)] = 0

that is
b2a1 + b1a2

b2b1
=
d2c1 + d1c2

d2d1
,

which can be rewritten as

a1
b1

+
a2
b2

=
c1
d1

+
c2
d2

and we conclude that addition does not depend on the choice of a representative
in an equivalence class.

Multiplication is well-defined. We start as before. If a1/b1 = c1/d1 and
a2/b2 = c2/d2, then for some s, t ∈ S, we have

s(a1d1 − b1c1) = 0 and t(a2d2 − b2c2) = 0.

Now we multiply instead the first equation by ta2d2, the second by sc1b1 and
we add them:

st[a2d2a1d1 − c1b1b2c2] = 0.

This implies, as desired, that

a1a2
b1b2

=
c1c2
d1d2

.

To be complete, one should check that the properties of a ring are fulfilled, but
this follows from the fact that addition and multiplication are carried the usual
way.

1. We want to prove that S−1R is an integral domain. We assume that R
is an integral domain, and we need to check the definition of an integral
domain for S−1R. Namely, suppose that (a/b)(c/d) = 0 in S−1R, that is

a

b

c

d
=

0

1
.

This means that (ac, bd) ∼ (0, 1) and acs = 0 for some s ∈ S. Now acs = 0
is an equation in R, which is an integral domain, and s 6= 0, thus ac = 0,
so either a or c is 0, and consequently either a/b or c/d is zero.
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2. To conclude, we want to prove that S−1R is a field, assuming that R is
an integral domain, and S = R\{0}. We consider a/b a non-zero element
of S−1R, for which we need to find an inverse. Note that a and b are
non-zero, thus they are both in S meaning that both a/b and b/a are in
S−1R and b/a is the multiplicative inverse of a/b.

Definition 3.28. Let R be a commutative ring. Based on the above, the set
of equivalence classes S−1R is a commutative ring, called the ring of fractions
of R by S. If R is an integral domain, and S = R\{0}, then S−1R is called the
field of fractions or quotient field of R.

Now that we have defined a suitable field, we are left to prove that we can
embed an integral domain R in its quotient field.

Proposition 3.19. A commutative ring R can be embedded in its ring of frac-
tions S−1R, where S is the set of all its non-divisors of zero. In particular, an
integral domain can be embedded in its quotient field, which is furthermore the
smallest field containing R.

Proof. Consider the following map:

f : R→ S−1R, a 7→ f(a) = a/1.

It is not hard to check that f is a ring homomorphism. If S has no zero divisor,
we have that the kernel of f is given by the set of a such that f(a) = a/1 = 0/1,
that is the set of a such that sa = 0 for some s. Since s is not a zero divisor,
we have a = 0 and f is a monomorphism.

Let us get back to the irreducible polynomials, and consider now the case
where D is a unique factorization domain. It is not necessarily a field, but we
now know how to embed it in a suitable field, namely its field of fractions, or
quotient field. Take the polynomial f(X) = a + abX, a 6= 0 not a unit. Since
we can factor it as

f(X) = a(1 + bX)

where a is not a unit by assumption, this polynomial is not irreducible. But we
do not really have a factorization into two polynomials of lower degree. What
happens here is that the constant polynomials are not necessarily units, unlike in
the case of fields. To distinguish this case, we introduce the notion of primitive
polynomial.

Definition 3.29. Let D be a unique factorization domain and let f ∈ D[X].
We call the greatest common divisor of all the coefficients of f the content of
f , denoted by c(f). A polynomial whose content is a unit is called a primitive
polynomial.
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Figure 3.2: Carl Friedrich Gauss (1777-1855)

We can now rule out the above example, and we will prove later that this
allows us to say that a primitive polynomial is irreducible if and only if it
cannot be factored into two polynomials of lower degree. Be careful however
that “primitive polynomial” has a different meaning if it is defined over a field.

The next goal is to prove Gauss lemma, which in particular implies that the
product of two primitive polynomials is a primitive polynomial.

We start with a lemma.

Lemma 3.20. Let D be a unique factorization domain, and consider f 6=
0, g, h ∈ D[X] such that pf(X) = g(X)h(X) with p a prime. Then either p
divides all the coefficients of g or p divides all the coefficients of h.

Before starting the proof, let us notice that this lemma is somehow a gener-
alization of the notion of prime. Instead of saying that p|ab implies p|a or p|b, we
have p|g(X)h(X) implies that p|g(X) or p|h(X) (dividing the whole polynomial
means dividing all of its coefficients).

Proof. Denote

g(X) = g0 + g1X + . . .+ gsX
s, h(X) = h0 + h1X + . . .+ htX

t.

Suppose by contradiction that p does not divide all coefficients of g and does
not divide all coefficients of h either. Then let gu and hv be the coefficients of
minimum index not divisible by p. Then the coefficient of Xu+v in g(X)h(X)
is

g0hu+v + g1hu+v−1 + . . .+ guhv + . . .+ gu+v−1h1 + gu+vh0.

By definition of u and v, p divides every term but guhv, thus p cannot possibly
divide the entire expression, and thus there exists a coefficient of g(X)h(X) not
divisible by p. This contradicts the fact that p|g(X)h(X).
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Proposition 3.21. (Gauss Lemma). Let f, g be non-constant polynomials
in D[X] where D is a unique factorization domain. The content of a product of
polynomials is the product of the contents, namely

c(fg) = c(f)c(g),

up to associates. In particular, the product of two primitive polynomials is
primitive.

Proof. Let us start by noticing that by definition of content, we can rewrite

f(X) = c(f)f∗(X), g(X) = c(g)g∗(X),

where f∗, g∗ ∈ D[X] are primitive. Clearly

fg = c(f)c(g)f∗g∗.

Since c(f)c(g) divides fg, it divides every coefficient of fg and thus their
greatest common divisor:

c(f)c(g) | c(gf).

We now prove the converse, namely that c(gf)| |c(g)c(g). To do that, we
consider each prime p appearing in the factorization of c(gf) and argue that
p | c(f)c(g). Let thus p be a prime factor of c(gf). Since fg = c(fg)(fg)∗, we
have that c(fg) divides fg, that is

p | fg.

By the above lemma, either p | f or p | g, say p | f = c(f)f∗, meaning that
either p | c(f) or p | f∗. Since f∗ is primitive, p cannot possibly divide f∗, and
thus

p | c(f) ⇒ p | c(f)c(g).
If p appears with multiplicity, we iterate the reasoning with the same p.

We are now ready to connect irreducibility over a unique factorization do-
main and irreducibility over the corresponding quotient field or field of fractions.

Proposition 3.22. Let D be a unique factorization domain with quotient field
F . If f is a non-constant polynomial in D[X], then f is irreducible over D if
and only if f is primitive and f is irreducible over F .

For example, this says that f is irreducible over Z if and only if f is primitive,
and f is irreducible over Q.

Proof. First assume that f is irreducible over D.
f is primitive. Indeed, if f were not primitive, then we could write

f = c(f)f∗,
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where c(f) denotes the content of f and f∗ is primitive. Since we assume f is
not primitive, its content cannot be a unit, which contradicts the irreducibility
of f over D, and we conclude that f is primitive.

f is irreducible over F . Again assume by contradiction that f is not
irreducible over F . Now F is a field, thus reducible means f can be factored
into a product of two non-constant polynomials in F [X] of smaller degree:

f(X) = g(X)h(X), deg g < deg f, deg h < deg f.

Since g, h are in F [X], and F is the field of fractions of D, we can write

g(X) =
a

b
g∗(X), h(X) =

c

d
h∗(X), a, b, c, d ∈ D

and g∗, h∗ primitive. Thus

f(X) =
ac

bd
g∗(X)h∗(X)

where g∗h∗ is a primitive polynomial by Gauss Lemma. Since we have already
proven (in the 1st part) that f is primitive, it must be that ac/bd = u is a unit.
But this would mean that

f(X) = ug∗(X)h∗(X)

which contradicts the fact that f(X) is irreducible over D[X] and we conclude
that f is also irreducible over F [X].

We are left to prove the converse. Let then f be a primitive and f be an
irreducible polynomial over F . We do it by contraction, and assume that the
primitive polynomial f is not irreducible over D:

f(X) = g(X)h(X).

Since f is primitive, deg g and deg h are at least 1. But then neither g not h
can be a unit in F [X] (these are units in F ) and thus

f = gh

contradicts the irreducibility of f over F .

In other words, we have proven that f irreducible over D is equivalent to f
primitive and cannot be factored into two polynomials of lower degree in F [X].

To conclude, we present a practical criterion to decide whether a polynomial
in D[X] is irreducible over F .

Proposition 3.23. (Eisenstein’s criterion). Let D be a unique factorization
domain, with quotient field F and let

f(X) = anX
n + . . .+ a1X + a0

be a polynomial in D[X] with n ≥ 1 and an 6= 0.
If p is a prime in D and p divides ai, 0 ≤ i < n but p does not divide an

nor does p2 divide a0, then f is irreducible over F .
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Figure 3.3: Ferdinand Eisenstein (1823-1852)

Proof. We first divide f by its content, to get a primitive polynomial. By
the above proposition, it is enough to prove that this primitive polynomial is
irreducible over D.

Let thus f be a primitive polynomial and assume by contradiction it is
reducible, that is

f(X) = g(X)h(X)

with
g(X) = g0 + . . .+ grX

r, h(X) = h0 + . . .+ hsX
s.

Notice that r cannot be zero, for if r = 0, then g0 = g would divide f and
thus all ai implying that g0 divides the content of f and is thus a unit. But this
would contradict the fact that f is reducible. We may from now on assume that

r ≥ 1, s ≥ 1.

Now by hypothesis, p | a0 = g0h0 but p2 does not divide a0, meaning that p
cannot divide both g0 and h0. Let us say that

p | g0
and p does not divide h0 (and vice-versa).

By looking at the dominant coefficient an = grhs, we deduce from the as-
sumption that p does not divide an that p cannot possibly divide gr. Let i be
the smallest integer such that p does not divide gi. Then

1 ≤ i ≤ r < n = r + s.
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Let us look at the ith coefficient

ai = g0hi + g1hi−1 + . . .+ gih0

and by choice of i, p must divide g0, . . . , gi−1. Since p divides ai by assumption,
it thus must divide the last term gih0, and either p |gi or p | h0 by definition of
prime. Both are impossible: we have chosen p dividing neither h0 nor gi. This
concludes the proof.

The main definitions and results of this chapter are

• (2.1-2.2). Definitions of: ring, zero divisor, unit,
integral domain, division ring, subring, characteristic,
ring homomorphism, ideal, quotient ring. Factor and
1st Isomorphism Theorem for rings.

• (2.3-2.4). Operations on ideals, Chinese Remainder
Theorem, Correspondence Theorem for rings. Defini-
tions of: principal ideal, maximal ideal, prime ideal,
the characterization of the two latter in the commu-
tative case.

• (2.5). Polynomial Euclidean division, number of
roots of a polynomial.

• (2.6). Definitions of: associate, prime, irreducible,
unique factorization domain, ascending chain condi-
tion, principal ideal domain, Euclidean domain. Con-
nections between prime and irreducible. Hierarchy
among UFD, PID and Euclidean domains.

• (2.7). Construction of ring of fractions. Definitions
of: content of a polynomial, primitive polynomial.
Gauss Lemma, Eisenstein’s criterion.
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Chapter 4
Exercises on Ring Theory

Exercises marked by (*) are considered difficult.

4.1 Rings, ideals and homomorphisms

Exercise 56. Let R be a ring and x ∈ R. Suppose there exists a positive
integer n such that xn = 0. Show that 1 + x is a unit, and so is 1− x.

Answer. The element 1− x is a unit since

(1− x)(1 + x+ . . .+ xn−1) = 1.

The element 1 + x is a unit since

(1 + x)(1− x+ x2 − x3 . . .± xn−1) = 1.

Exercise 57. Let R be a commutative ring, and I be an ideal of R. Show that
√
I := {x ∈ R | there exists m ∈ N∗ such that xm ∈ I}

is an ideal of R. Answer.

• Clearly, 0 ∈
√
I. If a ∈

√
I, then am ∈ I for some m ≥ 1. Then

(−a)m = (−1)mam ∈ I, so −a ∈
√
I. Now let a, b ∈

√
I, so an ∈ I

for some n ≥ 1 and bm ∈ I for some m ≥ 1. Now let us show that

(a + b)n+m ∈ I. We have (a + b)n+m =
n+m∑

j=0

n!

j!(n+m− j)!
ajbn+m−j

(because R is commutative). Now if 0 ≤ j ≤ n, we have n+m− j ≥ m,
so bn+m−j ∈ I in this case (since bm ∈ I ⇒ bi ∈ I for i ≥ m). If
n + 1 ≤ j ≤ n + m, we have j ≥ n + 1, so aj ∈ I in this case (since
an ∈ I ⇒ ai ∈ I for i ≥ n). Therefore all the terms in the previous sum
are in I and thus (a+ b)n+m ∈ I. Hence a+ b ∈

√
I. We just proved that√

I is an additive subgroup of R.

131
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• Now we have to check the second property. Let a ∈
√
I, and r ∈ R. We

have an ∈ I for some n ≥ 1. Now (ar)n = anrn because R is commutative,
so (ar)n ∈ I and therefore ar ∈

√
I. Therefore

√
I is an ideal of R.

Exercise 58. Determine all rings of cardinality p and characteristic p.

Answer. Let R be a ring of characteristic p. Consider the ring homomorphism:
ϕ : Z → R, the characteristic of R is the natural number p such that pZ is the
kernel of ϕ. We can now factorize ϕ in an injective map Z/pZ → R. If now we
further assume that R has cardinality p, we have that Z/pZ and R have same
cardinality, and thus we have an isomorphism. This means that the only ring
of cardinality and characteristic p is Z/pZ.

Exercise 59. Let R be a commutative ring. Let

Nil(R) = {r ∈ R|∃n ≥ 1, rn = 0}.

1. Prove that Nil(R) is an ideal of R.

2. Show that if r ∈ Nil(R), then 1− r is invertible in R.

3. Show, with a counter-example, that Nil(R) is not necessarily an ideal
anymore if R is not commutative.

1. • Clearly, 0 ∈ Nil(R). If a ∈ Nil(R), then am = 0 for some m ≥ 1.
Then (−a)m = (−1)mam = 0, so −a ∈ Nil(R). Now let a, b ∈
Nil(R), so an = 0 for some n ≥ 1 and bm = 0 for some m ≥ 1.
Now let us show that (a + b)n+m = 0. We have (a + b)n+m =
n+m∑

j=0

n!

j!(n+m− j)!
ajbn+m−j (because R is commutative). Now if

0 ≤ j ≤ n, we have n+m− j ≥ m, so bn+m−j = 0 in this case (since
bm = 0 ⇒ bi = 0 for i ≥ m). If n+1 ≤ j ≤ n+m, we have j ≥ n+1,
so aj = 0 in this case (since an = 0 ⇒ ai = 0 for i ≥ n). Therefore
all the terms in the previous sum are 0 and thus (a + b)n+m = 0.
Hence a + b ∈ Nil(R). We just proved that Nil(R) is an additive
subgroup of R.

• Now we have to check the second property. Let a ∈ Nil(R), and
r ∈ R. We have an = 0 for some n ≥ 1. Now (ar)n = anrn because
R is commutative, so (ar)n = 0 and therefore ar ∈ Nil(R). Therefore
Nil(R) is an ideal of R.

2. If r ∈ Nil(R), then rm = 0 for some m ≥ 1. Then 1+ r+ r2 + · · ·+ rm−1

is the inverse of 1− r since

(1−r)(1+r+r2+· · ·+rm−1) = 1+r+r2+· · ·+rm−1−r−r2+· · ·+rm = 1−rm = 1.
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3. If R = M2(C), let a =

(
0 1
0 0

)

and b =

(
0 0
1 0

)

. Then a2 = b2 =
(

0 0
0 0

)

, so a, b ∈ Nil(R), but a + b does not lie in Nil(R), since (a +

b)2 = I2, and I
n
2 = I2 for all n ≥ 1.

Exercise 60. Determine whether the following maps are ring homomorphisms:

1. f1 : Z −→ Z with f1(x) = x+ 1.

2. f2 : Z −→ Z with f2(x) = x2.

3. f3 : Z/15Z −→ Z/15Z with f3(x) = 4x.

4. f4 : Z/15Z −→ Z/15Z with f4(x) = 6x.

Answer.

1. Since f1(0) = 1, f1, f cannot be a ring homomorphism.

2. Since f2(x+ y) = x2 + y2 + 2xy 6= x2 + y2 = f2(x) + f2(y), f2 cannot be
a ring homomorphism.

3. Since f3(xy) = 4xy 6= xy = f3(x)f3(y), f3 cannot be a ring homomor-
phism.

4. Since f4(1) 6= 1, f4 cannot be a ring homomorphism!

Exercise 61. Let K be a division ring with center k.

1. Show that the center of the polynomial ring K[X] is k[X].

2. For any a in K\k, show that the ideal generated by X − a in K[X] is in
fact the whole ring K[X].

3. Show that any ideal I ⊆ K[X] has the form K[X]h where h ∈ k[X].

Answer.

1. Clearly k[X] is in the center. Conversely, if f =
∑
aiX

i is in the center,
then fa = af for all a ∈ K, showing that ai ∈ k.

2. Fix b ∈ K such that ab 6= ba. Then the ideal generated by X − a contains

b(X − a)− (X − a)b = ab− ba ∈ K

since ab 6= ba so (X − a) = R.

3. We may assume I 6= 0 and fix a monic polynomial of the least degree in
I. By the usual Euclidean algorithm argument, we have that I = K[X]h.
For any a ∈ K, we have ha ∈ I = K[X]h so ha = rh for some r in K[X].
By comparing the leading terms, we see that r ∈ K and in fact r = a.
Thus ha = ah for any a ∈ K, which means that h ∈ k[X].
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Exercise 62. Consider the ring Mn(R) of real n × n matrices. Are the trace
and the determinant ring homomorphisms?

Answer. The trace is not multiplicative, since

2 = Tr

((
1 0
0 1

))

6= Tr

((
1 0
0 1

))

· Tr
((

1 0
0 1

))

= 4.

The determinant is not additive:

4 = det

((
2 0
0 2

))

6= det

((
1 0
0 1

))

+ det

((
1 0
0 1

))

= 2.

Thus none of them are ring homomorphisms.

4.2 Quotient rings

Exercise 63. Compute the characteristic of the following rings R:

1. R = Zn = Z/nZ,

2. R = Z/2Z× Z/4Z× Z/10Z,

3. R = Z[j]/(2 − 5j), where j denotes a primitive 3rd root of unity (j3 = 1
but j2 6= 1).

Answer. In this exercise, we use the notation x to denote an element in the
quotient group involved.

1. For 1 ≤ m ≤ n − 1, we have m · 1 = m 6= 0, since m is not a multiple of
n. But n · 1 = n = 0. So char(R) = n by definition of the characteristic.

2. If m ∈ Z, we will denote by respectively by m, [m], m̃ its class modulo 2, 4
and 10. Assume that m(1, [1], 1̃) = (0, [0], 0̃). Then we have

(m, [m], m̃) = (0, [0], 0̃),

which implies that m is a multiple of 2, 4 and 10. Hence m is a multiple
of the lowest common multiple of 2, 4 and 10, which is 20. Conversely,
20(1, [1], 1̃) = (20, [20], 2̃0) = (0, [0], 0̃). Therefore char(R) = 20.

3. Here we have (2− 5j)(2− 5j2) = 4− 10(j+ j2)+25j3 = 4+10+25 = 39.
Hence 39 · 1 = 39 = (2− 5j) · (2− 5j2) = 0. Then the characteristic of
R is finite and divides 39. Therefore the characteristic of R is 1, 3, 13 or
39. Now let c = char(R) > 0. Since c · 1R lies in the ideal (2 − 5j), then
c = (2− 5j)(a+ bj) for some a, b,∈ Z. Hence |c|2 = |2− 5j|2|a+ bj|2, so

c2 = 39(a2 + b2 − ab)

and therefore 39|c2. The only value (among 1, 3, 13 and 39) for which it
is possible is c = 39. Thus char(R) = 39.
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Exercise 64. Prove the following isomorphisms:

1. Z[i]/(1 + i) ≃ Z/2Z.

2. Z[X]/(n,X) ≃ Z/nZ, n ≥ 2.

3. Z[X]/(n) ≃ (Z/nZ)[X], n ≥ 2.

Answer.

1. Consider ϕ : m ∈ Z 7→ m · 1R = m ∈ Z[i]/(1 + i). This is a ring
homomorphism. It is surjective. Indeed, let a+ bi ∈ Z[i]/(1 + i). We
have a+ bi = (b− a) + a(1 + i) = b− a, so a+ bi = ϕ(b − a). Now
ker(ϕ) = c · Z, where c = char(R) by definition of the characteristic. By
direct computation, we get char(R) = 2 (since R is not the trivial ring and
(1+ i)(1− i) = 2). Therefore ker(ϕ) = 2Z. Now use the first isomorphism
theorem.

2. Let us consider ϕ : P ∈ Z[X] 7→ P (0) ∈ Z /nZ. This is the composition
of the ring homomorphisms P ∈ Z[X] 7→ P (0) ∈ Z and m ∈ Z 7→ m ∈
Z /nZ, so it is a ring homomorphism. It is surjective: for m ∈ Z /nZ, we
have ϕ(m) = m, where m ∈ Z ⊂ Z[X] is considered as a constant poly-
nomial. Now we have ker(ϕ) = {P ∈ Z[X]|P (0) is divisible by n}, which
equals (n,X). Hence ker(ϕ) = (n,X); now applying the first isomorphism
theorem, we get the result.

3. Consider the reduction modulo n, ϕ : P ∈ Z[X] 7→ P ∈ (Z /nZ)[X]. We
have that ϕ is a ring homomorphism. It is surjective: let f ∈ (Z /nZ)[X],
f = a0 + · · ·+ amX

m, ai ∈ Z. Then let P = a0 + · · ·+ amX
m ∈ Z[X]. By

definition of P , we have ϕ(P ) = f . Now let us compute the kernel of ϕ.
Let P = a0+ · · ·+amXm. We have ϕ(P ) = 0 ⇐⇒ a0+ · · ·+amXm = 0.
This is equivalent to say that ai = 0 for all i, which means that n|ai for
all i. This is equivalent to say that P = n ·Q, for some Q ∈ Z[X]. Hence
ker(ϕ) = (n). Now apply the first isomorphism theorem.

Exercise 65. Let A = C[X;σ] be the ring of all skew polynomials
∑
aiX

i,
ai ∈ C, where multiplication is defined by Xa = σ(a)X for all a ∈ C, and σ is
the complex conjugation on C.

• Show that the center Z(A) of A is Z(A) = R[X2].

• Show that Ā = A/A(X2 + 1) is a ring.

• Show that Ā is isomorphic to H, the division ring of Hamilton quaternions.

Answer.

• Note that X2a = Xσ(a)X = σ2(a)X2 and more generally

(
∑

aiX
i)(

∑

bjX
j) =

∑

i

∑

j

aiσ
i(bj)X

i+j .
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Now if
∑
bjX

j is in the center, then we must have

∑

i

∑

j

aiσ
i(bj)X

i+j = (
∑

bjX
j)(

∑

aiX
i)

thus Xj must be an even power of X so that when ai anti-commute with
Xj , σj(ai) = ai since σ is of order 2. Furthermore, we must have that
σi(bj) = bj for any i, showing that bj must be real, which shows that
the center is R[X2]. (More formally, one can take a polynomial in the
center, say p(X), and compute p(X)a = ap(X) for any a ∈ C, which
shows that p(X) ∈ C[X2], then compute p(X)X = Xp(X) which shows
that p(X) ∈ R[X2]).

• For this quotient to be a ring, we need the ideal A(X2+1) to be two-sided.
This is the case since X2 + 1 belongs to the center by the point above.

• We can express the ring of Hamilton quaternionsH in the formH = C⊕Cj,
and define

ϕ : A→ H, ϕ(X) = j, ϕ(a) = a, a ∈ C.

Since ja = σ(a)j in H for any a ∈ C, ϕ gives a ring homomorphism
from A to H. This induces a ring homomorphism ϕ̄ : Ā → H since
ϕ(X2 + 1) = j2 + 1 = 0. Since

ϕ̄(a+ bX) = a+ bj,

ϕ̄ is an isomorphism. (This is the first isomorphism theorem for rings.)

4.3 The Chinese Remainder Theorem

Exercise 66. Show that the following rings are isomorphic:

Z/72Z× Z/84Z ≃ Z/36Z× 168Z.

Answer. We have that 72 = 8 · 9 and gcd(8, 9) = 1, thus Z72 ≃ Z8 × Z9.
Similarly Z84 ≃ Z4 × Z3 × Z7, Z36 ≃ Z4 × Z9 and Z168 ≃ Z8 × Z3 × Z7. Thus

Z72 × Z84 ≃ Z8 × Z9 × Z4 × Z3 × Z7

≃ Z8 × Z36 × Z3 × Z7

≃ Z36 × Z128.

Exercise 67. Show that 1099 + 1 is a multiple of 247.

Answer. We have that
100 = 12 · 8 + 4

thus
10100 = (1012)8 · 104 ≡ 104 ≡ (−3)4 ≡ 3 ≡ −10 mod 13
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where the second equality uses that ap−1 ≡ 1 mod p. Similarly (100 = 18·6−8)

10100 ≡ 10−8 ≡ 28 ≡ 9 ≡ −10 mod 19.

By the Chinese Theorem, we deduce that

10100 ≡ −10 mod 247.

Since gcd(10, 247) = 1, we can simplify by a factor of 10, and get

1099 ≡ −1 mod 247

and thus 247 | 1099 + 1.

Exercise 68. The battle of Hasting (October 14, 1066). “The men of Harold
stood well, together, as their wont was, and formed thirteen squares, with a
like number of men in every square thereof, and woe to the hardy Norman who
ventured to enter thier redoubts; for a single blow of a saxon warhatched would
break his lance and cut through his coat of mail... When Harold threw himself
into the fray the Saxon were one mighty square of men, shouting the battle-cries
’Ut!’, ’Olicross!’, ’Godemite!’.”

How many men were there in the army of Harald Hardrada? (This exercise
is courtesy of C. Wuthrich).

Answer. The men of Harald formed thirteen squares, that is 13x2, when Harold
threw himself into the battle (+1), they were one mighty square of men (y2).
This gives the equation

y2 = 13x2 + 1.

We then have to look for the smallest integer solution. Using field theory instead,
one can rewrite this equation as

1 = (y −
√
13x)(y +

√
13).

We are thus looking for an element y +
√
13x of K = Q(

√
13) which satisfies

this equation. One can show that η = 3+
√
13

2 satisfies this equation up to a sign
−1, thus η with an even power satisfies it, and η and its powers are actually the
only elements in K to satisfy it. We thus need to take an even power of η which
will give us an element in the ring Z[

√
13]. We find that η6 = 649 + 180

√
13 is

the first power to satisfy this condition. Finally, the smallest integer solution to
the equation y2 = 13x2 + 1 is x = 180 and y = 649, that is, there were 421’200
men with Harald Hardrada. It is however known that his army was instead
containing about 7’500 men.

4.4 Maximal and prime ideals

Exercise 69. Show that a non-zero principal ideal is prime if and only if it is
generated by a prime element.
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Answer. If p is prime then consider the principal ideal pR = {pr, r ∈ R}. To
show that pR is prime, we have to show that if ab ∈ pR then either a or b is in
pR. If ab ∈ pR, then ab = pr for some r ∈ R. Since p is prime, it has to divide
either a or b, that is either a = pa′ or b = pb′. Conversely, take a principal ideal
cR which is prime, thus if ab ∈ cR, either a ∈ cR, that is a = ca′, or b ∈ cR,
that is b = cb′. We have thus shown that if c|ab, then c|a or c|b.

Exercise 70. Are the ideals (X,X + 1), (5, X2 + 4) and (X2 + 1, X + 2)
prime/maximal in Z[X]?

Answer.

• I = (X,X + 1) = Z since 1 = (X + 1) −X, thus I is not a proper ideal
and cannot be prime.

• Consider Z[X]/(5, X2+4) ≃ Z5[X]/(X2+4), and (X2+4) = (X−1̄)(X+1̄)
is reducible modulo 5, thus this quotient is not an integral domain and
thus the ideal is not prime.

• I = (X2 +1, X +2) = (X +2, 5) since (X +2)2 − 4(X +2)+ 5 = X2 +1,
then Z[X]/I ≃ Z5[X]/(X + 2̄) where X + 2̄ is irreducible in Z5[X] thus
the quotient is a field and I is maximal.

Exercise 71. 1. Consider the ring R = Z[i] and the ideal I = (1 + i) in R.
Is I prime? Is I maximal?

2. Consider the ring R = Z[j] and the ideal I = (2 − rj) in R. Is I prime?
Is I maximal? (j is a primitive 3rd root of unity.)

3. Consider the ring R = Z[X] and the ideal I = (n) in R. Is I prime? Is I
maximal?

Answer.

1. We have Z[i]/(1+ i) ≃ Z /2Z, which is a field, so (1+ i) is maximal (hence
prime).

2. The characteristic of Z[j]/(2− 5j) is 39 which is not a prime number (see
Exercise 63), so Z[j]/(2− 5j) is not an integral domain. Hence (2− 5j) is
not prime and therefore not maximal.

3. We have Z[X]/(n) ≃ Z /nZ[X]. We have that Z /nZ[X] is an integral
domain if and only if Z /nZ is an integral domain. Hence (n) is a prime
ideal if and only if n is a prime number. It is never maximal since Z /nZ[X]
is not a field for any n (X has no inverse).

Exercise 72. Consider the ring R = K[X] and the ideal of R given by I =
(X − a), where K is a field, and a ∈ K. Is I maximal? Is I prime?

Answer. Let ϕ : P ∈ K[X] 7→ P (a) ∈ K. This is a ring homomorphism,
which is surjective: indeed, if λ ∈ K, then ϕ(λ) = λ, where λ ∈ K ⊂ K[X]
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is viewed as a constant polynomial. We now determine the kernel of ϕ. Let
P ∈ K[X]. We can write P = Q(X).(X − a) + c, for some Q ∈ K[X] and
c ∈ K. (Indeed, it suffices to proceed to the division of P by X − a. The
remainder is either zero or has degree < 1, that is degree 0, which means that the
remainder is a constant.) Then we have P (a) = Q(a).(a−a)+c = c. Therefore,
ϕ(P ) = 0 ⇐⇒ c = 0 ⇐⇒ P is a multiple of X − a. Hence ker(ϕ) = (X − a)
(the principal ideal generated by X − a). Using the first isomorphism theorem,
we get that K[X]/(X − a) ≃ K. Since K[X]/(X − a) ≃ K, and K is a field,
then K[X]/(X − a) is a field as well and (X − a) is maximal (hence prime).

Exercise 73. Let R be a commutative ring. Let

Nil(R) = {r ∈ R|∃n ≥ 1, rn = 0}.

1. Show that Nil(R) is contained in the intersection of all prime ideals of R.

2. Show that Nil(R/Nil(R)) = 0.

Answer.

1. Let a ∈ Nil(R), so an = 0 for some n ≥ 1. Assume that there is a prime
ideal p for which a /∈ p. We have an = 0 ∈ p. Since an = an−1.a and p is a
prime ideal, then an−1 ∈ p or a ∈ p. By assumption on a, we have a /∈ p,
so necessarily an−1 ∈ p. But an−1 = an−2.a ∈ p, so an−2 ∈ p for the same
reasons, and by induction we get a ∈ p, a contradiction. Therefore a lies
in all the prime ideals of R.

2. Let a ∈ Nil((R/Nil(R))), so an = 0 for some n ≥ 1. Then an = 0, which
means that an ∈ Nil(R) by definition of the quotient ring. Therefore,
there exists m ≥ 1 such that (an)m = 0, so anm = 0, which means that
a ∈ Nil(R). Hence a = 0.

Exercise 74. Let R = Z[X], and let n ≥ 1.

• Show that the ideal (n,X) is given by

(n,X) = {p(X) ∈ Z[X], p(0) is a multiple of n}.

• Show that (n,X) is a prime ideal if and only if n is a prime number.

Answer.

• Let P ∈ (n,X), so P = n.Q1 + X.Q2 for some Q1, Q2 ∈ Z[X]. Then
P (0) = n.Q1(0) ∈ nZ (we have Q1(0) ∈ Z since Q1 ∈ Z[X]), that is
P (0) is a multiple of n. Conversely, assume that P ∈ Z[X] is such that
P (0) is a multiple of n, and write P = anX

n + · · · + a1X + a0. Then
P (0) = a0, so by assumption a0 = n.m for some m ∈ Z. Now we get
P = n.m+X.(anX

n−1 + · · ·+ a2X + a1), so P ∈ (n,X).
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• If n is not a prime number, then we can write n = n1.n2, 1 < n1, n2 < n.
Now consider P1 = n1, P2 = n2 ∈ Z[X] (constant polynomials). We have
P1.P2 = n1.n2 = n ∈ (n,X), but P1 and P2 are not elements of (n,X).
Indeed, P1(0) = n1 and P2(0) = n2, but n1, n2 are not multiples of n
by definition. Hence (n,X) is not a prime ideal. Now assume that n is
equal to a prime number p. First of all, (p,X) 6= Z[X], because 1 /∈ (p,X)
for example. Now let P1, P2 ∈ Z[X] such that P1.P2 ∈ (p,X). Then
(P1.P2)(0) is a multiple of p by the previous point, that is p|P1(0).P2(0).
Since p is a prime number, it means that p|P1(0) or p|P2(0), that is P1 ∈
(p,X) or P2 ∈ (p,X). Hence (p,X) is a prime ideal.

4.5 Polynomial rings

Exercise 75. Set

E = {p(X) ∈ Z[X] | p(0) is even }, F = {q(X) ∈ Z[X] | q(0) ≡ 0(mod 3)}.

Check that E and F are ideals of Z[X] and compute the ideal E + F . Further-
more, check that E · F ⊆ {p(X) ∈ Z[X]|p(0) ≡ 0 (mod 6) }.

Answer. If p(X) =
∑n

k=0 pkX
k, then

E = {p(X) ∈ Z[X] | p0 ∈ 2Z} and F = {q(X) ∈ Z[X] | q0 ∈ 3Z}.

Thus E and F are ideals of Z[X] since 2Z and 3Z are ideals of Z. If
∑

k ckX
k =

(∑

k pkX
k
)
·
(∑

k qkX
k
)
, then c0 = p0q0 and thus

E · F ⊆ {p(X) ∈ Z[X] | p0 ∈ 2Z · 3Z} = {p(X) ∈ Z[X] | p0 ∈ 6Z}.

Similarly,

E + F = {p(X) ∈ Z[X] | p0 ∈ 2Z+ 3Z} =
︸︷︷︸

Bezout

{p(X) ∈ Z[X] | p0 ∈ Z} = Z[X].

Exercise 76. Show that if F is a field, the units in F [X] are exactly the nonzero
elements of F .

Answer. Let f(X) ∈ F [X] of degree n, f(X) is a unit if and only if there exists
another polynomial g(X) ∈ F [X] of degreem such that f(X)g(X) = 1. Because
F is a field (thus in particular an integral domain), f(X)g(X) is a polynomial
of degree n+m, thus for the equality to hold, since 1 is a polynomial of degree
0, we need n+m = 0, thus both f and g are constant, satisfying fg = 1, that
is they are units of F , that is nonzero elements since F is a field.

Exercise 77. There exists a polynomial of degree 2 over Z/4Z which has 4
roots. True or false? Justify your answer.

Answer. Take the polynomial 2X(X − 1).
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Exercise 78. Let R be a ring, and let a 6= 0 ∈ R such that there exists an
integer n with an = 0. Show that R∗ ⊂ (R[X])∗ and R∗ 6= R[X]∗, where R∗

and R[X]∗ denote respectively the group of units of R and R[X].

Answer. Clearly R∗ ⊆ R[X]∗. We need to show that the inclusion is
strict, that this, there exists an element in R[X]∗ which is not in R∗. Take
f(X) = 1− aX. We have

(1− aX)(1 + aX + (aX)2 + . . .+ (aX)n−1) = 1,

and f does not belong to R∗.

Exercise 79. Let K be a field. Consider the ring K[X,Y ] of polynomials in
indeterminates X and Y with coefficients in K.

1. Is K[X,Y ] an integral domain?

2. What are the units of K[X,Y ]?

3. Consider the ideals I1 = (X) and I2 = (X,Y ). Are they prime ideals of
K[X,Y ]?

4. Show that J = {f ∈ K[X,Y ], f(0, 0) = 0} is an ideal.

5. Deduce using J that K[X,Y ] cannot be a principal ideal domain.

Answer.

1. Yes it is. It is a commutative ring (since K is a field). Furthermore, it has
no zero divisor, since K as none.

2. So units of K[X,Y ] are polynomials f ∈ K[X,Y ] such that there exist
g ∈ K[X,Y ] with fg = 1. Thus the degree of the polynomial fg is 0,
and both f, g must be constant polynomials (since K is a field). Thus the
units are those of K.

3. Both of them are for the same reason: K[X,Y ]/I1 ≃ K[Y ] andK[X,Y ]/I2 ≃
K, both of them are integral domains, thus both ideals are prime.

4. Take f, g ∈ J , then f − g belongs to J , and if h is in K[X,Y ], we also
have that hf ∈ J .

5. Assume there exists f ∈ K[X,Y ] such that (f) = J . Note that both
X and Y belong to J . Thus there must exist g, h ∈ K[X,Y ] such that
X = f(X,Y )g(X,Y ) and Y = f(X,Y )h(X,Y ). Since X is of degree 1,
and Y is of degree 1, we should have f(X,Y ) = aX+bY . But now, if a 6= 0,
Y = h(X,Y )(aX + bY ) is not possible, and if b 6= 0, X = f(X,Y )g(X,Y )
is not possible either.
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4.6 Unique factorization and Euclidean division

Exercise 80.

Show that the ideal generated by 2 and X in the ring of polynomials Z[X] is
not principal.

Answer. We have that

〈2, X〉 = {2r(X) +Xs(X), r(X), s(X) ∈ Z[X]},

and assume there exists f(X) ∈ Z[X] such that 〈2, X〉 = (f(X)). Since 2 ∈
(f(X)), then f(X) = ±2. Since X ∈ (f(X)), we should have X = ±2g(X), a
contradiction.

Exercise 81. Let R be an integral domain in which every decreasing chain of
ideals is finite. Show that R is a field.

Answer. Let x ∈ R, x 6= 0. Then (x) ⊃ (x2) ⊃ (x3) ⊃ . . . is a decreasing
chain of ideals. It thus stabilizes at some point by assumption, that is, there is
a k in N such that (xk) = (xk+1). In particular, there is an element a ∈ R such
that axk+1 = xk. Since R is an integral domain, we have ax = 1, and thus x is
invertible, showing that R without the 0 element is a field.

Exercise 82. Show that if R is a unique factorization domain, then R[X] is
also a unique factorization domain.

Answer. Let us write f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n, aj ∈ R. Recall
that c(f) is the content of f defined as gcd(a0, . . . , an). We need to check that
a factorization exists, and that it is unique.

• Existence: if p ∈ R is irreducible, then p is also irreducible in R[X]. If
f(X) ∈ R[X], we can write f(X) = df̃(X) be factoring the content d,
so that c(f̃) = 1. We can factor d into a product of irreducible in R.
Now either f̃ is irreducible in R[X], or it factors properly into a product
of lower degree polynomials (c(f̃) = 1). All the factors will also have
content 1, and we can only lower degree of factors finitely often, so we get
a factorization of f̃ , and thus one for f as product of irreducibles in R[X].

• Uniqueness: by Theor 2.15, it suffices to prove that each irreducible el-
ement is prime, which we can do by proving that each irreducible el-
ement generates a prime ideal in R[X]/ If p ∈ R is irreducible, then
R[X]/pR[X] = (R/p)[X] which is an integral domain.

Exercise 83. Let F be a field, let f(X), g(X) ∈ F [X] , and let d(X) be a
greatest common divisor of f(X) and g(X). Show that there are polynomials
u(X), v(X) ∈ F [X] such that

d(X) = u(X)f(X) + v(X)g(X).
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When does Bezout identity hold more generally?

Answer. Bezout identity works for general PID as follows (and thus in partic-
ular for F [X]). Take a, b ∈ R, where R is a PID. Consider the corresponding
principal ideals aR and bR, we have that

aR+ bR = cR

simply because R is a PID. Since aR ⊂ cR, c|a and for the same reason c|b.
Now consider d = gcd(a, b), then d|a and d|b, and thus conversely dR contains
aR and bR and thus cR, showing that d|c. But c must also divide d, showing
that c = d, that is

aR+ bR = gcd(a, b)R,

in words, gcd(a, b) is some linear combination of a and b using coefficients in R.
This does not work for arbitrary UFDs. For example, in Z[X], the polynomials
X and 2 are coprime, but no linear combination of 2 and X gives 1. For more
generalization of this notion, check the definition of Bezout domain.

Exercise 84. Show that Z[
√
3] is a Euclidean domain. (Hint: use the same

technique as the one seen for Z[
√
2].)

Answer. Consider the ring

Z[
√
3] = {a+ b

√
3, a, b ∈ Z}

with
Ψ(a+ b

√
3) = |a2 − 3b2|.

Take α, β 6= 0 in Z[
√
3], and compute the division in Q(

√
3):

α/β = q′,

with q′ = x +
√
3y with x, y rational. Let us now approximate x, y by integers

x0, y0, namely take x0, y0 such that

|x− x0| ≤ 1/2, |y − y0| ≤ 1/2.

Take
q = x0 + y0

√
3, r = β((x− x0) + (y − y0)

√
3),

where clearly q ∈ Z[
√
3], then

βq + r = β(x0 + y0
√
3) + β((x− x0) + (y − y0)

√
3)

= β(x+ y
√
3) = βq′ = α,

which at the same time shows that r ∈ Z[
√
3]. So far this is exactly what we

did in the lecture. We are also left to show that Ψ(r) < Ψ(β). We have

Ψ(r) = Ψ(β)Ψ((x− x0) + (y − y0)
√
d)

= Ψ(β)|(x− x0)
2 − d(y − y0)

2|
≤ Ψ(β)[|x− x0|2 + |d||y − y0|2]

≤ Ψ(β)

(
1

4
+ |3|1

4

)
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though here we notice that we get 1
4 + |3| 14 = 1. So this is not good enough! But

let us see what this means to get 1: this happens only if |x− x0|2 = |y− y0|2 =
1/4, otherwise we do get something smaller than 1. Now if |x−x0|2 = |y−y0|2 =
1/4, we have from the second equation that

Ψ = Ψ(β)|(x− x0)
2 − d(y − y0)

2| = Ψ(β)|1
4
− 3

4
| < 1

and we are done.

Exercise 85. The goal of this exercise is to show that a principal ideal domain
is a unique factorization domain in which every prime ideal is maximal. (Hint:
To show that every prime is maximal, take a prime ideal I and a maximal ideal
M, and see what it means for I to be included in M in a PID). Note that the
converse is true.
Answer. If we have a PID, it is a UFD (this is far from obvious, this was shown
in the notes). We have to show that every prime ideal is maximal. Take I a
prime ideal, and M a maximal ideal. Thus I ⊆ M by maximality of M. Now
since we have a PID, we can write I = (a), M = (m) and (a) ⊆ (m) showing
that m|a. Thus a = md for some d. But now a is prime (this follows from
(a) being prime, see Exercise 69) thus it is irreducible (in a UFD, irreducible
and prime are equivalent). Since a is irreducible, either m or d is a unit, and
m cannot be (otherwise M would be R, which is impossible by definition of
maximal ideal), thus d is a unit. Then a and m are associate, so they generate
the same principal ideal, and I = M.

4.7 Irreducible polynomials

Exercise 86. Prove whether the following polynomials are reducible/irreducible
over F .

1. t2 − 2, F = Q.

2. 2
9 t

5 + 5
3 t

4 + t3 + 1
3 , F = Q.

3. t4 + 15t3 + 7, F = Z, hint: think of modulo.

4. t16 + t15 + t14 + . . .+ t3 + t2 + t+ 1, F = Q, hint: this needs a trick.

Answer.

1. Use Eisenstein’s criterion with p = 2.

2. This polynomial is irreducible if and only if

9f(t) = 2t5 + 15t4 + 9t3 + 3

is irreducible over Q. Here Eisenstein’s criterion can be applied with p = 3,
showing that f is irreducible.
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3. Modulo 5, f(t) ≡ t4 + 2. If this is reducible, then either it has a a factor
of degree 1 (not possible, it is easy to try the 5 values), or it is a product
of two factors of degree 2. The latter can be checked explicitly: if

t4 + 2 = (t2 + at+ b)(t2 + ct+ d)

then a+ c = 0, ac+ b+ d = 0, bd = 2. One can check all possible values
and see that this is not possible either. Hence t4+2 is irreducible modulo
5, and therefore the original polynomial was irreducible over Z.

4. Notice that f(t) is irreducible if and only if f(t + 1) is. By expanding
f(t+ 1), one can use Eisenstein’s criterion with q = 17.

Exercise 87. True/False.

Q1. Let R be a ring, and let r be an element of R. If r is not a zero divisor of
R, then r is a unit.

Q2. A principal ideal domain is a euclidean domain.

Q3. Hamilton’s quaternions form a skew field.

Q4. The quotient ring Z[i]/(1 + i)Z[i] is a field.

Q5. A field is a unique factorization domain.

Q6. The ideal (5, i) in Z[i] is principal.

Q7. The polynomial 3x4 + 15X2 + 10 is irreducible over Q.

Q8. Let R be a ring, and M be a maximal ideal, then R/M is an integral
domain.

Answer.

Q1. This cannot be true in general! Take Z for example. It has no zero divisor,
but apart 1 and -1, no other element is a unit! Actually, in an integral
domain, there is no zero divisor, which does not mean it is an field.

Q2. A euclidean domain is a principal ideal domain. The converse is not true.
Take for example Z[(1 + i

√
19)/2]. It is a principal ideal domain, but it is

not a euclidean domain.

Q3. A skew field is non-commutative field. Hamilton’s quaternions are non-
commutative, and we have seen that every non-zero quaternion is invert-
ible (the inverse of q is its conjugate divided by its norm).

Q4. It is actually a field. You can actually compute the quotient ring explicitly,
this shows that Z[i]/(1 + i)Z[i] is isomorphic to the field of 2 elements
{0, 1}.This can be done using the first isomorphism for rings.

Q5. It is true since every non-zero element is a unit by definition.
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Q6. It is true! With no computation, we know it from the theory: We know
that Z[i] is a euclidean domain, and thus it is a principal domain, so all
ideals including this one are principal.

Q7. It is true! Use for example Eisenstein’s criterion with p = 5.

Q8. Who said the ring R is commutative? The statement seen in the class is
about commutative rings. It is not true for non-commutative rings. Here
is an example: take R = Z + Zi + Zj + Zk (ring of quaternions with
integer coefficients), pR is a maximal ideal of R (p odd prime) but R/pR
is actually isomorphic to M2(Z/pZ) and thus is not an integral domain.


